2023 Vol. 43, No. 5
Article Contents

WANG Linzhang, ZENG Zhigang. Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 36-49. doi: 10.16562/j.cnki.0256-1492.2022091901
Citation: WANG Linzhang, ZENG Zhigang. Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 36-49. doi: 10.16562/j.cnki.0256-1492.2022091901

Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean

More Information
  • Co-rich crusts are a kind of marine mineral resources rich in Mn, Co, Ni and rare earth elements (lanthanide and yttrium, abbreviated as REY). The Co-rich crust sample studied in this paper was collected on the mountaintop edge of Caiwei Guyot in the Northwest Pacific Ocean onboard research vessel “Kexue” (Science) with a TV grab during the HOBAB5 cruise expedition in 2018. The microstructure, mineralogy, and geochemistry of the Co-rich crust were analyzed by scanning electron microscope, X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometer (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS), and its genetic type and formation mechanism were discussed. The textures of the Co-rich crust could be divided into yellowish loose layer (C8-5), black dense ferromanganese layers (C8-2, C8-3 and C8-4), and rough surface in black botryoidal shape (C8-1) from inside to outside. The yellowish loose layer is composed of Fe-vernadite, quartz, albite, anorthite, todorokite, and phillipsite. It has high porosity with a high content of Al and low content of Mn. The black dense ferromanganese layers have low porosity and are mainly columnar in structure, and the main component minerals are Fe-vernadite, quartz, albite, and anorthite. Compared with C8-5, the content of Al decreases but the content of Mn increases, indicating that the supply of terrigenous materials gradually decreased. In the later growth process of the Co-rich crust, its microstructure changed mostly from columnar structure to mottled structure, and the transition area is in layered structure and composed of ferromanganese oxides and Si-rich clastic materials. The Mn/Fe ratios of layers of the Co-rich crust range from 1.16 to 1.85, and each layer shows positive Ce anomaly and negative Y anomaly. The above characteristics indicate that the Co-rich crust in the study area shows its hydrogenetic origin and is not affected by hydrothermal activities, whose metal elements are derived from oxidizing seawater. According to the chronological data, we conclude that the growth process of the Co-rich crust was controlled by Pacific Deep Water from the late Oligocene to the middle Pliocene. The continuous increases of Co/(Fe+Mn) and Co/(Ni+Cu) indicate that the Co-rich crust has been growing in a highly oxidizing marine environment. Compared with other oceans and seas, the Co-rich crust on Caiwei Guyot is enriched in Co, Ni and REY, and shall has very high economic value and mining prosperity.

  • 加载中
  • [1] Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2000: 239-279.

    Google Scholar

    [2] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    CrossRef Google Scholar

    [3] Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2018, 142: 16-33. doi: 10.1016/j.dsr.2018.09.008

    CrossRef Google Scholar

    [4] Fitzgerald C E, Gillis K M. Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean [J]. Marine Geology, 2006, 225(1-4): 145-156. doi: 10.1016/j.margeo.2005.09.005

    CrossRef Google Scholar

    [5] Pelleter E, Fouquet Y, Etoubleau J, et al. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific) [J]. Ore Geology Reviews, 2017, 87: 126-146. doi: 10.1016/j.oregeorev.2016.09.014

    CrossRef Google Scholar

    [6] Halbach P. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts [J]. Geologische Rundschau, 1986, 75(1): 235-247. doi: 10.1007/BF01770191

    CrossRef Google Scholar

    [7] Hein J R, Schwab W C, Davis A. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands [J]. Marine Geology, 1988, 78(3-4): 255-283. doi: 10.1016/0025-3227(88)90113-2

    CrossRef Google Scholar

    [8] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    CrossRef Google Scholar

    [9] McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125(1-4): 105-118. doi: 10.1016/0012-821X(94)90209-7

    CrossRef Google Scholar

    [10] Jiang X D, Sun X M, Guan Y, et al. Biomineralisation of the ferromanganese crusts in the Western Pacific Ocean [J]. Journal of Asian Earth Sciences, 2017, 136: 58-67. doi: 10.1016/j.jseaes.2017.01.025

    CrossRef Google Scholar

    [11] Sujith P P, Gonsalves M J B D. Ferromanganese oxide deposits: geochemical and microbiological perspectives of interactions of cobalt and nickel [J]. Ore Geology Reviews, 2021, 139: 104458. doi: 10.1016/j.oregeorev.2021.104458

    CrossRef Google Scholar

    [12] Guo B B, Wang W Q, Shu Y Q, et al. Observed deep anticyclonic cap over Caiwei Guyot [J]. Journal of Geophysical Research:Oceans, 2020, 125(10): e2020JC016254.

    Google Scholar

    [13] 杨永, 何高文, 杨胜雄, 等. 采薇平顶海山群底质类型分布研究[J]. 矿物学报, 2015, 35(S1):801-802

    Google Scholar

    YANG Yong, HE Gaowen, YANG Shengxiong, et al. Study on the distribution of sediment types of Caiwei Seamount Group [J]. Acta Mineralogica Sinica, 2015, 35(S1): 801-802.

    Google Scholar

    [14] 高晶晶, 刘季花, 张辉, 等. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源[J]. 海洋地质与第四纪地质, 2022, 42(3):87-99 doi: 10.16562/j.cnki.0256-1492.2021071302

    CrossRef Google Scholar

    GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean [J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302

    CrossRef Google Scholar

    [15] 韦振权, 何高文, 邓希光, 等. 大洋富钴结壳资源调查与研究进展[J]. 中国地质, 2017, 44(3):460-472

    Google Scholar

    WEI Zhenquan, HE Gaowen, DENG Xiguang, et al. The progress in the study and survey of oceanic cobalt-rich crust resources [J]. Geology in China, 2017, 44(3): 460-472.

    Google Scholar

    [16] 王彦美, 张伙带, 刘季花, 等. 麦哲伦海山区采薇海山富钴结壳伴生有用元素含量变化及空间分布特征[J]. 海洋地质与第四纪地质, 2016, 36(2):65-74

    Google Scholar

    WANG Yanmei, ZHANG Huodai, LIU Jihua, et al. Abundances and spatial distributions of associated useful elements in Co-rich crusts from Caiwei Seamount in Magellan Seamounts [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 65-74.

    Google Scholar

    [17] 中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录(2016)[M]. 北京: 海洋出版社, 2016: 30-57

    Google Scholar

    Chinese Ocean Mineral Resources Research and Development Association Office. Chinese Gazetteer of Undersea Features on the International Seabed (2016)[M]. Beijing: China Ocean Press, 2016: 30-57.

    Google Scholar

    [18] Epp D. Possible perturbations to hotspot traces and implications for the origin and structure of the Line Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B13): 11273-11286. doi: 10.1029/JB089iB13p11273

    CrossRef Google Scholar

    [19] Lonsdale P. Geography and history of the Louisville Hotspot Chain in the southwest Pacific [J]. Journal of Geophysical Research, 1988, 93(B4): 3078-3104. doi: 10.1029/JB093iB04p03078

    CrossRef Google Scholar

    [20] Wessel P, Kroenke L. A geometric technique for relocating hotspots and refining absolute plate motions [J]. Nature, 1997, 387(6631): 365-369. doi: 10.1038/387365a0

    CrossRef Google Scholar

    [21] Koppers A A P, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(10): 1089.

    Google Scholar

    [22] Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66(3): 389-403. doi: 10.1007/s10872-010-0034-8

    CrossRef Google Scholar

    [23] Gordon A L, Visbeck M, Huber B. Export of Weddell Sea deep and bottom water [J]. Journal of Geophysical Research:Oceans, 2001, 106(C5): 9005-9017. doi: 10.1029/2000JC000281

    CrossRef Google Scholar

    [24] 张亚南, 仲义, 陈艇, 等. 北太平洋大洋钻探研究进展: 古海洋与古气候[J]. 海洋地质与第四纪地质, 2022, 42(5):16-32

    Google Scholar

    ZHANG Yanan, ZHONG Yi, CHEN Ting, et al. Research progress of ocean drilling in the North Pacific Ocean: paleoceanography and paleoclimate [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 16-32.

    Google Scholar

    [25] 任向文. 西太平洋富钴结壳成矿系统[D]. 中国科学院海洋研究所博士学位论文, 2005

    Google Scholar

    REN Xiangwen. The Metallogenic system of co-rich manganese crusts in western pacific[D]. Doctor Dissertation of The Institute of Oceanology, Chinese Academy of Sciences, 2005.

    Google Scholar

    [26] Yeo I A, Dobson K, Josso P, et al. Assessment of the mineral resource potential of Atlantic ferromanganese crusts based on their growth history, microstructure, and texture [J]. Minerals, 2018, 8(8): 327. doi: 10.3390/min8080327

    CrossRef Google Scholar

    [27] 张振国, 杜远生, 吴长航, 等. 南海西北陆缘大型多金属结核的生长过程及其对晚新生代古海洋环境变化的响应[J]. 中国科学:地球科学, 2013, 56(3):453-463 doi: 10.1007/s11430-012-4535-8

    CrossRef Google Scholar

    ZHANG Z G, DU Y S, WU C H, et al. Growth of a polymetallic nodule from the Northwestern continental margin of the South China Sea and its response to changes in the paleoceanographical environment of the late Cenozoic [J]. Science China Earth Sciences, 2013, 56(3): 453-463. doi: 10.1007/s11430-012-4535-8

    CrossRef Google Scholar

    [28] Josso P, Rushton J, Lusty P, et al. Late cretaceous and Cenozoic paleoceanography from North-East Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122

    CrossRef Google Scholar

    [29] Giovanoli R. Vernadite is random-stacked birnessite: a discussion of the paper by F. V. Chukhrov et al. : "Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits" [Mineralium Deposita 14, 249–261 (1979)] [J]. Mineralium Deposita, 1980, 15(2): 251-253.

    Google Scholar

    [30] Villalobos M, Lanson B, Manceau A, et al. Structural model for the biogenic Mn oxide produced by Pseudomonas putida [J]. American Mineralogist, 2006, 91(4): 489-502. doi: 10.2138/am.2006.1925

    CrossRef Google Scholar

    [31] Grangeon S, Lanson B, Lanson M, et al. Crystal structure of Ni-sorbed synthetic vernadite: a powder X-ray diffraction study [J]. Mineralogical Magazine, 2008, 72(6): 1279-1291. doi: 10.1180/minmag.2008.072.6.1279

    CrossRef Google Scholar

    [32] Halbach P E, Jahn A, Cherkashov G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 65-141.

    Google Scholar

    [33] Zhong Y, Liu Q S, Chen Z, et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes [J]. Marine Geology, 2019, 410: 146-163. doi: 10.1016/j.margeo.2018.12.006

    CrossRef Google Scholar

    [34] Post J E, Heaney P J, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite [J]. American Mineralogist, 2003, 88(1): 142-150. doi: 10.2138/am-2003-0117

    CrossRef Google Scholar

    [35] Feng X H, Tan W F, Liu F, et al. Synthesis of todorokite at atmospheric pressure [J]. Chemistry of Materials, 2004, 16(22): 4330-4336. doi: 10.1021/cm0499545

    CrossRef Google Scholar

    [36] Selley R C, Cocks L R M, Plimer I R. Encyclopedia of Geology[M]. Boston: Academic Press, 2005: 591-600.

    Google Scholar

    [37] Wang L Z, Zeng Z G. The geochemical features and genesis of ferromanganese deposits from Caiwei Guyot, Northwestern Pacific Ocean [J]. Journal of Marine Science and Engineering, 2022, 10(9): 1275. doi: 10.3390/jmse10091275

    CrossRef Google Scholar

    [38] Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 312.

    Google Scholar

    [39] McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    Google Scholar

    [40] Addy S K. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic [J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1105-1115. doi: 10.1016/0016-7037(79)90097-8

    CrossRef Google Scholar

    [41] Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases [J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1007-1022. doi: 10.1016/0016-7037(74)90002-7

    CrossRef Google Scholar

    [42] Amakawa H, Ingri J, Masuda A, et al. Isotopic compositions of Ce, Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas, and the Gulf of Bothnia [J]. Earth and Planetary Science Letters, 1991, 105(4): 554-565. doi: 10.1016/0012-821X(91)90192-K

    CrossRef Google Scholar

    [43] 韩吟文, 马振东. 地球化学[M]. 北京: 地质出版社, 2003: 190-193

    Google Scholar

    HAN Yinwen, MA Zhendong. Geochemistry[M]. Beijing: Geology Press, 2003: 190-193.

    Google Scholar

    [44] Li Y H. Distribution patterns of the elements in the ocean: a synthesis [J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3223-3240. doi: 10.1016/0016-7037(91)90485-N

    CrossRef Google Scholar

    [45] Knaack D R, Sullivan K, Brown D J, et al. Geochemical and mineralogical composition of ferromanganese precipitates from the southern Mariana arc: evaluation, formation, and implications [J]. Chemical Geology, 2021, 568: 120132. doi: 10.1016/j.chemgeo.2021.120132

    CrossRef Google Scholar

    [46] Marino E, González F J, Kuhn T, et al. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island Seamounts and their influence in the metal recovery rate with hydrometallurgical methods [J]. Minerals, 2019, 9(7): 439. doi: 10.3390/min9070439

