Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2022 Vol. 42, No. 2
Article Contents

TAN Xin, XIAO Qiaobin. Mineral Processing Study on a High-mud Quartz-type Fluorite Ore From Inner Mongolia Using a Low-temperature-resistant Fatty Collector[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 42-48. doi: 10.13779/j.cnki.issn1001-0076.2022.02.005
Citation: TAN Xin, XIAO Qiaobin. Mineral Processing Study on a High-mud Quartz-type Fluorite Ore From Inner Mongolia Using a Low-temperature-resistant Fatty Collector[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 42-48. doi: 10.13779/j.cnki.issn1001-0076.2022.02.005

Mineral Processing Study on a High-mud Quartz-type Fluorite Ore From Inner Mongolia Using a Low-temperature-resistant Fatty Collector

  • Mineral processing study was carried out on a high-mud quartz-type fluorite ore with CaF2 content of 41.14%, SiO2 content of 42.59% and CaCO3 content of 1.68% from Inner Mongolia. The two processes of flotation of sequential return of the middlings and discarding the tailings of scavenging from the middlings of cleaning Ⅰ were proposed based on the characteristics of the ore property, firstly, the fluorite rough concentrate was obtained by flotation with sodium carbonate and water glass as modifier, collector BK410B, a kind of low-temperature resistance modified fatty acid collector, and then the fluorite minerals were recovered by flotation separation from the fluorite rough concentrate after being reground with acidized water glass as modifier and the fluorite concentrate was obtained. The comparison tests were conducted by adopting two technological processes of sequential return of the middlings and discarding the tailings of scavenging from the middlings of cleaning Ⅰ. Finally, the flowsheet of discarding the tailings of scavenging from the middlings of cleaning Ⅰ was determined, and the results of closed-circuit test were obtained the fluorite concentrate with grading 97.68% CaF2, 0.55% CaCO3, 1.38% SiO2 and CaF2 recovery of 95.72%. It can be achieved efficient recovery of the fluorite minerals in new process of the ore.

  • 加载中
  • [1] 陈浩, 任子杰, 高惠民, 等. 石油磺酸钠低温浮选石英型萤石的试验研究[J]. 矿产保护与利用, 2020, 40(3): 135-139.

    Google Scholar

    CHEN H, REN Z J, GAO H M, et al. Experimental study on low-temperature flotation of quartz-type fluorite with petroleum sodium sulfonate[J]. Conservation and Utilization of Mineral Resources, 2020, 40(3): 135-139.

    Google Scholar

    [2] 中华人民共和国自然资源部. 中国矿产资源报告2021[R]. 北京: 地质出版社, 2021.

    Google Scholar

    Ministry of Natural Resources, PRC. 2021 China mineral resources[R]. Beijing: Geological Publishing House, 2021.

    Google Scholar

    [3] U.S. Geological Survey. Mineral commodity summaries 2021[R/OL]. https://doi.org/10.3133/mcs2021.

    Google Scholar

    [4] GAO Z, FAN R, RALSTON J, et al. Surface broken bonds: An efficient way to assess the surface behaviour of fluorite[J]. Minerals Engineering, 2019, 130: 15-23. doi: 10.1016/j.mineng.2018.09.024

    CrossRef Google Scholar

    [5] ZHU H, QI N W, CHEN C, et al. Interactions between sodium oleate and polyoxyethylene ether and the application in the low—temperature flotation of scheelite at 283K[J]. Journal of Surfactants and Detergents, 2016(6): 1289-1295.

    Google Scholar

    [6] 张晓峰, 朱一民, 周菁, 等. 细粒难选石英型萤石矿低温浮选试验研究[J]. 有色金属(选矿部分), 2015(2): 39-43. doi: 10.3969/j.issn.1671-9492.2015.02.010

    CrossRef Google Scholar

    ZHANG X F, ZHU Y M, ZHOU J, et al. Low temperature flotation experiment study of a certain fine-grained refractory quartz-type fluorite ore[J]. Nonferrous Metals(Mineral Processing Section), 2015(2): 39-43. doi: 10.3969/j.issn.1671-9492.2015.02.010

    CrossRef Google Scholar

    [7] 黄俊玮, 张成强, 王守敬, 等. 新型药剂体系在某石英脉型萤石矿浮选中的应用[J]. 矿产保护与利用, 2018(3): 130-134.

    Google Scholar

    HUANG J W, ZHANG C Q, WANG S J, et al. The application of new reagents system in a quartz vein type fluorite ore flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 130-134.

    Google Scholar

    [8] DENG L, ZHAO G, ZHONG H, et al. Investigation on the selectivity of N-((hydroxyamino)-alkyl)alkylamide surfactants for scheelite/calcite flotation separation[J]. Journal of Industrial and Engineering Chemistry, 2016(33): 131-141.

    Google Scholar

    [9] 张行荣, 朴永超, 尚衍波, 等. 一种耐低温型捕收剂在萤石浮选中的应用[J]. 矿产综合利用, 2015(3): 28-31. doi: 10.3969/j.issn.1000-6532.2015.03.007

    CrossRef Google Scholar

    ZHANG X R, PIAO Y C, SHANG Y B, et al. Application of a low-temperature-resistant collector in flotation of fluorite[J]. Multipurpose Utilization of Mineral Resources, 2015(3): 28-31. doi: 10.3969/j.issn.1000-6532.2015.03.007

    CrossRef Google Scholar

    [10] 邱杨率, 张凌燕, 洪礼. 内蒙古某萤石矿浮选机理研究[J]. 中国非金属矿工业导刊, 2014(5): 32-35. doi: 10.3969/j.issn.1007-9386.2014.05.011

    CrossRef Google Scholar

    QIU Y S, ZHANG L Y, HONG L. Flotation mechanism research on a fluorite ore in Inner Mongolia[J]. China Non-metallic Mining Industry Herald, 2014(5): 32-35. doi: 10.3969/j.issn.1007-9386.2014.05.011

    CrossRef Google Scholar

    [11] 张泽强. 酸性水玻璃在磷矿浮选中的作用[J]. 中国非金属矿工业导刊, 2003(2): 39-41. doi: 10.3969/j.issn.1007-9386.2003.02.012

    CrossRef Google Scholar

    ZHANG Z Q. Effect of acid sodium silicate on flotation of phosphate rock[J]. China Non-metallic Mining Industry Herald, 2003(2): 39-41. doi: 10.3969/j.issn.1007-9386.2003.02.012

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(849) PDF downloads(51) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint