

西北太平洋采薇海山富钴结壳矿物学和地球化学特征

王琳璋,曾志刚

Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean

WANG Linzhang and ZENG Zhigang

在线阅读 View online: https://doi.org/10.16562/j.cnki.0256-1492.2022091901

您可能感兴趣的其他文章

Articles you may be interested in

西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征

Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific 海洋地质与第四纪地质. 2021, 41(1): 210

南海东部管事海山铁锰结壳的矿物组成和地球化学特征

Mineralogy and geochemisry of ferromanganese crusts from Guanshi Seamount in the eastern South China Sea 海洋地质与第四纪地质. 2019, 39(3): 94

磷酸盐化作用对富钴结壳中稀土元素的影响

THE EFFECTS OF PHOSPHATIZATION ON THE REY OF CO-RICH FE-MN CRUSTS

海洋地质与第四纪地质. 2017, 37(2): 33

采薇平顶海山群的多级山顶平台及成因

Origin of multiple flat tables on Caiwei Guyots in West Pacific 海洋地质与第四纪地质. 2018, 38(6): 91

西太平洋深海沉积物孔隙水稀土元素地球化学特征及意义

Rare earth element geochemistry characteristics and implications of pore-water from deep sea sediment in Western Pacific Ocean 海洋地质与第四纪地质. 2021, 41(1): 75

中、西太平洋多金属结壳生长速率变化与制约因素

Variation in growth rate of polymetallic crusts in the central and western Pacific Ocean and its constraining factors 海洋地质与第四纪地质. 2020, 40(4): 162

关注微信公众号,获得更多资讯信息

王琳璋,曾志刚.西北太平洋采薇海山富钻结壳矿物学和地球化学特征 [J].海洋地质与第四纪地质, 2023, 43(5): 36-49. WANG Linzhang, ZENG Zhigang. Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 36-49.

西北太平洋采薇海山富钴结壳矿物学和地球化学特征

王琳璋1,2,3,曾志刚1,2,3,4

中国科学院海洋研究所,青岛 266071
 中国科学院海洋地质与环境重点实验室,青岛 266071
 中国科学院大学,北京 100049
 崂山实验室海洋矿产资源评价与探测技术功能实验室,青岛 266237

摘要:富钴结壳是一种富含 Mn、Co、Ni 和稀土元素 (镧系元素加纪,简称 REY)等元素的海底矿产资源。本文研究的富钴结 壳样品是"科学"号在 2018 年 HOBAB5 航次于西北太平洋采藏海山的山顶边缘上通过电视抓斗获得的。利用扫描电镜、X 射 线衍射仪 (XRD)、电感耦合等离子体发射光谱仪 (ICP-OES)和电感耦合等离子体质谱仪 (ICP-MS)分析了富钴结壳的显 徽构造、矿物学特征和地球化学特征,并探讨了其成因类型和形成机制。富钴结壳的结构从内到外可分为土黄色的疏松层 (C8-5)、黑色铁锰致密层 (C8-2、C8-3 和 C8-4)和发育葡萄状球体的粗糙表面 (C8-1)。土黄色疏松层孔隙度较高,主要组 成矿物为水羟锰矿、石荚、钙长石、钠长石、钙十字沸石和钡镁锰矿,Mn 的含量较低,Al 的含量较高。黑色的铁锰致密层孔隙 度较低,呈柱状构造,主要组成矿物为水羟锰矿、石荚、钙长石和钠长石,Al 含量有所下降,Mn 含量升高,说明陆源物质的供应 逐渐变少。在富钴结壳的生长后期,其主要显微构造由柱状构造向斑杂构造转变,二者的过渡区域为铁锰氧化物与富 Si 碎屑 物质组成的层状构造。富钴结壳各层位的 Mn/Fe 比值为 1.16~1.85, 且各层位 Ce 呈正异常,Y 呈负异常,以上特征表明富钴结 壳为水成成因型,其金属元素来源于氧化性海水,未受到热液活动的影响。依据富钴结壳的年代学数据,可知从渐新世末期 到上新世中期,富钴结壳的生长过程一直受控于太平洋深层水。Co/(Fe+Mn)和 Co/(Ni+Cu) 的不断升高表明富钴结壳一直在氧 化性较高的海水环境中生长。相较于其他大洋和海区,采薇海山富钴结壳具有高含量的 Co、Ni 和 REY,具有板高的经济价值 和开采价值。

关键词:矿物学;地球化学;采薇海山;富钴结壳 中图分类号:P736.4 文献标识码:A **DOI**: 10.16562/j.cnki.0256-1492.2022091901

Mineralogical and geochemical features of Co-rich crust on Caiwei Guyot, Northwest Pacific Ocean

WANG Linzhang^{1,2,3}, ZENG Zhigang^{1,2,3,4}

1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2. CAS Key Laboratory of Marine Geology and Environment, Qingdao 266071, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Laboratory for Marine Mineral Resources, Laboratory of Laoshan, Qingdao 266237, China

Abstract: Co-rich crusts are a kind of marine mineral resources rich in Mn, Co, Ni and rare earth elements (lanthanide and yttrium, abbreviated as REY). The Co-rich crust sample studied in this paper was collected on the mountaintop edge of Caiwei Guyot in the Northwest Pacific Ocean onboard research vessel "*Kexue*" (*Science*) with a TV grab during the HOBAB5 cruise expedition in 2018. The microstructure, mineralogy, and geochemistry of the Co-rich crust were analyzed by scanning electron microscope, X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometer (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS), and its genetic type and formation mechanism were discussed. The textures of the Co-rich crust could be divided into yellowish loose layer (C8-5), black dense ferromanganese layers (C8-2, C8-3 and C8-4), and rough surface in black botryoidal shape (C8-1) from inside to outside. The yellowish loose layer is composed of Fevernadite, quartz, albite, anorthite, todorokite, and phillipsite. It has high porosity with a high content of Al and low content of Mn. The black

作者简介: 王琳璋(1995--), 男, 博士研究生, 主要从事海洋资源矿产的研究, E-mail: wanglinzhang@ qdio.ac.cn

资助项目:国家自然科学基金项目"深海界面过程和化能生态系统"(42221005),"西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约" (91958213);中国科学院战略性先导科技专项"热液/冷泉区岩浆物质贡献与流体化学过程"(XDB42020402);泰山学者工程专项(ts201511061)

通讯作者: 曾志刚(1968—), 男, 研究员, 主要从事海底热液活动研究, E-mail: zgzeng@qdio.ac.cn

收稿日期: 2022-09-19; 改回日期: 2022-12-08. 张现荣编辑

dense ferromanganese layers have low porosity and are mainly columnar in structure, and the main component minerals are Fe-vernadite, quartz, albite, and anorthite. Compared with C8-5, the content of Al decreases but the content of Mn increases, indicating that the supply of terrigenous materials gradually decreased. In the later growth process of the Co-rich crust, its microstructure changed mostly from columnar structure to mottled structure, and the transition area is in layered structure and composed of ferromanganese oxides and Si-rich clastic materials. The Mn/Fe ratios of layers of the Co-rich crust range from 1.16 to 1.85, and each layer shows positive Ce anomaly and negative Y anomaly. The above characteristics indicate that the Co-rich crust in the study area shows its hydrogenetic origin and is not affected by hydrothermal activities, whose metal elements are derived from oxidizing seawater. According to the chronological data, we conclude that the growth process of the Co-rich crust was controlled by Pacific Deep Water from the late Oligocene to the middle Pliocene. The continuous increases of Co/(Fe+Mn) and Co/(Ni+Cu) indicate that the Co-rich crust has been growing in a highly oxidizing marine environment. Compared with other oceans and seas, the Co-rich crust on Caiwei Guyot is enriched in Co, Ni and REY, and shall has very high economic value and mining prosperity. **Key words:** mineralogy; geochemistry; Caiwei Guyot; Co-rich crust

富钴结壳广泛分布在全球各大洋中,是常见的 深海矿产资源,它们通常生长在水深 400~7 000 m 的海山山顶边缘和斜坡的基岩表面^[1-2], 且富含 Co、 Ni、Cu、Zn、REY和铂族元素等元素,具有极高的 经济价值和资源潜力[1]。海洋里的结壳分为3种: 水成型,成岩型和热液型^[2]。水成型富钴结壳中的 金属离子主要来源于海水,在氧化环境下形成铁锰 氧化物或者氢氧化物胶体^[1];成岩型结壳中的金属 离子主要来自于沉积物中的孔隙水,在亚氧化的环 境下形成铁锰氧化物^[3];热液型结壳中的金属离子 主要来自于热液流体与海水混合作用[4-5]。水成型 富钴结壳生长速率很低(1~10 mm/Ma),在这个缓 慢的生长过程中,许多古海洋事件会被其记录下 来,因此富钴结壳可以作为古海洋和古环境的研究 对象^[6-9]。近年来的研究表明, Co 被吸附在铁锰氧 化物的过程中有细菌参与,这一结果说明微生物活 动通过控制金属元素的富集来影响富钴结壳的生 长[10-11]。采薇海山是位于我国富钴结壳勘探合同区 内的一座重点海山,近些年来,前人对采薇海山区 的富钴结壳资源开展了一系列地质调查,对其分布 特点、矿物学特征以及地球化学特征进行了大量研 究,研究表明富钴结壳多形成在山顶边缘和斜 坡[12-13]。富钴结壳主要由水羟锰矿以及非晶态的铁 氧化物或者氢氧化物组成,为水成成因^[14]。REY 和 Co的含量很高,已达到工业品位,并且随着水深的 增加, REY 含量有升高的趋势[15-16]。尽管前人对采 薇海山的富钴结壳进行了研究,但是缺乏富钴结壳 生长过程各个阶段的分析讨论。本文依据富钴结 壳宏观结构对其进行分层,分析各层位的矿物学特 征和地球化学特征,利用Co经验公式计算了各层 位的生长速率和生长时间,结合古海洋事件探讨其 成因类型和形成机制。

1 区域概况

麦哲伦海山区位于西北太平洋马里亚纳海盆 以北,西邻马里亚纳海沟,由 20个海山/海山群组 成,采薇海山群是该海山区中的一个海山群(图 1a)。 采薇海山群主要由采薇海山、采杞海山和采菽海山 组成,规模较大的主体海山为采薇海山^[17]。采薇海 山由地形平缓的山顶平台和陡峭的山坡组成,走向 NE,长宽分别为 110 和 95 km。山顶平台水深约 1 450 m,最浅处 1 230 m,山麓水深 5 830 m,高差 4 600 m^[17]。采薇海山的基岩主要为火山碎屑岩和 玄武岩;早白垩世—古新世的生物礁灰岩和泥岩, 始新世—早中新世的有孔虫灰岩及古新世—全新 世的有孔虫砂、软泥等钙、泥质沉积物等构成了海 山的沉积盖层^[18-21]。

采薇海山主要受到太平洋深层水(Pacific Deep Water, PDW)的影响^[22], PDW 由以温度极大值为特 征的上层绕极深层水(Upper Circumpolar Deep Water, UCDW)和以盐度极大值为特征的下层绕极 深层水(Lower Circumpolar Deep Water, LCDW)组成^[23]。 UCDW 和 LCDW 沿着太平洋西部边界的海盆向北 流动,在西北太平洋沿着陆坡上涌形成 PDW^[24] (图 1b)。UCDW 和 LCDW 通过深层水混合最终形 成较老的北太平洋深层水(North Pacific Deep Water, NPDW), NPDW 循环进入西北太平洋和菲律宾海^[22] (图 1b)。采薇海山的地形促进内波的增强,其山顶 边缘的顺时针的反气旋环流(泰勒柱现象)不仅可 以将沉积物清扫走(图 1c),为富钴结壳的 生长提供合适的环境112,而且可以促进最低含氧 带(Oxygen Minimum Zone, OMZ)中的金属离子的氧 化[25]。

图 1 研究区位置以及现代大洋环流体系

a: 采薇海山群地理位置(数据来源于 http://www.gebco.net); b: 太平洋环流体系(据文献 [22-23]),黄色星星代表采薇海山群的位置; c: 采薇海山地形图(数据来源于 http://www.gebco.net)和富钴结壳位置图,黄色星星代表样品的位置。

Fig.1 Location of the study area and modern ocean circulation systems

a: geographic location of Caiwei Seamounts (Data are quoted from http://www.gebco.net); b: Pacific circulation system (modified after [22-23]), and the yellow star represents the position of Caiwei Seamounts; c: topographic map of Caiwei Guyot (Data are quoted from http://www.gebco.net.) and the location map of the Co-rich crust, and the yellow star represents the sample position.

2 样品和方法

本文研究的样品是"科学"号在 2018 年 HOBAB5 航次于西北太平洋采薇海山的山顶边缘上通过电 视抓斗获得的一块富钴结壳(图 1),位置坐标为 15°45′51.087″N、154°56′25.891″E,水深为1608 m。 样品长 12 cm,未见下伏基岩。富钴结壳主要由 3部分组成,从内到外分别是土黄色的疏松层、黑 色的致密层和粗糙的表面(图 2a)。土黄色的疏松 层中的铁锰氧化物的间隙被黄色的碎屑沉积物所 填充,土黄色的沉积物与黑色铁锰氧化物相间排 列,孔隙度较高,疏松多孔(图 2a);黑色的致密层主 要为铁锰氧化物,硬度相对较大,具金属光泽,碎屑 沉积物含量较低,孔隙度较低(图 2a);粗糙的表面 发育有直径约为1 cm 的黑色葡萄状球体,葡萄状球 体并非是单个颗粒存在的,而是几个颗粒球体连在 一起形成聚合体,且在表面上成片发育。葡萄状球

体表面的裂隙被土黄色的沉积物填充(图 2b)。

将富钴结壳样品用清水冲洗,烘干后加上比例 尺拍照,之后将其切成两份,用超纯水清洗后,将其 放入烘箱中烘干,设置烘箱温度为 60℃。一份用来 制作成探针片在扫描电镜下观察富钴结壳各层的 显微构造,另一份按照内部结构沿着生长剖面将富 钴结壳分层(图 2a),从内到外分别是土黄色的疏松 层(C8-5)、黑色的铁锰致密层(C8-2、C8-3 和 C8-4) 和粗糙的表面(C8-1)。每一层都是独立的,用玛瑙 研钵研磨至 200 目,再次置于烘箱中以 60℃ 烘干后 转入干燥器,干燥 24 h 后待用。

样品的镜下观察是在中国科学院海洋研究所海洋地质与环境重点实验室通过 VEGA3 TESCAN 扫描电镜结合 Oxford EDS 牛津 X 射线能谱仪(英国)进行的。扫描电镜仪器使用 20 kV 高压,发射电流为 1.4~1.9 Na,实验时保持 15 mm 的工作距离。 另外, X 射线能谱仪使用 20 kV 激发电压。

样品的 XRD 实验是在广州海洋地质调查局

图 2 采薇海山富钴结壳样品手标本照片

a: 样品生长剖面照片,从内到外分别是土黄色的疏松层(C8-5)、黑色的致密层(C8-2、C8-3和C8-4)和粗糙的表面(C8-1); b: 样品表面照片。

Fig.2 Hand specimens of the Co-rich crust on Caiwei Guyot

a: Photographs of growth profile of the sample, and the layers from inside to outside are: yellowish loose layer (C8-5), black dense layers (C8-2, C8-3 and C8-4), and rough surface (C8-1); b: photographs of the sample surface.

XRD 射线衍射分析实验室进行的, 仪器为理学 (Rigaku) D/Max 2500 PC 18 kW 粉末衍射仪, 仪器参 数为铜靶, 石墨单色器, 其中管电压 40 kV, 管电流 300 mA, 实验采用连续扫描的方式, 扫描时速度为 2.5°(20)/min, 步长为0.01°(20), 扫描范围为5°~75°(20), 环境温度 25±2℃。

样品的主量元素测试实验是在核工业北京地质研究院进行的,仪器为5300DV等离子体发射光 谱仪(ICP-OES),以GB/T14506.32-2019《硅酸盐岩 石化学分析方法第32部分:三氧化二铝等20个成 分量测定混合酸分解-电感耦合等离子体原子发 射》为检测方法和依据进行实验。样品的微量元素 测试实验是在中国科学院海洋研究所海洋地质与 环境重点实验室进行的,仪器为ELAN9000电感耦 合等离子体质谱仪(ICP-MS)。Re元素作为内标, 外标样品包括(GBW07315、GBW07316、BCR-2、 BHVO-2、Nod-A-1、Nod-P-1、GBW07295和GBW 07296)。结果与推荐值基本一致,元素结果相对误 差小于5%。

3 结果与分析

3.1 构造特征

富钴结壳的显微构造如图 3 所示,内部的构造 较为复杂。沿着生长方向,富钴结壳主要由柱状构 造、层状构造和斑杂构造组成,且各构造之间接触 渐变。柱状构造主要由直立的圆柱体组成,柱体首 尾连接,并向上和向外生长,其直径范围为 100~ 300 μm(图 3a、b)。柱体之间的空隙被碎屑物质如 石英等充填。碎屑物质的进入抑制了铁锰氧化物 的沉淀,原有柱状体的生长被打断,新的圆柱状体 在此基础上生成,进一步促进了柱状构造的形成^[26] (图 3a、b)。斑杂构造主要由圆形的斑块组成(图 3c、 d),主要成分是非晶态的铁锰氧化物和黏土矿物微 层,斑块间的空隙被碎屑物质所填充,层状构造作 为柱状构造和斑杂构造的过渡区域由铁锰氧化物 与碎屑物质组成,厚度不一且横向延伸(图 3c)。富 钴结壳的显微构造特征与其形成的古海洋环境息 息相关,过渡区域的层状构造多形成于水动力较弱 以及较为稳定的环境中,柱状构造和斑杂构造形成 于水动力较强以及氧化条件较好的环境中^[27]。碎 屑物质主要为 Fe-Si 胶结物,这一现象可能是因为 局部的微还原环境使得氧化还原电位发生变化,这 种变化促进了 Fe 的活化^[28]。

3.2 矿物组成特征

样品的能谱分析表明,组成柱状构造的主要矿 物为水羟锰矿。对样品各层位进行X射线衍射实 验来分析其矿物组成,各层位的 XRD 衍射图谱如 图 4 所示。通过图 4 可以看到各层位图谱衍射峰均 不尖锐,强度宽泛且弥散,这一现象的原因主要在 于富钴结壳中的锰矿物结晶程度较低。从外到内, 富钴结壳各层位的主要矿物如下:C8-1 层位中主要 矿物为水羟锰矿、石英和钙长石;C8-2 层位中主要 矿物是水羟锰矿、石英、钙长石和钠长石; C8-3 层 位中主要矿物是水羟锰矿、石英、钙长石和钠长 石;C8-4 层位中主要矿物是水羟锰矿、石英、钙长 石和钠长石; C8-5 层位中主要矿物是水羟锰矿、石 英、钙长石、钠长石、钙十字沸石和钡镁锰矿。水 羟锰矿晶体结构为层状结构,(Mn4+O6)8-八面体通过 边缘相互连接成层,八面体层中以 Mn4+为主,金属 阳离子可对 Mn4+类质同象替换^[29-31]。石英、钙长石 和钠长石的发育可能是由于风成尘埃的输入[32]。 钡镁锰矿被认为是成岩作用的产物^[33],在亚氧化条 件下的沉积物-海水界面受孔隙水的影响形成的。

图 3 采薇海山富钴结壳显微构造

a、b:来自于致密层(C8-3和C8-2)中的柱状构造,柱体的间隙由碎屑物质充填;c:来自于致密层(C8-2)中的层状构造和斑杂构造;d:来自于 致密层(C8-2)中的斑杂构造,圆形斑块间的空隙被碎屑物质所填充。

a-b: Columnar structures derived from dense layers (C8-3 and C8-2), and the gaps between columns are filled with clastic materials; c: layered structures and mottled structures derived from the dense layer (C8-2); d: mottled structures derived from the dense layer (C8-2), and the gaps between circular patches are filled with clastic materials.

钡镁锰矿具有隧道结构, K⁺、Mg²⁺、Ba²⁺等阳离子和 水分子通常占据钡镁锰矿隧道中的位点, 而 Co、 Ni 和 Cu 等过渡金属元素可能主要以取代隧道的边 角 Mn 离子的方式进入到钡镁锰矿中^[34-35]。钙十字 沸石通常被认为是在海水与沉积物-水界面处的火 山碎屑发生反应形成的^[36]。由于钙十字沸石通常 以自生矿物的形式出现, 且存在于富钴结壳柱状构 造的间隙中, 因此钙十字沸石可能在富钴结壳生长 过程中与柱体物理结合。

3.3 地球化学组成特征

各层位的常量元素组成见表 1。其中, 各层位 Mn 的 含 量 为 13.3%~ 18.5%, 平 均 值 为 15.4%, Mn的含量从内部层位(C8-5)到外部层位(C8-1)先 升高后逐渐降低,在C8-3处达到最大值(图5)。各 层位Fe的含量为9.24%~12.6%,平均值为10.9%, Fe的含量从内部层位(C8-5)到外部层位(C8-1)先 降低后逐渐升高,在C8-2处达到最小值(图5)。各 层位的Mn/Fe比值为1.16~1.85,平均值为1.43, Mn/Fe比值从内部层位(C8-5)到外部层位(C8-1)先 升高后逐渐降低,在C8-3处达到最大值(图5)。各 层位Al的含量为0.64%~2.68%,平均值为1.74%, Al的含量从内部层位(C8-5)到外部层位(C8-1)先 降低后逐渐升高,在C8-3处达到最小值(图5)。各 层位Ca的含量为1.61%~2.00%,平均值为1.85%。 各层位P的含量为0.62%~0.8%,平均值为0.68%。

徳主 1

Fig.4 The XRD patterns of each layer of the Co-rich crust on Caiwei Guyot

The layer division is shown in Fig. 2a. Ver: Fe-vernadite, Tod: todorokite, Qz: Quartz, Ab: albite,An: anorthite, Phi: phillipsite.

表 1 采薇海山富钴结壳各层位地球化学数据

 Table 1
 Geochemical data of the layers of the Co-rich crust on

 Coivei Gruet
 Coivei Gruet

		Caiwei	Guyot			
		C8-1	C8-2	C8-3	C8-4	C8-5
	Mn	13.5	13.3	18.5	16.8	15.0
	Fe	11.6	9.24	10.0	11.1	12.6
	Al	2.10	1.67	0.64	1.60	2.68
	Mn/Fe	1.16	1.44	1.85	1.52	1.19
尚見二主 /0/	Na	1.62	1.46	1.88	1.71	1.73
吊里儿杀/∞	Κ	0.61	0.41	0.36	0.48	0.60
	Ca	1.76	1.61	2.00	1.97	1.90
	Mg	1.21	0.94	1.11	1.19	1.43
	Ti	1.11	0.76	0.96	1.16	1.20
	Р	0.72	0.62	0.63	0.63	0.80
	As	204	171	189	169	152
	В	189	158	178	163	191
	Ba	1093	1096	1360	1312	1307
	Be	4.76	4.15	4.75	4.77	5.61
	Bi	18.1	19.3	22.2	19.4	15.2
谢县示表/10-6	Cd	6.12	5.51	6.58	5.63	4.31
似里儿系/10	Co	4805	4396	5311	3858	2534
	Cr	10.2	9.55	11.9	12.4	13.7
	Cs	0.47	0.32	0.39	0.50	1.04
	Cu	479	615	828	844	1080
	Ga	6.03	5.51	6.71	6.49	7.35
	Hf	6.74	6.89	7.82	8.93	12.5

级衣Ⅰ						
		C8-1	C8-2	C8-3	C8-4	C8-5
	Li	6.32	2.91	3.07	4.08	10.2
	Мо	554	559	583	449	389
	Nb	43.9	44.9	55.8	55.8	58.5
	Ni	3012	3411	4224	3740	3454
	Pb	1997	1747	1712	1560	1321
	Rb	7.08	6.05	6.94	7.52	10.7
	Sc	7.61	6.06	6.55	7.01	10.9
	Sr	1362	1215	1411	1284	1159
	Та	0.50	0.50	0.57	0.58	0.58
	Th	16.2	10.8	9.46	9.07	8.74
	Tl	71.4	66.3	65.6	53.9	59.9
	U	13.3	11.9	12.3	10.8	9.04
	V	620	537	592	528	487
	W	84.6	83.6	93.6	76	60.3
	Zn	466	514	587	559	597
	Zr	537	501	615	633	761
	La	233	197	210	203	200
	Ce	605	590	740	757	580
	Pr	41.5	33.7	36.9	35.9	34.6
	Nd	183	148	159	155	149
	Sm	37.9	30.3	32.2	32.0	30.6
	Eu	9.53	7.68	8.00	7.98	7.63
	Gd	46.9	38.9	40.3	40.1	37.9
	Tb	7.14	5.84	5.92	5.80	5.56
	Dy	40.5	33.7	33.6	31.9	30.9
	Y	179	147	155	139	158
1X - = = = (1 a - f	Но	10.0	8.47	8.33	7.88	7.64
稀土兀素/10 ^{-∞}	Er	26.0	22.3	22.0	20.6	19.9
	Tm	4.12	3.62	3.59	3.32	3.23
	Yb	25.5	22.1	22.2	20.3	19.9
	Lu	4.18	3.63	3.64	3.33	3.34
	ΣLREE	1110	1007	1186	1191	1001
	ΣHREE	164	139	139	133	128
	LREE/HREE	6.76	7.27	8.51	8.94	7.80
	ΣREY	1454	1293	1480	1463	1288
	Co/(Fe+Mn)	191	195	186	138	91.8
	Co/(Cu+Ni)	1.38	1.09	1.05	0.84	0.56
	生长速率(mm/Ma)	1.46	2.10	1.76	1.37	0.65

各层位的微量元素组成见表 1。其中各层位 Co的含量为 (2 534~5 311)×10⁻⁶, 平均值为 4 181× 10⁻⁶, Co的含量从内部层位(C8-5)到外部层位(C8-1)先逐渐升高, 在 C8-3 处达到最大值, 之后逐渐降 低(图 5)。 各层位 Cu的含量为 (479~1 080)×10⁻⁶, 平均值为 769×10⁻⁶, Cu 的含量在生长初始达到最高

值(C8-5),之后逐渐降低(图 5)。Cu的含量与采薇 海山相同水深的富钴结壳的Cu含量相近,低于采 薇海山1650m水深的富钴结壳中Cu的含量,远低 于采薇海山斜坡(水深3116m)铁锰结核中Cu的含 量^[37]。各层位Zn的含量为(466~597)×10⁻⁶,平均值 为544×10⁻⁶,其含量变化趋势与Cu一致(图 5)。各 层位Ni的含量为(3012~4224)×10⁻⁶,平均值为 3568×10⁻⁶,Ni的含量从内部层位(C8-5)到外部层 位(C8-1)先逐渐升高,在C8-3处达到最大值,之后 逐渐降低(图 5)。各层位Li的含量为(2.91~10.2) ×10⁻⁶,平均值为5.31×10⁻⁶,其含量在生长初期达到 最大值(C8-5)。各层位V的含量为(487~620)×10⁻⁶, 平均值为553×10⁻⁶,其含量随着富钴结壳的生长逐 渐增加,在C8-1处达到最大值(图 5)。各层位 Ba的含量为(1093~1360)×10⁻⁶,平均值为1234× 10⁻⁶,其含量从内部层位(C8-5)到外部层位(C8-1) 先逐渐升高,在C8-3处达到最大值,之后逐渐降低 (图5)。

各层位的稀土元素组成见表 1。其中各层位的 总稀土(∑REY)含量范围为(1288~1480)×10⁻⁶,平 均值为1396×10⁻⁶,其中 Ce含量最高,含量范围为 (580~757)×10⁻⁶,平均值为654×10⁻⁶,其含量占比约 为50%。各层位的轻稀土(∑LREE)含量范围为 (1001~1191)×10⁻⁶,平均值为1099×10⁻⁶。各层位的 重稀土(∑HREE)含量范围为(128~164)×10⁻⁶,平均 值为141×10⁻⁶。各层位Y含量范围为(139~158)× 10⁻⁶,平均值150×10⁻⁶。各层位的LREE/HREE比值 范围为7.27~8.94,表现为LREE 富集,反映了水成 型成因^[38]。稀土元素的后太古宙澳大利亚页岩 (PAAS)标准化图解如图 6 所示,其中 PAAS 数据来 源于文献 [39]。从图中可以看出,富钴结壳各层位 具有明显的 Ce 正异常和 Y 负异常的特征。稀土元 素一般为+3 价,而 Ce 存在 Ce³⁺和 Ce⁴⁺。海洋环境 中 Ce³⁺被氧化成 Ce⁴⁺形成 CeO₂,从海水中沉淀出 来,造成海水中 Ce 强烈亏损,因此海水具有 Ce 负

图 6 采薇海山富钴结壳后太古宙澳大利亚页岩标准化稀 土元素配分图

PAAS数据来源于文献 [39],海水数据来源于文献 [44],热液型结壳数据来源于文献 [45],成岩型结壳数据来源于文献 [46]。

Fig.6 PAAS-normalized rare earth elements patterns of the Corich crust on Caiwei Guyot

PAAS data are from [39], seawater data are from [44], data of hydrothermal ferromanganese crusts are from [45], and data of diagenetic ferromanganese crusts are from [46].

异常的特征(图 6),而样品中Ce呈正异常^[40-41](图 6)。因此,富钴结壳稀土后太古宙澳大利亚页岩(PAAS)标准化后显示强烈的Ce正异常往往被认为是氧化作用的影响^[42]。Y元素的离子半径和原子结构与REE相似(Ho³⁺和Y³⁺的离子半径为0.89×10⁻¹⁰ m^[43]),化学性质与重稀土元素相似,但Y没有4f电子,很难形成较稳定的络合物。因此在富钴结壳形成时,Y和Ho会发生分异,导致Y的负异常。

3.4 元素相关性和因子分析

元素相关性结果如表 2 所示。由表 2 可知 Mn 与 K、Ca、Ni和 Ba 正相关(95%CL, CL 代表置 信水平)。Fe 与 Mg 显著正相关(99%CL), 与 Ti、 Li和 Be 正相关(95%CL), 与生长速率负相关 (95%CL)。Co 与 Fe 和 Mn 无显著相关性。Ni 与 Mn和 Mn/Fe 正相关(95%CL), Al 与 K 正相关 (95%CL), 与 Mn/Fe 负相关(95%CL)。生长速率 (Gr)与 Mg 和 Be 显著负相关(99%CL), 与 Fe、Ti、 Li、和 Zr 负相关(95%CL)。Q 型因子分析结果表 明,采薇海山富钴结壳主要分为 3 个因子(表 3), 因 子 1 代表残渣相, 占比 41.1%, 主要元素有 B、V、 Co、Cu、Zn、As、Sr、Nb、Mo、Cd、Hf、Tl、Pb、Th、 U和 REY(除 Ce); 因子 2 代表富铁氧化物和氢氧化 物相, 占比 34.8%, 主要元素有 Fe、Al、K、Mg、Ti、 P、Li、Be、B、Sc、Cr、Co、Cu、Ga、Sr、Zr、Mo、Cd、

	Mn	Fe	Al	Mn/Fe	K	Ca	Mg	Ti	Li	Be	Со	Ni	Zr	Ва	Gr
Mn	1									-					
Fe	-0.093	1													
Al	-0.678	0.741	1												
Mn/Fe	0.808	-0.659	-0.950*	1											
Κ	-0.535	0.876	0.892*	-0.923*	1										
Ca	0.894*	0.356	-0.310	0.460	-0.105	1									
Mg	0.090	0.970**	0.637	-0.498	0.744	0.504	1								
Ti	0.194	0.922*	0.493	-0.410	0.710	0.611	0.908*	1							
Li	-0.278	0.921*	0.849	-0.738	0.847	0.124	0.912*	0.709	1						
Be	0.197	0.898*	0.547	-0.368	0.610	0.559	0.977**	0.825	0.887*	1					
Co	0.219	-0.674	-0.795	0.568	-0.567	-0.086	-0.699	-0.534	-0.775	-0.699	1				
Ni	0.928*	-0.373	-0.774	0.925*	-0.773	0.691	-0.163	-0.139	-0.444	-0.008	0.258	1			
Cu	0.506	0.442	0.177	0.128	0.029	0.644	0.626	0.461	0.484	0.744	-0.694	0.487			
Zn	0.709	0.172	-0.154	0.444	-0.285	0.710	0.396	0.249	0.207	0.556	-0.428	0.742			
Zr	0.398	0.725	0.378	-0.120	0.344	0.672	0.862	0.717	0.720	0.931*	-0.744	0.265	1		
Ва	0.900*	0.226	-0.317	0.547	-0.269	0.932*	0.427	0.429	0.105	0.543	-0.220	0.813	0.749	1	
Gr	-0.044	-0.956*	-0.696	0.528	-0.738	-0.456	-0 987**	-0.884*	-0.920*	-0.965**	0 804	0 180	-0.886*	-0.419	1

表 2 富钴结壳元素之间相关系数矩阵 Table 2 Element Correlation matrix of the Co-rich crust

Table 3	表 3 富钴结	売元素因子分析 analysis of the Co	T nich crust	续表 3	田子1	(周子)	田子3			
	田子1	田子?		U	0.761	-0.635	-0.121			
Mn	-0.180	-0 231	0.956	La	0.995	0.066	0.018			
Fe	0.159	0.251	0.166	Ce	-0.064	-0.458	0.787			
Al	-0.049	0.849	-0.513	Pr	0.980	0.085	0 104			
Na	0.049	0.148	0.974	Nd	0.989	0.056	-0.009			
V	0.345	0.148	-0.284	Sm	0.985	0.085	-0.040			
К Са	-0.086	0.104	0.264	Fu	0.975	0.072	-0.122			
Ca Ma	0.030	0.174	0.228	Ed	0.970	-0.016	-0.125			
Ti Ti	0.024	0.701	0.328	Th	0.063	-0.029	-0.228			
D	0.104	0.791	0.428	Du	0.905	-0.029	-0.238			
P	0.106	0.959	-0.091	Dy	0.945	-0.114	-0.307			
Li	0.007	0.990	-0.050	Ŷ	0.844	0.387	-0.1/3			
Be	-0.093	0.901	0.406	Но	0.923	-0.149	-0.355			
В	0.500	0.745	0.226	Er	0.913	-0.212	-0.347			
Sc	-0.149	0.972	0.072	Tm	0.902	-0.260	-0.332			
V	0.887	-0.440	0.103	Yb	0.917	-0.231	-0.302			
Cr	-0.411	0.643	0.646	Lu	0.921	-0.165	-0.314			
Со	0.569	-0.798	0.142	方差贡献	41.1%	34.8%	20.7%			
Ni	-0.393	-0.430	0.792							
Cu	-0.675	0.504	0.524	Cs、Hf、W、P	b、Bi 和 U; 因	子3代表富	锰氧化物和			
Zn	-0.674	0.216	0.666	氢氧化物相,	占比 20.7%,	主要元素有	Mn、Al、Na			
Ga	-0.242	0.681	0.673	Ca、Cr、Ni、C	u, Zn, Ga, Zi	、Nb、Ba、Ta	a和Ce。			
As	0.904	-0.422	0.060	4 社论						
Rb	-0.293	0.922	0.222	4 以比						
Sr	0.697	-0.501	0.513							
Zr	-0.408	0.747	0.520	4.1 成因类型	<u>ų</u>					
Nb	-0.531	0.372	0.761	不同地区	的地质条件	和海水环境	不同,结壳的			
Мо	0.505	-0.797	-0.096	地球化学特征	巴也有所不同	。前人研究	表明,采薇海			
Cd	0.589	-0.744	0.316	山西侧的马里亚纳岛弧热液活动频繁,该区域发						
Cs	-0.296	0.940	0.113	热液型结壳,	相较于水成型	型富钴结壳,	其微量元素			
Ba	-0.405	0.151	0.901	和稀土元素	含量较低。 本日党和F	希土兀素配 工日 <u>金</u> 如	分模式具有			
Hf	-0.529	0.799	0.275	Ce贝异常、Y 经声与海底运	〔 贝 异 吊 和 E F ル 山 和 劫 演	u 止异吊的 [。] 唐口之间的	存催(图6)。 □販商オ姓書			
Та	-0.492	0.321	0.806	11.10 西瓜11 的成因 本刑者	了一种然做 了很大影响	则口之问的 即 ^一 者间的隔	「吃两八泊冗 距离越大 海			
W	0.472	-0.853	0.147	水中金属对组	· 於 於 书 , ·	大,成因类型	赵趋向于水			
Tl	0.706	-0.216	-0.383	成型,而靠近	火山或热液喷	专口的结壳则	受到热液活			
Pb	0.803	-0.521	-0.290	动的影响更力	、^[45]。尽管靠	近热液活动	频繁的马里			
Bi	0.134	-0.898	0.417	亚纳岛弧,采	薇海山山顶边	2缘处的富锌	结壳却不具			
				6 44 VA TU (4 4		10 100	5 IL 1 I II			

达 6% 和 2%)^[46], 远高于本文样品的 Ni 和 Cu 的含 量。成岩型结壳稀土元素配分模式具有 Ce 负异常 和Y负异常(图 6)的特征。矿物组成方面,钡镁锰 矿作为成岩型结壳的主要矿物存在[46]。根据前人 的研究, Mn-(Cu + Co + Ni)-Fe 三元成因判别图可将 富钴结壳分为水成型结壳、成岩型结壳和热液型结 壳[47], 之后又使用了新的类型判别图解如 (Fe + Mn)/ 4-100×(Zr + Y + Ce)-10×(Cu + Ni + Co) 三元图^[48], Ce_{SN}/Ce_{SN}-Nd和Ce_{SN}/Ce_{SN}-Y_{SN}/Ho_{SN}^[49]来区分富钴 结壳的类型,结果发现采薇海山富钴结壳样品各层 位均在水成成因的区域内(图7、8),表明其为水成 成因型富钴结壳,且各层位明显富集 Cu、Co 和 Ni等金属元素。稀土元素标准化图解显示各层位 呈 Ce 正异常和 Y 负异常(图 6),同时在 XRD 图谱 (图 4)中可以看到水羟锰矿在各层位中发育,这是 表明采薇海山富钴结壳是水成成因的另一重要证 据。前人还利用 Mn/Fe 比值判别富钴结壳的成因 类型,通常认为 Mn/Fe 小于 2.5 为水成型,大于 2.5 为 成岩型^[50],富钴结壳各层位的 Mn/Fe 皆小于 2,指示 其为水成成因。值得一提的是,在C8-5 层位中发现 有钡镁锰矿,其通常在成岩作用过程中形成,说明 在富钴结壳内部的微层中可能发生了成岩作用,但 是可能只是纳米级或者微米级,在全岩的地球化学 中仍旧表现为水成成因类型。

4.2 形成机制

在富钴结壳中, Co 元素被认为水成来源且可以 假定从海水进入富钴结壳中的 Co 通量基本恒定。 因此 Co 含量与水成型富钴结壳的生长速率之间有 一定关系,即生长速率越快, Co 含量越低^[51]。前人 对不同 Co 含量的富钴结壳总结出了不同的 Co 的 经验公式,由于样品中各层位 Co 的含量小于 0.7%, 因此使用公式(1)计算富钴结壳的增长速度(Gr)^[52]:

$$Gr = 0.68/(Co_n)^{1.67}$$
 (1)

其中, Co_n=Co*50/(Fe+Mn), Co、Fe 和 Mn 以质量百 分比(%)表示。从内到外, 各层位生长速率分别为 2.49、1.26、0.60、0.71 和 0.73 mm/Ma, 平 均 为 1.16 mm/Ma, 与采薇海山的富钴结壳和铁锰结核的 生长速率相似^[34], 远低于北冰洋、沙茨基海隆和加 瓜海脊富钴结壳的生长速率^[53-55]。年轻层位的生长 速率小于较老层位的生长速率, 且生长速率先逐渐 降低之后再逐渐升高。用每层的厚度除以生长速 率可以得到该层位的生长时间, 从内到外, 各层位 的生长时间分别是 41.7、35.7、28.6、16.8 和 4.10 Ma。 因此我们推测富钴结壳大约在 41.7 Ma 时开始生

图 7 富钴结壳各层位成因类型判别三元图 a. Mn-(Cu + Co + Ni)-Fe 三元成因判别图^[47], b. (Fe + Mn)/4-100×(Zr + Y + Ce)-10×(Cu + Ni + Co) 三元成因判别图^[48]。

Fig.7 Ternary discrimination in genetic classification of the Corich crust layers

a: Mn - (Cu+Co+Ni) - Fe ternary genetic discrimination^[47].b: (Fe+Mn)/4-100 × (Zr + Y + Ce)-10 × (Cu+Ni+Co) ternary genetic discrimination^[48].

长,在4.10 Ma时停止生长,即从始新世中期到上新世中期。

由于富钴结壳是水成成因的,其金属离子来自 于含氧海水,因此其生长过程受控于海水的溶解氧 的含量,即海水的氧化程度。从渐新世晚期到中新 世早期,德雷克海峡和塔斯马尼亚海峡完全打开, 深水通道形成^[56],现代大洋环流体系逐渐形成。具 有高含量溶解氧的 AABW 影响着太平洋海山富钴 结壳的生长过程^[57-59]。进入西北太平洋后,PDW 是 麦哲伦海山地区溶解氧的主要来源,OMZ 也逐渐 在西北太平洋中发育。前人研究表明,采薇海山附 近的 OMZ 水深小于 1 000 m^[60]。OMZ 中的 Mn²⁺和 Fe²⁺是富钴结壳的直接物质来源^[25],OMZ 中 Mn²⁺和 Fe²⁺氧化成富铁和富锰氧化物胶体,吸附 Co²⁺、Ni²⁺ 和 Cu²⁺等金属离子,在山顶边缘逐渐成层堆积^[25,61-62]。

Fig.8 REY discrimination of the Co-rich crust layers

a:Ce_{SN}/Ce_{SN}-Nd genetic discrimination $^{[49]}$, b: Ce_{SN}-Y_{SN}/Ho_{SN} genetic discrimination $^{[49]}$.

富钴结壳中 Co/(Fe+Mn) 和 Co/(Ni+Cu) 的变化能够 反映其形成环境氧化程度的变化[57],在这一阶段 (28.6~16.8 Ma), Co/(Fe+Mn)和 Co/(Ni+Cu)升高 (图 5),说明此时海水的氧化性增强。此时 Mn 的 含量也逐渐增加, Fe的含量略有减少(图 5)。Al的 含量在生长初期达到最高值,之后逐渐降低(图5), 这一现象表明,富钴结壳生长过程中陆源物质的供 应逐渐变少。这一点从图 2a 也可以看出,即富钴结 壳逐渐由高孔隙度的疏松层转变为低孔隙度的致 密铁锰层。原先钡镁锰矿和钙十字沸石在疏松层 中(C8-5)发育,此时由于海水氧化性的增强,钡镁 锰矿在之后的生长过程中不发育,而富钴结壳的内 部显微构造也主要以水羟锰矿组成的柱状构造为 主。柱状构造形成于水动力较强以及氧化条件较 好的环境中[27]。这是由于采薇海山山顶发育反气 旋环流(泰勒柱现象),高流速(>7 cm/s)使得山顶 边缘的沉积物被清扫出去[12,63],暴露的基岩为富钴 结壳的生长提供了良好的平台,强水动力环境也促 进了柱状构造的形成。在强氧化条件下, Co²⁺被进 一步氧化成 Co³⁺, 其含量逐渐增加^[64], Ce呈正异 常。当发生重大的全球变冷事件时,太平洋海山的 环境氧化程度也将增加。15 Ma时的中新世中期, 气候变冷,南极大陆东南极冰盖形成,北大西洋的 冰岛-法罗海脊沉没[57,65],北冰洋的高密度海水流入 大西洋,并随着环流体系进一步流进其他大洋,高 溶解氧的 PDW 流经采薇海山, 使得研究区海水氧 化性进一步加强, Co/(Fe+Mn)和 Co/(Ni+Cu)比值升 高(图5)。由于全球气候变冷,大陆剥蚀作用增加^[57,66], Al的含量逐渐增加。前人研究表明,在6.5~5.6 Ma, 中新世末期发生了显著的全球变冷现象,大洋水温 下降,底层环流增强^[67],Co/(Fe+Mn)和Co/(Ni+Cu) 比值升高(图 5), Ce呈正异常。此时内部显微构造 主要为斑杂构造,主要由圆形的斑块组成,斑块间 的空隙被碎屑物质所填充。富钴结壳生长过程中, Cu、Ni和Ba等与生物活动有关的元素含量持续下 降,说明较老的层位生长时,生物活动相对较强,之 后逐渐变弱。

4.3 与其他大洋和海区结壳的比较

Co、Cu、Ni和 REY 是富钴结壳中具有经济价 值的金属元素^[68]。本文中的富钴结壳 Co含量 (4181×10⁻⁶)与印度洋(4178×10⁻⁶)相近,远低于大 西洋(6213××10⁻⁶)、太平洋(6189×10⁻⁶)以及前人研 究中的采薇海山(6163×10⁻⁶),略高于加利福尼亚大 陆边缘(3 326×10⁻⁶)以及沙茨基海隆(2 441×10⁻⁶) (图 9); Ni 含量(3 149×10⁻⁶)仅次于前人研究中的采 薇海山(4593×10⁻⁶)与沙茨基海隆(3625×10⁻⁶),略 高于其他海域富钴结壳; REY 含量(1 396×10⁻⁶)与 加瓜海脊(1540×10⁻⁶)相近,含量较低,低于其他研 究中富钴结壳 REY 含量;除沙茨基海隆(2441×10⁻⁶), 其他海域富钴结壳 Cu含量差距相对较小,基本在 1000×10⁻⁶以下,本文富钴结壳Cu含量(769×10⁻⁶) 略高于北冰洋(642×10⁻⁶)、加利福尼亚大陆边缘 (365×10⁻⁶)、太平洋(246×10⁻⁶)与大西洋(244×10⁻⁶)。 本文中富钴结壳具有高含量的 Co、REY 和 Ni, 具有 极大的经济价值和开采价值。

5 结论

(1) 富钴结壳的结构从内到外分别是土黄色的 疏松层、黑色的铁锰致密层和发育葡萄状球体的

本文富钴结壳与其他海区富钴结壳关于有经济价值 图 9 的元素对比图

大西洋富钴结壳数据来源于文献 [28], 前人采薇海山富钴结壳数据 来源于文献 [37], 加瓜海脊富钴结壳数据来源于文献 [53], 北冰洋富 钴结壳数据来源于文献 [54], 沙茨基海隆富钴结壳数据来源于文 献 [55], 加利福尼亚大陆边缘富钴结壳数据来源于文献 [69], 印度 洋富钴结壳数据来源于文献 [61],太平洋富钴结壳数据来源于文 献 [70]。

Fig.9 Comparison of elements of economic value between the Co-rich crust in this study and those in other areas

The data of Co-rich crusts sources: the Atlantic Ocean [28], previous data of Caiwei Guyot [37], Gagua Ridge [53], the Arctic Ocean [54], Shatsky Rise [55], California Continental Margin [69], the Indian Ocean [61], and the Pacific Ocean [70].

粗糙表面。富钴结壳的内部显微构造较为复杂,沿 着生长方向,可以看到富钴结壳主要由柱状构造、 层状构造和斑杂构造组成。各层位主要由水羟锰 矿、石英、钠长石和钙长石等矿物组成,其中在生长 初期的土黄色疏松层有钡镁锰矿和钙十字沸石发育。

(2) 富钴结壳各层位具有高含量的 Mn、Fe、 Co、Ni和 REY, Mn/Fe比值为 1.16~1.85, 具有 Ce 正异常和 Y 负异常的特征。各种地球化学判别 图解表明,富钴结壳为水成成因类型,其金属元素 来源于氧化性海水,未受到热液活动的影响。

(3) 从渐新世末期到上新世中期, 富钴结壳的生 长过程一直受控于太平洋深层水, Co/(Fe+Mn)和 Co/(Ni+Cu)的不断升高表明富钴结壳一直在氧化性 较高的海水环境中生长。

(4)相较于其他大洋和海区,采薇海山富钴结壳 具有高含量的 Co、Ni 和 REY, 具有极高的经济价值 和开采价值。

致谢:感谢 HOBAB5 航次期间"科学"号所有 船员和科学人员为样品采集所做出的贡献及帮助。

参考文献 (References)

- [1] Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific [M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2000: 239-279.
- [2] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47.
- [3] Heller C, Kuhn T, Versteegh G J M, et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules [J]. Deep Sea Research Part I:Oceanographic Research Papers. 2018, 142: 16-33.
- [4] Fitzgerald C E, Gillis K M. Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean [J]. Marine Geology, 2006, 225 (1-4): 145-156.
- [5] Pelleter E, Fouquet Y, Etoubleau J, et al. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific) [J]. Ore Geology Reviews, 2017, 87: 126-146.
- [6] Halbach P. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts [J]. Geologische Rundschau, 1986, 75(1): 235-247.
- [7] Hein J R, Schwab W C, Davis A. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands [J]. Marine Geology, 1988, 78 (3-4): 255-283.
- [8] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59 (24): 5113-5132.
- [9] McMurtry G M, VonderHaar D L, Eisenhauer A, et al. Cenozoic accumulation history of a Pacific ferromanganese crust [J]. Earth and Planetary Science Letters, 1994, 125 (1-4): 105-118.
- [10] Jiang X D, Sun X M, Guan Y, et al. Biomineralisation of the ferromanganese crusts in the Western Pacific Ocean [J]. Journal of Asian Earth Sciences, 2017, 136: 58-67.
- [11] Sujith P P, Gonsalves M J B D. Ferromanganese oxide deposits: geochemical and microbiological perspectives of interactions of cobalt and nickel [J]. Ore Geology Reviews, 2021, 139: 104458.
- [12] Guo B B, Wang W Q, Shu Y Q, et al. Observed deep anticyclonic cap over Caiwei Guyot [J]. Journal of Geophysical Research: Oceans, 2020, 125 (10): e2020JC016254.
- [13] 杨永, 何高文, 杨胜雄, 等. 采薇平顶海山群底质类型分布研究[J]. 矿物学报, 2015, 35(S1): 801-802. [YANG Yong, HE Gaowen, YANG Shengxiong, et al. Study on the distribution of sediment types of Caiwei Seamount Group [J]. Acta Mineralogica Sinica, 2015, 35(S1):801-802.]
- [14] 高晶晶, 刘季花, 张辉, 等. 西太平洋采薇海山和徐福海山富钴结壳 稀土元素地球化学特征及来源[J]. 海洋地质与第四纪地质, 2022, 42(3): 87-99. [GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Geochemistry and sources of rare earth elements in cobalt-rich crusts from logy & Quaternary Geology, 2022, 42(3): 87-99.]

 - the Caiwei and Xufu seamounts, West Pacific Ocean [J]. Marine Geo-
- [15] 韦振权,何高文,邓希光,等.大洋富钴结壳资源调查与研究进展[J].

中国地质, 2017, 44 (3): 460-472. [WEI Zhenquan, HE Gaowen, DENG Xiguang, et al. The progress in the study and survey of oceanic cobalt-rich crust resources [J]. Geology in China, 2017, 44 (3): 460-472.]

- [16] 王彦美, 张伙带, 刘季花, 等. 麦哲伦海山区采薇海山富钴结壳伴生 有用元素含量变化及空间分布特征[J]. 海洋地质与第四纪地质, 2016, 36(2): 65-74. [WANG Yanmei, ZHANG Huodai, LIU Jihua, et al. Abundances and spatial distributions of associated useful elements in Co-rich crusts from Caiwei Seamount in Magellan Seamounts [J]. Marine Geology & Quaternary Geology, 2016, 36(2): 65-74.]
- [17] 中国大洋矿产资源研究开发协会办公室.中国大洋海底地理实体名录(2016)[M].北京:海洋出版社, 2016: 30-57. [Chinese Ocean Mineral Resources Research and Development Association Office. Chinese Gazetteer of Undersea Features on the International Seabed (2016)[M]. Beijing: China Ocean Press, 2016: 30-57.]
- [18] Epp D. Possible perturbations to hotspot traces and implications for the origin and structure of the Line Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89 (B13): 11273-11286.
- [19] Lonsdale P. Geography and history of the Louisville Hotspot Chain in the southwest Pacific [J]. Journal of Geophysical Research, 1988, 93 (B4): 3078-3104.
- [20] Wessel P, Kroenke L. A geometric technique for relocating hotspots and refining absolute plate motions [J]. Nature, 1997, 387 (6631): 365-369.
- [21] Koppers A A P, Staudigel H, Pringle M S, et al. Short-lived and discontinuous intraplate volcanism in the South Pacific: hot spots or extensional volcanism? [J]. Geochemistry, Geophysics, Geosystems, 2003, 4 (10): 1089.
- [22] Kawabe M, Fujio S. Pacific ocean circulation based on observation [J]. Journal of Oceanography, 2010, 66 (3): 389-403.
- [23] Gordon A L, Visbeck M, Huber B. Export of Weddell Sea deep and bottom water [J]. Journal of Geophysical Research:Oceans, 2001, 106 (C5): 9005-9017.
- [24] 张亚南, 仲义, 陈艇, 等. 北太平洋大洋钻探研究进展: 古海洋与古气 候[J]. 海洋地质与第四纪地质, 2022, 42(5): 16-32. [ZHANG Yanan, ZHONG Yi, CHEN Ting, et al. Research progress of ocean drilling in the North Pacific Ocean: paleoceanography and paleoclimate [J]. Marine Geology & Quaternary Geology, 2022, 42(5): 16-32.]
- [25] 任向文.西太平洋富钴结壳成矿系统[D].中国科学院海洋研究所 博士学位论文, 2005. [REN Xiangwen. The Metallogenic system of co-rich manganese crusts in western pacific[D]. Doctor Dissertation of The Institute of Oceanology, Chinese Academy of Sciences, 2005.]
- [26] Yeo I A, Dobson K, Josso P, et al. Assessment of the mineral resource potential of Atlantic ferromanganese crusts based on their growth history, microstructure, and texture [J]. Minerals, 2018, 8(8): 327.
- [27] 张振国, 杜远生, 吴长航, 等. 南海西北陆缘大型多金属结核的生长 过程及其对晚新生代古海洋环境变化的响应[J]. 中国科学:地球科 学, 2013, 56(3): 453-463. [ZHANG Z G, DU Y S, WU C H, et al. Growth of a polymetallic nodule from the Northwestern continental margin of the South China Sea and its response to changes in the paleoceanographical environment of the late Cenozoic [J]. Science

China Earth Sciences, 2013, 56(3): 453-463.]

- [28] Josso P, Rushton J, Lusty P, et al. Late cretaceous and Cenozoic paleoceanography from North-East Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122.
- [29] Giovanoli R. Vernadite is random-stacked birnessite: a discussion of the paper by F. V. Chukhrov et al. : "Contributions to the mineralogy of authigenic manganese phases from marine manganese deposits" [Mineralium Deposita 14, 249–261 (1979)] [J]. Mineralium Deposita, 1980, 15 (2): 251-253.
- [30] Villalobos M, Lanson B, Manceau A, et al. Structural model for the biogenic Mn oxide produced by Pseudomonas putida [J]. American Mineralogist, 2006, 91 (4): 489-502.
- [31] Grangeon S, Lanson B, Lanson M, et al. Crystal structure of Ni-sorbed synthetic vernadite: a powder X-ray diffraction study [J]. Mineralogical Magazine, 2008, 72 (6): 1279-1291.
- [32] Halbach P E, Jahn A, Cherkashov G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources [M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer, 2017: 65-141.
- [33] Zhong Y, Liu Q S, Chen Z, et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes [J]. Marine Geology, 2019, 410: 146-163.
- [34] Post J E, Heaney P J, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite [J]. American Mineralogist, 2003, 88 (1): 142-150.
- [35] Feng X H, Tan W F, Liu F, et al. Synthesis of todorokite at atmospheric pressure [J]. Chemistry of Materials, 2004, 16 (22): 4330-4336.
- [36] Selley R C, Cocks L R M, Plimer I R. Encyclopedia of Geology[M]. Boston: Academic Press, 2005: 591-600.
- [37] Wang L Z, Zeng Z G. The geochemical features and genesis of ferromanganese deposits from Caiwei Guyot, Northwestern Pacific Ocean [J]. Journal of Marine Science and Engineering, 2022, 10 (9): 1275.
- [38] Taylor S R, McLennan S M. The Continental Crust: its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 312.
- [39] McLennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21 (1): 169-200.
- [40] Addy S K. Rare earth element patterns in manganese nodules and micronodules from northwest Atlantic [J]. Geochimica et Cosmochimica Acta, 1979, 43 (7): 1105-1115.
- [41] Piper D Z. Rare earth elements in ferromanganese nodules and other marine phases [J]. Geochimica et Cosmochimica Acta, 1974, 38(7): 1007-1022.
- [42] Amakawa H, Ingri J, Masuda A, et al. Isotopic compositions of Ce, Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas, and the Gulf of Bothnia [J]. Earth and Planetary Science Letters, 1991, 105 (4): 554-565.
- [43] 韩吟文,马振东. 地球化学[M]. 北京: 地质出版社, 2003: 190-193.[HAN Yinwen, MA Zhendong. Geochemistry[M]. Beijing: Geology

Press, 2003: 190-193.]

- [44] Li Y H. Distribution patterns of the elements in the ocean: a synthesis [J]. Geochimica et Cosmochimica Acta, 1991, 55 (11): 3223-3240.
- [45] Knaack D R, Sullivan K, Brown D J, et al. Geochemical and mineralogical composition of ferromanganese precipitates from the southern Mariana arc: evaluation, formation, and implications [J]. Chemical Geology, 2021, 568: 120132.
- [46] Marino E, González F J, Kuhn T, et al. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island Seamounts and their influence in the metal recovery rate with hydrometallurgical methods [J]. Minerals, 2019, 9 (7): 439.
- [47] Halbach P, Hebisch U, Scherhag C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control [J]. Chemical Geology, 1981, 34(1-2): 3-17.
- [48] Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15.
- [49] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9.
- [50] Halbach P, Segl M, Puteanus D, et al. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas [J]. Nature, 1983, 304 (5928): 716-719.
- [51] Segl M, Mangini A, Bonani G, et al. ¹⁰Be-dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation [J]. Nature, 1984, 309 (5968): 540-543.
- [52] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335 (6185): 59-62.
- [53] Chen S, Yin X B, Wang X Y, et al. The geochemistry and formation of ferromanganese oxides on the eastern flank of the Gagua Ridge [J]. Ore Geology Reviews, 2018, 95: 118-130.
- [54] Hein J R, Konstantinova N, Mikesell M, et al. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean [J]. Geochemistry, Geophysics, Geosystems, 2017, 18 (11): 3771-3800.
- [55] Hein J R, Conrad T A, Frank M, et al. Copper-nickel-rich, amalgamated ferromanganese crust-nodule deposits from Shatsky Rise, NW Pacific [J]. Geochemistry, Geophysics, Geosystems, 2012, 13 (10): Q10022.
- [56] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292 (5517): 686-693.
- [57] Wu G H, Zhou H Y, Zhang H S, et al. New index of ferromanganese

crusts reflecting oceanic environmental oxidation [J]. Science in China Series D:Earth Sciences, 2007, 50 (3) : 371-384.

- [58] Aplin A, Michard A, Albarède F. ¹⁴³Nd/¹⁴⁴Nd in Pacific ferromanganese encrustations and nodules [J]. Earth and Planetary Science Letters, 1986, 81 (1): 7-14.
- [59] Banakar V K, Borole D V. Depth profiles of ²³⁰Th_{excess}, transition metals and mineralogy of ferromanganese crusts of the Central Indian Basin and implications for palaeoceanographic influence on crust genesis [J]. Chemical Geology, 1991, 94 (1): 33-44.
- [60] Liu Q, Huo Y Y, Wu Y H, et al. Bacterial community on a Guyot in the northwest Pacific Ocean influenced by physical dynamics and environmental variables [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124 (9): 2883-2897.
- [61] Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 110: 1-19.
- [62] Halbach P, Puteanus D. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas [J]. Earth and Planetary Science Letters, 1984, 68 (1): 73-87.
- [63] Yeo I A, Howarth S A, Spearman J, et al. Distribution of and hydrographic controls on ferromanganese crusts: tropic Seamount, Atlantic [J]. Ore Geology Reviews, 2019, 114: 103131.
- [64] Takahashi Y, Manceau A, Geoffroy N, et al. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides [J]. Geochimica et Cosmochimica Acta, 2007, 71 (4): 984-1008.
- [65] Schnitker D. North Atlantic oceanography as possible cause of Antarctic glaciation and eutrophication [J]. Nature, 1980, 284 (5757): 615-616.
- [66] Donnelly T W. Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments [J]. Geology, 1982, 10 (9): 451-454.
- [67] Kennett J P. Paleo-oceanography: global ocean evolution [J]. Reviews of Geophysics, 1983, 21 (5): 1258-1274.
- [68] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14.
- [69] Conrad T, Hein J R, Paytan A, et al. Formation of Fe-Mn crusts within a continental margin environment [J]. Ore Geology Reviews, 2017, 87: 25-40.
- [70] Usui A, Nishi K, Sato H, et al. Continuous growth of hydrogenetic ferromanganese crusts since 17 Myr ago on Takuyo-Daigo Seamount, NW Pacific, at water depths of 800-5500m [J]. Ore Geology Reviews, 2017, 87: 71-87.