    CrossRef Google Scholar

    [47] Halbach P, Hebisch U, Scherhag C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control [J]. Chemical Geology, 1981, 34(1-2): 3-17. doi: 10.1016/0009-2541(81)90067-X

    CrossRef Google Scholar

    [48] Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    CrossRef Google Scholar

    [49] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    CrossRef Google Scholar

    [50] Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas [J]. Nature, 1983, 304(5928): 716-719. doi: 10.1038/304716a0

    CrossRef Google Scholar

    [51] Segl M, Mangini A, Bonani G, et al. 10Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation [J]. Nature, 1984, 309(5968): 540-543. doi: 10.1038/309540a0

    CrossRef Google Scholar

    [52] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0

    CrossRef Google Scholar

    [53] Chen S, Yin X B, Wang X Y, et al. The geochemistry and formation of ferromanganese oxides on the eastern flank of the Gagua Ridge [J]. Ore Geology Reviews, 2018, 95: 118-130. doi: 10.1016/j.oregeorev.2018.02.026

    CrossRef Google Scholar

    [54] Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 3771-3800. doi: 10.1002/2017GC007186

    CrossRef Google Scholar

    [55] Hein J R, Conrad T A, Frank M, et al. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10022.

    Google Scholar

    [56] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    [57] Wu G H, Zhou H Y, Zhang H S, et al. New index of ferromanganese crusts reflecting oceanic environmental oxidation [J]. Science in China Series D:Earth Sciences, 2007, 50(3): 371-384. doi: 10.1007/s11430-007-2011-7

    CrossRef Google Scholar

    [58] Aplin A, Michard A, Albarède F. 143Nd/144Nd in Pacific ferromanganese encrustations and nodules [J]. Earth and Planetary Science Letters, 1986, 81(1): 7-14. doi: 10.1016/0012-821X(86)90096-8

    CrossRef Google Scholar

    [59] Banakar V K, Borole D V. Depth profiles of 230Thexcess, transition metals and mineralogy of ferromanganese crusts of the Central Indian Basin and implications for palaeoceanographic influence on crust genesis [J]. Chemical Geology, 1991, 94(1): 33-44. doi: 10.1016/S0009-2541(10)80015-4

    CrossRef Google Scholar

    [60] Liu Q, Huo Y Y, Wu Y H, et al. Bacterial community on a Guyot in the northwest Pacific Ocean influenced by physical dynamics and environmental variables [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2883-2897. doi: 10.1029/2019JG005066

    CrossRef Google Scholar

    [61] Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 110: 1-19. doi: 10.1016/j.dsr.2015.11.006

    CrossRef Google Scholar

    [62] Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87. doi: 10.1016/0012-821X(84)90141-9

    CrossRef Google Scholar

    [63] Yeo I A, Howarth S A, Spearman J, et al. Distribution of and hydrographic controls on ferromanganese crusts: tropic Seamount, Atlantic [J]. Ore Geology Reviews, 2019, 114: 103131. doi: 10.1016/j.oregeorev.2019.103131

    CrossRef Google Scholar

    [64] Takahashi Y, Manceau A, Geoffroy N, et al. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 984-1008. doi: 10.1016/j.gca.2006.11.016

    CrossRef Google Scholar

    [65] Schnitker D. North Atlantic oceanography as possible cause of Antarctic glaciation and eutrophication [J]. Nature, 1980, 284(5757): 615-616. doi: 10.1038/284615a0

    CrossRef Google Scholar

    [66] Donnelly T W. Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments [J]. Geology, 1982, 10(9): 451-454. doi: 10.1130/0091-7613(1982)10<451:WCDACD>2.0.CO;2

    CrossRef Google Scholar

    [67] Kennett J P. Paleo-oceanography: global ocean evolution [J]. Reviews of Geophysics, 1983, 21(5): 1258-1274. doi: 10.1029/RG021i005p01258

    CrossRef Google Scholar

    [68] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14.

    Google Scholar

    [69] Conrad T, Hein J R, Paytan A, et al. Formation of Fe-Mn crusts within a continental margin environment [J]. Ore Geology Reviews, 2017, 87: 25-40. doi: 10.1016/j.oregeorev.2016.09.010

    CrossRef Google Scholar

    [70] Usui A, Nishi K, Sato H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500m [J]. Ore Geology Reviews, 2017, 87: 71-87. doi: 10.1016/j.oregeorev.2016.09.032

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(635) PDF downloads(20) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint