2023 Vol. 43, No. 5
Article Contents

HUANG Wei, HU Bangqi, JIANG Xuejun, LU Jingfang, HOU Fanghui, CUI Ruyong, LI Panfeng. Variations in content of Si, Al, and Ca during the growth of ferromanganese crusts on the 13°20′N seamount of Kyushu-Palau Ridge and indication to the supply of detrital materials[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 26-35. doi: 10.16562/j.cnki.0256-1492.2023070402
Citation: HUANG Wei, HU Bangqi, JIANG Xuejun, LU Jingfang, HOU Fanghui, CUI Ruyong, LI Panfeng. Variations in content of Si, Al, and Ca during the growth of ferromanganese crusts on the 13°20′N seamount of Kyushu-Palau Ridge and indication to the supply of detrital materials[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 26-35. doi: 10.16562/j.cnki.0256-1492.2023070402

Variations in content of Si, Al, and Ca during the growth of ferromanganese crusts on the 13°20′N seamount of Kyushu-Palau Ridge and indication to the supply of detrital materials

  • The detrital materials in diverse types are important components of deep-sea ferromanganese crusts. Detrital materials not only enrich the critical metals such as Co, Ni, Cu, Mn, REE and Y, but also record the oceanographic conditions and significant geological events during the growth of the crusts. Ferromanganese crust samples from the 13°20′N seamount of Kyushu-Palau Ridge were studied in detail using scanning electron microscopy and laser ablation-inductively coupled plasma-mass spectrometry based on previous research works. Results reveal that the large grain detrital materials in the samples are composed of mainly the aggregates of quartz and feldspar, and the foraminiferal fossils are mainly distributed in the outer part of the samples. The fine grain detrital materials include clay minerals, various forms of the fossil organisms and their fragments. The quartz and feldspar within the crusts are mainly derived from the Asian continental eolian dust, while the clay minerals are supplied by the eolian dust from the Asian continent and the weathering material from the surrounding island arc. The supply of detrital materials is at a high peak stage in the early stage of crust formation while it decreases to the lowest point in the later stage, which is consistent with the distribution characteristics of Si and Al contents in every part of the crusts, and a considerable amount of biogenic silica nanofossils may have incorporated into the ferromanganese oxide microlayers. The passively accreted Ca biogenic material within the crusts in the early stage suffers from fragmentation and dissolution in the middle and late stages, but the Ca in the inner part does not migrate out of the crusts completely. It is instead adsorbed by ferromanganese oxide microlayers in large quantities. The Ca contents in the bulk parts and the ferromanganese oxide microlayers are very similar to those in the three parts of the crust samples, which is due probably to that Ca in the crust is mainly distributed in fine grain detrital materials. The contents characteristics of Ca is completely different from Si and Al. The crust samples in the study area belong to normal open oceanic seamount-type crusts, but the enrichment of these critical metals is constrained by the supply of eolian dust from the Asian continent and the diatom from the surrounding seas.

  • 加载中
  • [1] Hein J R, Koschinsky A. 13.11-deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 273-291.

    Google Scholar

    [2] Halbach P E, Jahn A, Cherkashov G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer International Publishing, 2017: 65-141.

    Google Scholar

    [3] Josso P, van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts[J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651

    CrossRef Google Scholar

    [4] Yuan W, Zhou H Y, Yang Z Y, et al. Magnetite magnetofossils record biogeochemical remanent magnetization in hydrogenetic ferromanganese crusts[J]. Geology, 2020, 48(3): 298-302. doi: 10.1130/G46881.1

    CrossRef Google Scholar

    [5] 冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999

    Google Scholar

    FENG Shizuo, LI Fengqi, LI Shaojing. An Introduction to Marine Sciences[M]. Beijing: Higher Education Press, 1999.

    Google Scholar

    [6] Li Y H, Schoonmaker J E. 9.1-chemical composition and mineralogy of marine sediments[M]//Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 1-32.

    Google Scholar

    [7] 陶平, 邵秘华, 鲍永恩, 等. 海洋地球化学[M]. 北京: 科学出版社, 2020

    Google Scholar

    TAO Ping, SHAO Mihua, BAO Yong’en, et al. Marine Geochemistry[M]. Beijing: Science Press, 2020.

    Google Scholar

    [8] 黄威, 胡邦琦, 宋维宇, 等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 137-148 doi: 10.16562/j.cnki.0256-1492.2022052401

    CrossRef Google Scholar

    HUANG Wei, HU Bangqi, SONG Weiyu, et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401

    CrossRef Google Scholar

    [9] 朱碧, 朱志勇, 吕苗, 等. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试, 2017, 36(1): 14-21 doi: 10.15898/j.cnki.11-2131/td.2017.01.003

    CrossRef Google Scholar

    ZHU Bi, ZHU Zhiyong, LÜ Miao, et al. Application of iolite in data reduction of laser ablation-inductively coupled plasma-mass spectrometry line-scan analysis[J]. Rock and Mineral Analysis, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

    CrossRef Google Scholar

    [10] Wang X H, Gan L, Wiens M, et al. Distribution of microfossils within polymetallic nodules: biogenic clusters within manganese layers[J]. Marine Biotechnology, 2012, 14(1): 96-105. doi: 10.1007/s10126-011-9393-4

    CrossRef Google Scholar

    [11] Wu Y H, Liao L, Wang C S, et al. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2013, 79: 40-49. doi: 10.1016/j.dsr.2013.05.004

    CrossRef Google Scholar

    [12] Bruland K W, Middag R, Lohan M C. 8.2-controls of trace metals in seawater[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 8: 19-51.

    Google Scholar

    [13] Anonymous. A fresh look at element distribution in the North Pacific Ocean[J]. EOS Transactions American Geophysical Union, 1997, 78(21): 221.

    Google Scholar

    [14] Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    Google Scholar

    [15] Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules[J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    CrossRef Google Scholar

    [16] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    CrossRef Google Scholar

    [17] Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159. doi: 10.1016/j.palaeo.2012.02.015

    CrossRef Google Scholar

    [18] Yu Z J, Wan S M, Colin C, et al. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea[J]. Earth and Planetary Science Letters, 2016, 446: 45-55. doi: 10.1016/j.jpgl.2016.04.022

    CrossRef Google Scholar

    [19] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海晚中新世末期以来古海洋环境演化的新型铁锰结壳记录[J]. 中国科学D辑: 地球科学, 2007, 37(4): 512-520

    Google Scholar

    XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Paleoenvironments recorded in a new-type ferromanganese crust from the east Philippine Sea[J]. Journal of China University of Geosciences, 2006, 17(1): 34-42.

    Google Scholar

    [20] 王薇, 徐兆凯, 冯旭光, 等. 西菲律宾海现代风尘物质组成特征及其物源指示意义[J]. 地球科学, 2020, 45(2): 559-568

    Google Scholar

    WANG Wei, XU Zhaokai, FENG Xuguang, et al. Composition characteristics and provenance implication of modern dust in the west Philippine Sea[J]. Earth Science, 2020, 45(2): 559-568.

    Google Scholar

    [21] Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116

    CrossRef Google Scholar

    [22] Hein J R, Koschinsk A, Bau M, et al. Cobalt-Rich Ferromanganese Crusts in the Pacific[M]. Routledge: Handbook of Marine Mineral Deposits, 2000: 239-279.

    Google Scholar

    [23] Mizell K, Hein J R, Lam P J, et al. Geographic and oceanographic influences on ferromanganese crust composition along a pacific ocean meridional Transect, 14 N to 14S[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2): e2019GC008716.

    Google Scholar

    [24] Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the arctic ocean[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 3771-3800. doi: 10.1002/2017GC007186

    CrossRef Google Scholar

    [25] Zawadzki D, Maciąg Ł, Blasco I, et al. Geochemistry and mineralogy of ferromanganese crusts from the Western Cocos-Nazca Spreading Centre, Pacific[J]. Minerals, 2022, 12(5): 538. doi: 10.3390/min12050538

    CrossRef Google Scholar

    [26] Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean[J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    CrossRef Google Scholar

    [27] 唐艺, 万世明, 赵德博, 等. 三千万年以来西太平洋黏土矿物记录的亚洲干旱及构造-气候驱动[J]. 中国科学: 地球科学, 2023, 53(6): 1373-1391

    Google Scholar

    TANG Yi, WAN Shiming, ZHAO Debo, et al. Evolution of Asian drying since 30 Ma revealed by clay minerals record in the West Pacific and its tectonic-climatic forcing[J]. Science China Earth Sciences, 2023, 66(6): 1365-1382.

    Google Scholar

    [28] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific[J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    CrossRef Google Scholar

    [29] 李铁刚, 熊志方, 翟滨. 低纬度西太平洋硅藻席沉积与碳循环[M]. 北京: 海洋出版社, 2015

    Google Scholar

    LI Tiegang, XIONG Zhifang, ZHAI Bin. Laminated Diatom Mat Deposits from the Low-Latitude Western Pacific Linked to Global Carbon Cycle[M]. Beijing: China Ocean Press, 2015.

    Google Scholar

    [30] Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic[J]. Paleoceanography, 2008, 23(1): PA1204.

    Google Scholar

    [31] Van Andel T H. Mesozoic/cenozoic calcite compensation depth and the global distribution of calcareous sediments[J]. Earth and Planetary Science Letters, 1975, 26(2): 187-194. doi: 10.1016/0012-821X(75)90086-2

    CrossRef Google Scholar

    [32] Wang X H, Schröder H C, Wiens M, et al. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy[J]. Micron, 2009, 40(3): 350-358. doi: 10.1016/j.micron.2008.10.005

    CrossRef Google Scholar

    [33] Wang X H, Schloßmacher U, Natalio F, et al. Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: Implications of biologically induced mineralization[J]. Micron, 2009, 40(5-6): 526-535. doi: 10.1016/j.micron.2009.04.005

    CrossRef Google Scholar

    [34] Usui A, Hino H, Suzushima D, et al. Modern precipitation of hydrogenetic ferromanganese minerals during on-site 15-year exposure tests[J]. Scientific Reports, 2020, 10(1): 3558. doi: 10.1038/s41598-020-60200-5

    CrossRef Google Scholar

    [35] Mizell K, Hein J R, Au M, et al. Estimates of metals contained in abyssal manganese nodules and ferromanganese crusts in the global ocean based on regional variations and genetic types of nodules[M]//Sharma R. Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management. Cham: Springer International Publishing, 2022, 53-80.

    Google Scholar

    [36] Conrad T, Hein J R, Paytan A, et al. Formation of Fe-Mn crusts within a continental margin environment[J]. Ore Geology Reviews, 2017, 87: 25-40. doi: 10.1016/j.oregeorev.2016.09.010

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(454) PDF downloads(17) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint