Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 2
Article Contents

KONG Lingyu, LYN Jinfang, WEI Min, ZHENG Yongxing. Research Progress of Mechanism on Organic Depressants for the Flotation Separation of Pentlandite and Serpentine[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 33-41. doi: 10.13779/j.cnki.issn1001-0076.2022.02.004
Citation: KONG Lingyu, LYN Jinfang, WEI Min, ZHENG Yongxing. Research Progress of Mechanism on Organic Depressants for the Flotation Separation of Pentlandite and Serpentine[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 33-41. doi: 10.13779/j.cnki.issn1001-0076.2022.02.004

Research Progress of Mechanism on Organic Depressants for the Flotation Separation of Pentlandite and Serpentine

More Information
  • Serpentine is a silicate mineral that contains large amounts of magnesium, and it often coexists with pentlandite. During the flotation process of pentlandite, the floating serpentine will cause the magnesium content in nickel concentrate to exceed the standard, leading to pentlandite smelting difficulty. In the paper, the crystal structure and surface property of serpentine were introduced, and the reason that serpentine was difficult to be depressed in the flotation was analyzed. In addition, the depressing mechanism of common organic reagents, such as carboxymethyl fiber, starch, chitosan, guar gum, and combination reagents of serpentine were summarized.

  • 加载中
  • [1] 杨志强, 王永前, 高谦, 等. 中国镍资源开发现状与可持续发展策略及其关键技术[J]. 矿产保护与利用, 2016(2): 58-69.

    Google Scholar

    YANG Z Q, WANG Y Q, GAO Q, et al. Development status, sustainable development strategies and key technologies of nickel resources in China[J]. Conservation and Utilization of Mineral Resources, 2016(2): 58-69.

    Google Scholar

    [2] 李艳峰, 费涌初. 金川二矿区富矿石选矿的工艺矿物学研究[J]. 矿冶, 2006(3): 98-101. doi: 10.3969/j.issn.1005-7854.2006.03.025

    CrossRef Google Scholar

    LI Y F, FEI Y C. Study on process mineralogy of beneficiation of rich ore in Jinchuan No. 2 Mining Area[J]. Mining and Metallurgy, 2006(3): 98-101. doi: 10.3969/j.issn.1005-7854.2006.03.025

    CrossRef Google Scholar

    [3] 王景旭, 李长贵, 耿隽蒿, 等. 降低镍精矿中氧化镁含量的研究与应用[J]. 有色矿山, 2001(5): 28-30+43. doi: 10.3969/j.issn.1672-609X.2001.05.009

    CrossRef Google Scholar

    WANG J X, LI C G, GENG J H, et al. Research and application of reducing magnesium oxide content in Nickel concentrate[J]. Non-ferrous Mine, 2001(5): 28-30+43. doi: 10.3969/j.issn.1672-609X.2001.05.009

    CrossRef Google Scholar

    [4] 彭建城, 熊道陵, 马智敏, 等. 有机抑制剂在浮选中抑制黄铁矿的研究进展[J]. 有色金属科学与工程, 2012, 3(2): 61-65.

    Google Scholar

    PENG J C, XIONG D L, MA Z M, et al. Research progress of organic inhibitors for pyrite inhibition in Flotation[J]. Nonferrous Metals Science and Engineering, 2012, 3(2): 61-65.

    Google Scholar

    [5] KIRJAVAINEN V, HEISKANEN K. Some factors that affect beneficiation of sulphide nickel-copper ores[J]. Minerals Engineering, 2007, 20(7): 629-633. doi: 10.1016/j.mineng.2007.01.001

    CrossRef Google Scholar

    [6] KIRJAVAINEN, V.M., Review and analysis of factors controlling the mechanical flotation of gangue minerals[J]. International Journal of Mineral Processing, 1996, 46(1): 21-34.

    Google Scholar

    [7] EDWARDS, C.R., W.B. KIPKIE, AND G.E. AGAR. The effect of slime coatings of the serpentine minerals, chrysotile and lizardite, on pentlandite flotation[J]. International Journal of Mineral Processing, 1980, 7(1): 33-42. doi: 10.1016/0301-7516(80)90035-6

    CrossRef Google Scholar

    [8] FENG B, LU Y, LUO X. The effect of quartz on the flotation of pyrite depressed by serpentine[J]. Integrative Medicine Research, 2015, 4(1): 8-13.

    Google Scholar

    [9] 李治杭, 韩跃新, 李艳军, 等. 蛇纹石表面特性研究[J]. 东北大学学报(自然科学版), 2018, 39(3): 404-408.

    Google Scholar

    LI Z H, HAN Y X, LI Y J, et al. Journal of Northeastern University (Natural Science), 2018, 39(3): 404-408.

    Google Scholar

    [10] 李学军, 王丽娟, 鲁安怀, 等. 天然蛇纹石活性机理初探[C]//岩石矿物学杂志第二届全国环境矿物学学术研讨会论文集. 编辑部. 北京: 2004: 67-71.

    Google Scholar

    LI X J, WANG L J, LU A H, et al. Preliminary study on active mechanism of natural serpentine[C]// Proceedings of the 2nd National Symposium on Environmental Mineralogy. Editorial Department of Journal of Rock Mineralogy, 2004: 67-71.

    Google Scholar

    [11] 唐敏, 张文彬. 微细粒铜镍硫化矿浮选的电化学调控[J]. 有色矿冶, 2003(5): 12-14+50. doi: 10.3969/j.issn.1007-967X.2003.05.005

    CrossRef Google Scholar

    TANG M, ZHANG W B. Electrochemical control of flotation of fine Cu-Ni sulfide ore[J]. Nonferrous Mining and Metallurgy, 2003(5): 12-14+50. doi: 10.3969/j.issn.1007-967X.2003.05.005

    CrossRef Google Scholar

    [12] 李治华. 含镁脉石矿物对镍黄铁矿浮选的影响[J]. 中南矿冶学院学报, 1993(1): 36-44.

    Google Scholar

    LI Z H. Influence of mg-bearing gangue minerals on the flotation of pyrite[J]. Journal of Central South Institute of Mining and Metallurgy, 1993(1): 36-44.

    Google Scholar

    [13] 黄晓毅, 罗小新, 张兴旺. 两种层状镁硅酸盐矿物的晶体结构与可浮性研究[J]. 重型机械, 2010(S2): 105-108.

    Google Scholar

    HUANG X Y, LUO X X, ZHANG X W. Study on crystal structure and floatability of two layered magnesium silicate minerals[J]. Heavy Machinery, 2010(S2): 105-108.

    Google Scholar

    [14] FENG B, LU Y, FENG Q, et al. Mechanisms of surface charge development of serpentine mineral[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1123-1128. doi: 10.1016/S1003-6326(13)62574-1

    CrossRef Google Scholar

    [15] 郭昌槐, 胡熙庚. 蛇纹石矿泥对金川含镍磁黄铁矿浮选特性的影响[J]. 矿冶工程, 1984(2): 28-32+75.

    Google Scholar

    GUO C H, HU X G. Effect of serpentine slime on flotation characteristics of Jinchuan Nickel-bearing pyrrhotite[J]. Mining and Metallurgical Engineering, 1984(2): 28-32+75.

    Google Scholar

    [16] LIU, C., et al., Effects of lizardite on pentlandite flotation at different pH: Implications for the role of particle-particle interaction[J]. Minerals Engineering, 2019, 132: 8-13. doi: 10.1016/j.mineng.2018.11.040

    CrossRef Google Scholar

    [17] 王德燕, 戈保梁. 硫化铜镍矿浮选中蛇纹石脉石矿物的行为研究[J]. 有色矿冶, 2003(4): 15-17. doi: 10.3969/j.issn.1007-967X.2003.04.005

    CrossRef Google Scholar

    WANG D Y, GE B L. Research on the behavior of serpentine gangue minerals in flotation of Cu-Ni sulfide ore[J]. Non-ferrous Mining and Metallurgy, 2003(4): 15-17. doi: 10.3969/j.issn.1007-967X.2003.04.005

    CrossRef Google Scholar

    [18] 唐敏, 张文彬. 低品位铜镍硫化矿浮选中蛇纹石的行为研究[J]. 昆明理工大学学报(自然科学版), 2001(3): 74-77. doi: 10.3969/j.issn.1007-855X.2001.03.016

    CrossRef Google Scholar

    TANG M, ZHANG W B. Study on the behavior of serpentine in the flotation of low-grade Cu-Ni sulfide ore[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2001(3): 74-77. doi: 10.3969/j.issn.1007-855X.2001.03.016

    CrossRef Google Scholar

    [19] 艾光华, 蔡鑫, 毕康颖, 等. 金属离子对矿物浮选行为影响的研究进展[J]. 有色金属科学与工程, 2017, 8(6): 70-74.

    Google Scholar

    AI G H, CAI X, BI K Y, et al. Research progress of effect of metal ions on flotation behavior of mineral[J]. Nonferrous Metals Science and Engineering, 2017, 8(6): 70-74.

    Google Scholar

    [20] 曹钊, 张亚辉, 孙传尧, 等. 铜镍硫化矿浮选中Cu(Ⅱ)和Ni(Ⅱ)离子对蛇纹石的活化机理[J]. 中国有色金属学报, 2014, 24(2): 506-510.

    Google Scholar

    CAO Z, ZHANG Y H, SUN C Y, et al. Mechanism of activation of serpentine by Cu (Ⅱ) and Ni (Ⅱ) ions in flotation of Cu-Ni sulfide ore[J]. Chinese Journal of Nonferrous Metals, 2014, 24(2): 506-510.

    Google Scholar

    [21] 王虹, 邓海波. 蛇纹石对硫化铜镍矿浮选过程影响及其分离研究进展[J]. 有色矿冶, 2008(4): 19-23+27. doi: 10.3969/j.issn.1007-967X.2008.04.008

    CrossRef Google Scholar

    WANG H, DENG H B. Research progress on the effect of serpentine on the flotation process and separation of copper-nickel sulfide ore[J]. Nonferrous Mining and Metallurgy, 2008(4): 19-23+27. doi: 10.3969/j.issn.1007-967X.2008.04.008

    CrossRef Google Scholar

    [22] MELLINI M. The crystal structure of lizardite 1t: hydrogen bonds and polytypism[J]. Geoscienceworld, 1982, 67(5): 587-598.

    Google Scholar

    [23] 王虹. 含镁硅酸盐矿物在硫化铜镍矿浮选分离体系中的行为机理研究[D]. 长沙: 中南大学, 2009.

    Google Scholar

    WANG H. Study on the behavior mechanism of magnesium-bearing silicate minerals in the flotation separation system of copper-nickel sulfide ore[D]. Changsha: Central South University, 2009.

    Google Scholar

    [24] 翁存建, 马鹏飞, 王鹏程, 等. 我国铜硫矿选矿技术研究进展[J]. 有色金属科学与工程, 2014, 5(5): 117-122.

    Google Scholar

    WENG C J, MA P F, WANG P C, et al. Nonferrous metals science and engineering, 2014, 5(5): 117-122.

    Google Scholar

    [25] 李党国. 羧甲基纤维素钠的性质及其在造纸工业中的应用[J]. 黑龙江造纸, 2008(3): 50-52. doi: 10.3969/j.issn.1673-0283.2008.03.018

    CrossRef Google Scholar

    LI D G. Properties of sodium carboxymethyl cellulose and its application in papermaking industry[J]. Heilongjiang Paper Making, 2008(3): 50-52. doi: 10.3969/j.issn.1673-0283.2008.03.018

    CrossRef Google Scholar

    [26] 邱显扬, 俞继华, 戴子林. 镍黄铁矿浮选中抑制剂的作用[J]. 广东有色金属学报, 1999(2): 86-89.

    Google Scholar

    QIU X Y, YU J H, DAI Z L. Effect of inhibitors on the flotation of pyrite[J]. Guangdong Journal of Nonferrous Metals, 1999(2): 86-89.

    Google Scholar

    [27] 冯博, 朱贤文, 彭金秀. 羧甲基纤维素对微细粒蛇纹石的絮凝及抑制作用[J]. 硅酸盐通报, 2016, 35(5): 1367-1371.

    Google Scholar

    FENG B, ZHU X W, PENG J X. Flocculation and inhibition of fine serpentine by carboxymethyl cellulose[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(5): 1367-1371.

    Google Scholar

    [28] SHAIKH SM, NASSER MS, HUSSEIN I, et al. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: a comprehensive review[J]. Separation and Purification Technology, 2017, 187: 137-161. doi: 10.1016/j.seppur.2017.06.050

    CrossRef Google Scholar

    [29] PIETROBON, M.C. et al., Recovery mechanisms for pentlandite and MgO-bearing gangue minerals in nickel ores from Western Australia[J]. Minerals Engineering, 1997, 10(8): 775-786. doi: 10.1016/S0892-6875(97)00056-3

    CrossRef Google Scholar

    [30] CAO J, TIAN X, LUO Y, et al. The effect of graphene oxide on the slime coatings of serpentine in the flotation of pentlandite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522: 621-627.

    Google Scholar

    [31] 汪惠惠, 彭金秀, 朱贤文, 等. 甲基纤维素对微细粒蛇纹石的絮凝作用及机理[J]. 非金属矿, 2016, 39(5): 1-3. doi: 10.3969/j.issn.1000-8098.2016.05.001

    CrossRef Google Scholar

    WANG H H, PENG J X, ZHU X W, et al. Flocculation of ultrafine serpentine by methyl cellulose and its mechanism[J]. Nonmetallic Ores, 2016, 39(5): 1-3. doi: 10.3969/j.issn.1000-8098.2016.05.001

    CrossRef Google Scholar

    [32] 来庆腾, 廖寅飞, 赵一帆, 等. 铜镍硫化矿浮选精矿降镁研究进展[J]. 矿产综合利用, 2017(5): 7-12. doi: 10.3969/j.issn.1000-6532.2017.05.002

    CrossRef Google Scholar

    LAI Q T, LIAO Y F, ZHAO Y F, et al. Research progress on magnesium reduction of copper and nickel sulfide ore flotation concentrate[J]. Conservation and Utilization of Mineral Resources, 2017(5): 7-12. doi: 10.3969/j.issn.1000-6532.2017.05.002

    CrossRef Google Scholar

    [33] 谢海云, 柳彦昊, 田小松, 等. 高镁锌矿选矿降镁提质研究[J]. 有色金属工程, 2021, 11(2): 79-85.

    Google Scholar

    XIE H Y, LIU Y H, TIAN X S, et al. Study on magnesium reduction and quality improvement of high magnesium zinc ore[J]. Nonferrous Metals Engineering, 2021, 11(2): 79-85.

    Google Scholar

    [34] SHAIKH SM, NASSER MS, HUSSEIN I, et al. Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals : a comprehensive review[J]. Separation and Purification Technology, 2017, 187: 137-161. doi: 10.1016/j.seppur.2017.06.050

    CrossRef Google Scholar

    [35] BULATOVIC, S.M. Use of organic polymers in the flotation of polymetallic ores: a review[J]. Minerals Engineering, 1999, 12(4): 341-354. doi: 10.1016/S0892-6875(99)00015-1

    CrossRef Google Scholar

    [36] 冯其明, 龙涛, 卢毅屏, 等. 聚合物对微细粒蛇纹石的絮凝作用及机理[J]. 中南大学学报(自然科学版), 2011, 42(9): 2531-2536.

    Google Scholar

    FENG Q M, LONG T, LU Y P, et al. Flocculation and mechanism of polymer on fine serpentine[J]. Journal of central south university (science and technology), 2011, 42(9): 2531-2536.

    Google Scholar

    [37] SHRIMALI K, MILLER JD. Polysaccharide depressants for the reverse flotation of iron ore[J]. 2015, 69(1): 83-95.

    Google Scholar

    [38] 戴思行, 王欠欠, 刘诚, 等. 淀粉类调整剂在矿物浮选中的应用和作用机理研究进展[J]. 矿产综合利用, 2021(4): 73-79. doi: 10.3969/j.issn.1000-6532.2021.04.011

    CrossRef Google Scholar

    DAI S X, WANG Q Q, LIU C, et al. Research progress on application and action mechanism of starch regulator in mineral flotation[J]. Conservation and Utilization of Mineral Resources, 2021(4): 73-79. doi: 10.3969/j.issn.1000-6532.2021.04.011

    CrossRef Google Scholar

    [39] 汪桂杰. 几种改性淀粉对赤铁矿的抑制机理及其应用研究[D]. 长沙: 中南大学, 2013.

    Google Scholar

    WANG G J. Study on the inhibition mechanism and application of several modified starches on hematite[D]. Changsha: Central South University, 2013.

    Google Scholar

    [40] 魏民, 吕晋芳, 郑永兴, 等. 淀粉对硫化矿物和脉石矿物的选择性抑制作用及机理研究进展[J]. 矿产保护与利用, 2021, 41(2): 58-64.

    Google Scholar

    WEI M, LV J F, ZHENG Y X, et al. Selective Inhibition of sulfide minerals and gangue minerals by starch and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 58-64.

    Google Scholar

    [41] 邓艳, 柳春, 罗想平, 等. 阴离子淀粉研究进展[J]. 大众科技, 2015, 17(6): 48-51. doi: 10.3969/j.issn.1008-1151.2015.06.017

    CrossRef Google Scholar

    DENG Y, LIU C, LUO X P, et al. Research progress of anionic starch[J]. Popular Science and Technology, 2015, 17(6): 48-51. doi: 10.3969/j.issn.1008-1151.2015.06.017

    CrossRef Google Scholar

    [42] FLETCHER, B, CHIMONYO W, PENG Y J. A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants[J]. Minerals Engineering, 2020(156): 106532.

    Google Scholar

    [43] 顾帼华, 朴正杰, 邹毅仁, 等. 阴离子淀粉对铝硅酸盐矿物浮选的影响及机理研究[J]. 矿冶工程, 2010, 30(2): 28-30+34. doi: 10.3969/j.issn.0253-6099.2010.02.008

    CrossRef Google Scholar

    GU G H, PIAO Z J, ZOU Y R, et al. Effect of anionic starch on aluminum silicate flotation and its mechanism[J]. Mining and Metallurgical Engineering, 2010, 30(2): 28-30+34. doi: 10.3969/j.issn.0253-6099.2010.02.008

    CrossRef Google Scholar

    [44] 刘安. 胶磷矿浮选中改性淀粉抑制机理研究[D]. 武汉: 武汉工程大学, 2012.

    Google Scholar

    LIU A. Study on the inhibition mechanism of modified starch in collophanite flotation[D]. Wuhan: Wuhan Institute of Technology, 2012.

    Google Scholar

    [45] 熊文良, 潘志兵, 田喜林. 改性淀粉在硫化镍矿浮选中的应用[J]. 矿产综合利用, 2008(3): 13-15. doi: 10.3969/j.issn.1000-6532.2008.03.003

    CrossRef Google Scholar

    XIONG W L, PAN Z B, TIAN X L. Application of modified starch in flotation of nickel sulfide ore[J]. Conservation and Utilization of Mineral Resources, 2008(3): 13-15. doi: 10.3969/j.issn.1000-6532.2008.03.003

    CrossRef Google Scholar

    [46] 包浩. 两种酯化变性大米淀粉的制备及其结构与性质的研究[D]. 湘潭: 湘潭大学, 2015.

    Google Scholar

    BAO H. Preparation structure and properties of two esterified modified rice starches[D]. Xiangtan: Xiangtan University, 2015.

    Google Scholar

    [47] LIN, L. et al. Experimental research on anionic reverse flotation of hematite with a flotation column[J]. Procedia Earth and Planetary Science, 2009, 1(1): 791-798. doi: 10.1016/j.proeps.2009.09.125

    CrossRef Google Scholar

    [48] 翁存建. 铜镍硫化矿物与多元镁硅酸盐浮选分离行为研究[D]. 赣州: 江西理工大学, 2016.

    Google Scholar

    WENG C J. Study on flotation separation behavior of copper-nickel sulfide minerals from multiple magnesium silicate[D]. Ganzhou: Jiangxi University of Science and Technology, 2016.

    Google Scholar

    [49] 曹建, 程少逸, 胡秀琴, 等. 淀粉接枝聚合物在镍黄铁矿浮选中对蛇纹石的抑制[C]//第八届全国选矿专业学术年会暨矿产资源绿色高效开发利用高峰论坛论文集. 2016: 161-163.

    Google Scholar

    CAO J, CHENG S Y, HU X Q, et al. Inhibition of serpentine by starch grafted polymer in the flotation of pyrite[C] // Proceedings of the 8th National Mineral Processing Professional Academic Annual Conference and The Summit Forum of Green and Efficient Development and Utilization of Mineral Resources. 2016: 161-163.

    Google Scholar

    [50] CAO J, LUO Y, XU G, et al. Utilization of starch graft copolymers as selective depressants forlizardite in the flotation of pentlandite[J]. Applied Surface Science, 2015, 337: 58-64. doi: 10.1016/j.apsusc.2015.02.063

    CrossRef Google Scholar

    [51] LIU Q, ZHANG Y, LASKOWSKI J S. The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction[J]. International Journal of Mineral Processing, 2000, 60(3): 229-245.

    Google Scholar

    [52] LIU C, FENG Q M, SHI Q, et al. Utilization of N-carboxymethyl chitosan as a selective depressant for talc in flotation of chalcopyrite[J]. Physicochemical Problems of Mineral Processing, 2019, 55(1): 108-115.

    Google Scholar

    [53] XIANG Y, LIU Q, WANG K. N-carboxymethyl chitosan in differential flotation of galena and chalcopyrite[C]//2014-Sustainable Industrial Processing Summit. 2014(2): 331-332.

    Google Scholar

    [54] FENG B, PENG J, ZHU X, et al. The settling behavior of quartz using chitosan as flocculant[J]. Integrative Medicine Research, 2017, 6(1): 71-76.

    Google Scholar

    [55] 冯博, 彭金秀, 朱贤文, 等. 壳聚糖对微细粒蛇纹石的分散-絮凝作用[J]. 硅酸盐通报, 2016, 35(11): 3617-3621+3627.

    Google Scholar

    FENG B, PENG J X, ZHU X W, et al. Dispersion and flocculation of serpentine by chitosan[J]. Chinese Journal of Ceramics, 2016, 35(11): 3617-3621+3627.

    Google Scholar

    [56] 王洪岭. 羧化壳聚糖对镍黄铁矿/蛇纹石浮选体系的作用机理[J]. 矿产保护与利用, 2018(3): 112-116.

    Google Scholar

    WANG H L. Mechanism of carboxylated chitosan on pyrite/serpentine flotation system[J]. Conservation and Utilization of Mineral Resources, 2018(3): 112-116.

    Google Scholar

    [57] 丁德润. N-羧甲基壳聚糖对Ca2+, Fe2+的络合(吸附)及光谱分析[J]. 上海工程技术大学学报, 2004(4): 298-301. doi: 10.3969/j.issn.1009-444X.2004.04.003

    CrossRef Google Scholar

    DING D R. Complexation (adsorption) and spectral analysis of Ca2+, Fe2+ by N-carboxymethyl chitosan[J]. Journal of Shanghai University of Engineering Science, 2004(4): 298-301. doi: 10.3969/j.issn.1009-444X.2004.04.003

    CrossRef Google Scholar

    [58] ZHANG C, LIU C, FENG Q, et al. Utilization of N -carboxymethyl chitosan as selective depressants for serpentine on the flotation of pyrite[J]. International Journal of Mineral Processing, 2017, 163: 45-47. doi: 10.1016/j.minpro.2017.04.008

    CrossRef Google Scholar

    [59] M·J·皮尔斯, 李长根, 杨歧云. 化学药剂在矿物加工中的应用概况[J]. 国外金属矿选矿, 2005(5): 5-11.

    Google Scholar

    M. J. PIERCE, LI C G, YANG Q Y. Application of chemical agents in mineral processing[J]. Metallic Ore Dressing Abroad, 2005(5): 5-11.

    Google Scholar

    [60] J. S. LASKOWSKI, LIU Q, C.T. O'CONNOR. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2007, 84(1-4): 59-68. doi: 10.1016/j.minpro.2007.03.006

    CrossRef Google Scholar

    [61] 张亚辉, 孟凡东, 孙传尧. 铜镍硫化矿中MgO脉石矿物抑制工艺研究[J]. 矿冶, 2012, 21(2): 1-5.

    Google Scholar

    ZHANG Y H, MENG F D, SUN C Y. Study on MgO gangue mineral inhibition in Cu-Ni sulfide ore[J]. Mining and Metallurgy, 2012, 21(2): 1-5.

    Google Scholar

    [62] 贾俊俊. 组合调整剂和起泡剂对硫化铜镍矿精矿降镁的研究[D]. 兰州: 兰州大学, 2019.

    Google Scholar

    JIA J J. Study on magnesium reduction of copper-nickel sulfide ore concentrate by combined regulator and foaming agent[D]. Lanzhou: Lanzhou University, 2019.

    Google Scholar

    [63] CAO Z. Activation mechanism of serpentine by Cu(Ⅱ) and Ni(Ⅱ) ions in copper-nickel sulfide ore flotation[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(2): 506-510.

    Google Scholar

    [64] 张亚辉, 孟凡东, 孙传尧. 铜镍硫化矿浮选过程中MgO脉石矿物的抑制途径探析[J]. 矿冶, 2012, 21(2): 1-5.

    Google Scholar

    ZHANG Y H, MENG F D, SUN C Y. Study on the inhibition pathway of MgO gangue minerals in the flotation process of Cu-Ni sulfide ore[J]. Mining and Metallurgy, 2012, 21(2): 1-5.

    Google Scholar

    [65] 张亚辉, 熊学广, 张家, 等. 用柠檬酸和六偏磷酸钠降低金川铜镍精矿镁含量[J]. 金属矿山, 2013(5): 67-70+74. doi: 10.3969/j.issn.1001-1250.2013.05.018

    CrossRef Google Scholar

    ZHANG Y H, XIONG X G, ZHANG J, et al. Application of citric acid and sodium hexametaphosphate to reduce the magnesium content of Jinchuan Cu-Ni concentrate[J]. Metal Mine, 2013(5): 67-70+74. doi: 10.3969/j.issn.1001-1250.2013.05.018

    CrossRef Google Scholar

    [66] 李玄武, 张亚辉, 雷治武, 等. 基于柠檬酸-改性淀粉的金川铜镍精矿降镁提质[J]. 金属矿山, 2015(7): 64-68. doi: 10.3969/j.issn.1001-1250.2015.07.015

    CrossRef Google Scholar

    LI X W, ZHANG Y H, LEI Z W, et al. Magnesium reduction and quality improvement of Jinchuan copper-nickel concentrate based on citric acid-modified starch[J]. Metal Mine, 2015(7): 64-68. doi: 10.3969/j.issn.1001-1250.2015.07.015

    CrossRef Google Scholar

    [67] 黄俊玮, 张亚辉, 张成强, 等. 络合剂-抑制剂联合抑镁浮铜镍试验[J]. 金属矿山, 2014(7): 79-83.

    Google Scholar

    HUANG J W, ZHANG Y H, ZHANG C Q, et al. Experimental study on inhibition of copper and nickel flotation with complexation agent and inhibitor[J]. Metal Mine, 2014(7): 79-83.

    Google Scholar

    [68] 张国范, 卢毅屏, 冯其明. 抑制剂EP降低镍精矿中氧化镁含量研究[J]. 矿产保护与利用, 1999(3): 30-33.

    Google Scholar

    ZHANG G F, LU Y P, FENG Q M. Study on the reduction of magnesium oxide content in nickel concentrate by EP inhibitor[J]. Conservation and Utilization of Mineral Resources, 1999(3): 30-33.

    Google Scholar

    [69] 陈文亮, 方夕辉, 张帅, 等. 某低品位难选铜镍硫化矿高效降镁与铜镍分离[J]. 有色金属工程, 2014, 4(6): 48-52. doi: 10.3969/j.issn.2095-1744.2014.06.015

    CrossRef Google Scholar

    CHEN W L, FANG X H, ZHANG S, et al. High efficiency magnesium reduction and Cu-Ni separation of a low-grade refractory Cu-Ni sulfide ore[J]. Non-ferrous Metals Engineering, 2014, 4(6): 48-52. doi: 10.3969/j.issn.2095-1744.2014.06.015

    CrossRef Google Scholar

    [70] LIU C, AI G, SONG S. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite[J]. Powder Technology, 2018, 336: 527-532. doi: 10.1016/j.powtec.2018.06.030

    CrossRef Google Scholar

    [71] 王伟东, 刘金华, 胡熙庚. 硫化镍矿石浮选工艺和药剂[J]. 矿产保护与利用, 1989(4): 40-43.

    Google Scholar

    WANG W D, LIU J H, HU X G. Flotation process and reagent of nickel sulfide ore[J]. Conservation and Utilization of Mineral Resources, 1989(4): 40-43.

    Google Scholar

    [72] 旃习涵. 国外蛇纹石抑制剂的研究[J]. 国外金属矿选矿, 1984(7): 28-33.

    Google Scholar

    ZHAN X H. Study on inhibitor of serpentine from abroad[J]. Metallic Ore Dressing abroad, 1984(7): 28-33.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(2529) PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint