Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

YANG Cheng, ZHANG Chen, LI Mingyang, GAO Xiangpeng, YU Xiankun, TONG Xiong, LONG Hongming. Research Development of Application of Organic Depressant in Iron Ore Reverse Flotation[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 141-149. doi: 10.13779/j.cnki.issn1001-0076.2021.04.017
Citation: YANG Cheng, ZHANG Chen, LI Mingyang, GAO Xiangpeng, YU Xiankun, TONG Xiong, LONG Hongming. Research Development of Application of Organic Depressant in Iron Ore Reverse Flotation[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 141-149. doi: 10.13779/j.cnki.issn1001-0076.2021.04.017

Research Development of Application of Organic Depressant in Iron Ore Reverse Flotation

  • Reverse flotation process is widely used in iron ore flotation process for its high flotation efficiency and good product quality. In the reverse flotation process, the selection of efficient, economic and environmental protection inhibitors plays a decisive role for the reverse flotation results. In this paper, the research progress of organic inhibitors in iron ore flotation process is reviewed, with emphasis on the research status of starch, cellulose and other inhibitors. The influence of the composition of organic inhibitors and other factors on the inhibition difference is described. Although organic inhibitors have good selectivity, high separation efficiency, low price and environmental protection. There are still some shortcomings in iron ore flotation. Therefore it is pointed out that the research focus of organic inhibitors in the future will be to find efficient substitute for organic inhibitors and modify organic inhibitors.

  • 加载中
  • [1] 赵立群, 王春女, 张敏, 等. 中国铁矿资源勘查开发现状及供需形势分析[J]. 地质与勘探, 2020, 56(3): 635-643.

    Google Scholar

    [2] 刘静, 张建强, 刘炯天. 铁矿浮选药剂现状综述[J]. 中国矿业, 2007(2): 106-108.

    Google Scholar

    [3] DENG J, YANG S, LIU C, et al. Effects of the calcite on quartz flotation using the reagent scheme of starch/dodecylamine[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2019, 583: 123983. doi: 10.1016/j.colsurfa.2019.123983

    CrossRef Google Scholar

    [4] MLA B, JL C, YH B, et al. Qidong Yuan, Fugang Zhao. Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation[J]. Carbohydrate Polymers, 2020, 240: 116334. doi: 10.1016/j.carbpol.2020.116334

    CrossRef Google Scholar

    [5] FILIPPOV LO, SEVEROV VV, FILIPPOVA IV. Mechanism of starch adsorption on Fe-Mg-Al-bearing amphiboles[J]. International Journal of Mineral Processing, 2013, 123: 120-128. doi: 10.1016/j.minpro.2013.05.010

    CrossRef Google Scholar

    [6] LIU Q, ZHANG Y. The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction[J]. International Journal of Mineral Processing, 2001, 60(3-4): 229-245.

    Google Scholar

    [7] 李明阳, 陈泽, 廉德, 等. 铁矿石浮选调整剂的研究进展[J/OL]. 过程工程学报: 1-9[2021-01-15]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20201118.1611.002.html.

    Google Scholar

    [8] 梁爽, 路亮, 张行荣. 有机抑制剂在黄铁矿浮选中的研究进展[J]. 中国矿业, 2020, 29(S2): 300-302+307.

    Google Scholar

    [9] LECORRE DÉBORAH, BRAS JULIEN, DUFRESNE ALAIN. Evidence of micro- and nanoscaled particles during starch nanocrystals preparation and their isolation[J]. Biomacromolecules, 2011, 12(8): 3039-3046. doi: 10.1021/bm200673n

    CrossRef Google Scholar

    [10] YANG S, WANG L. Structural and functional insights into starches as depressant for hematite flotation[J]. Minerals Engineering, 2018, 124: 149-157. doi: 10.1016/j.mineng.2018.05.022

    CrossRef Google Scholar

    [11] BRANDAO PRG, PAVLOVIC S. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz[J]. Minerals Engineering, 2003, 16(11): 1117-1122. doi: 10.1016/j.mineng.2003.06.011

    CrossRef Google Scholar

    [12] WEISSENBORN PK. Behaviour of amylopectin and amylose components of starch in the selective flocculation of ultrafine iron ore[J]. International Journal of Mineral Processing, 1996, 47(3): 197-211.

    Google Scholar

    [13] 田一鲁. 用玉米淀粉抑制氧化铁[J]. 国外选矿快报, 1997(17): 1-5.

    Google Scholar

    [14] MACEDO RG, SOUZA M, ALBERTO PC. Effect of ground corn and cassava flour on the flotation of iron ore tailings[J]. Journal of Materials Research & Technology, 2018: S2238785417305951-.

    Google Scholar

    [15] KAR B, SAHOO H, RATH S S, et al. Investigations on different starches as depressants for iron ore flotation[J]. Minerals Engineering, 2013, 49: 1-6. doi: 10.1016/j.mineng.2013.05.004

    CrossRef Google Scholar

    [16] SILVA AC, SOUSA DN, SILVA E. Hematite and quartz microflotation using millet starch as depressant[J]. REM-International Engineering Journal, 2021, 74(1): 107-116.

    Google Scholar

    [17] SCHONS S, CLARK P, CARLOS SA, et al. Sorghum starch as depressant in mineral flotation: Part 2- flotation tests[J]. Journal of Materials Research & Technology, 2018: S2238785418301832-.

    Google Scholar

    [18] ARAUJO AC, VIANA PRM, PERES AEC. Reagents in iron ores flotation[J]. Minerals Engineering, 2004, 18(2): 219-224.

    Google Scholar

    [19] PERES A, CORREA MI. Depression of iron oxides with corn starches[J]. Minerals Engineering, 1996, 9(12): 1227-1234. doi: 10.1016/S0892-6875(96)00118-5

    CrossRef Google Scholar

    [20] 孙长胜, 朱一民, 杨艳平, 等. 低取代度羧甲基淀粉对齐大山铁矿抑制效果的研究[J]. 矿产保护与利用, 2015(1): 32-36.

    Google Scholar

    [21] 尹明水, 杨久流, 任爱军. 磷酸酯淀粉对赤铁矿抑制性能研究[J]. 有色金属(选矿部分), 2013(2): 64-67. doi: 10.3969/j.issn.1671-9492.2013.02.017

    CrossRef Google Scholar

    [22] ZVERLOV VV, BEREZINA O, VELIKODVORSKAYA GA, et al. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery[J]. Applied Microbiology and Biotechnology, 2006, 71(5): 587-597. doi: 10.1007/s00253-006-0445-z

    CrossRef Google Scholar

    [23] 徐冬林, 朱巨建, 刘国振. 赤铁矿石浮选抑制剂的应用现状及研发前景[J]. 能源与节能, 2014(10): 100-102. doi: 10.3969/j.issn.2095-0802.2014.10.043

    CrossRef Google Scholar

    [24] 李晔, 刘奇, 许时. 糊精在氧化矿表面的吸附特性及作用机理[J]. 中国有色金属学报, 1996(3): 33-37.

    Google Scholar

    [25] ALIZADEH A A, 孙炳泉. 氧化铁矿石浮选数学描述的基础研究[J]. 国外金属矿选矿, 1990(9): 23-30.

    Google Scholar

    [26] TANG M, WEN SM. Adsorption Characteristics of Starch Digested with Alkali on Fine Hematite Particles[J]. Journal of Mining Science, 2019, 55(3): 469-476. doi: 10.1134/S1062739119035806

    CrossRef Google Scholar

    [27] 汪桂杰, 孙伟. 几种改性淀粉对赤铁矿和石英抑制效果的研究[J]. 矿业研究与开发, 2013, 33(5): 35-39.

    Google Scholar

    [28] 李梅, 高凯, 柳召刚, 等. 白云鄂博尾矿萤石浮选工艺研究[J]. 有色金属(选矿部分), 2014(6): 55-58. doi: 10.3969/j.issn.1671-9492.2014.06.014

    CrossRef Google Scholar

    [29] YUE T, WU X. Depressing iron mineral by metallic-starch complex (MSC) in reverse flotation and its mechanism[J]. Minerals, 2018, 8(3);85. doi: 10.3390/min8030085

    CrossRef Google Scholar

    [30] 伍喜庆, 王志熙, 岳涛. 铁离子淀粉配合物在某铁矿石反浮选中的抑制行为及机理[J]. 金属矿山, 2017(11): 70-74. doi: 10.3969/j.issn.1001-1250.2017.11.014

    CrossRef Google Scholar

    [31] ABDEL-KHALEK N A, YASSIN K E, SELIM K A. Effect of starch type on selectivity of cationic flotation of iron ore[J]. Transactions of the Institutions of Mining and Metallurgy, Section C. Mineral Processing and Extractive Metallurgy, 2012, 121(2): 98-102. doi: 10.1179/1743285512Y.0000000001

    CrossRef Google Scholar

    [32] 刘豹, 刘淼, 孙乾予, 等. 新疆某褐铁矿石反浮选抑制剂选择与抑制机理探讨[J]. 金属矿山, 2013(11): 49-52.

    Google Scholar

    [33] NEITZKE P, DANTAS T, MOURA M, et al. Depressants in nanoemulsion systems applied to quartz and hematite microflotation[J]. Journal of Materials Research and Technology, 2019, 8(6): 5529-5535. doi: 10.1016/j.jmrt.2019.09.021

    CrossRef Google Scholar

    [34] 邓艳, 柳春, 罗想平, 等. 阴离子淀粉研究进展[J]. 大众科技, 2015, 17(6): 48-51. doi: 10.3969/j.issn.1008-1151.2015.06.017

    CrossRef Google Scholar

    [35] SHI W, TAN W, WANG L, et al. Removal of Microcystis aeruginosa using cationic starch modified soils[J]. Water Research, 2016, 97: 19-25. doi: 10.1016/j.watres.2015.06.029

    CrossRef Google Scholar

    [36] CRUNDWELL F.K. On the mechanism of the flotation of oxides and silicates[J]. Minerals Engineering 2016, 95: 185-196. doi: 10.1016/j.mineng.2016.06.017

    CrossRef Google Scholar

    [37] 董怡斌, 强敏, 段正义, 等. CMS抑制剂对鄂西高磷鲕状赤铁矿反浮选效果的研究[J]. 矿冶工程, 2011, 31(3): 44-47. doi: 10.3969/j.issn.0253-6099.2011.03.011

    CrossRef Google Scholar

    [38] 任爱军, 孙传尧. 油酸钠作捕收剂时变性淀粉对赤铁矿及石英可浮性的影响[J]. 矿冶, 2018, 27(3): 1-6+12.

    Google Scholar

    [39] SONG H, WU D, ZHANG RQ, et al. Synthesis and application of amphoteric starch graft polymer[J]. Carbohydrate Polymers, 2009, 78(2): 253-257. doi: 10.1016/j.carbpol.2009.03.027

    CrossRef Google Scholar

    [40] WANG S, LU A, ZHANG L. Recent advances in regenerated cellulose materials[J]. Progress in Polymer Science, 2016, 53: 169-206. doi: 10.1016/j.progpolymsci.2015.07.003

    CrossRef Google Scholar

    [41] BENDAOUD A, KEHRBUSCH R, BARANOV A, et al. Nanostructuredcellulose-xyloglucan blends via ionic liquid/water processing[J]. Carbohydrate polymers, 2017, 168: 163-172. doi: 10.1016/j.carbpol.2017.03.080

    CrossRef Google Scholar

    [42] 洪康进, 王倩, 陈俊柳, 等. 纤维素改性及其应用研究进展[J]. 食品工业科技, 2020, 41(10): 332-338. DOI:10.13386/j.issn1002-0306.2020.10.056.

    CrossRef Google Scholar

    [43] JENKINS P, RALSTON J. The adsorption of a polysaccharide at the talc aqueous solution interface[J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 1998, 139(1): 27-40.

    Google Scholar

    [44] LIU Q, ZHANG Y. The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction[J]. International Journal of Mineral Processing, 2001, 60(3/4): 229-245.

    Google Scholar

    [45] KUMAR D, JAIN V, RAI B. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina-rich iron ore slimes? A density functional theory and experimental study[J]. Minerals Engineering, 2018, 121: 47-54. doi: 10.1016/j.mineng.2018.02.020

    CrossRef Google Scholar

    [46] LAITINEN O, KEMPPAINEN K, AMMALA ARI, et al. Use of chemically modified nanocelluloses in flotation of hematite and quartz[J]. Industrial & Engineering Chemistry Research, 2014, 53(52): 20092-20098.

    Google Scholar

    [47] 贾辉, 卢毅屏, 钟宏, 等. 金属矿浮选有机抑制剂的研究进展[J]. 应用化工, 2014, 43(2): 353-356, 362.

    Google Scholar

    [48] TURRER HDGI, PERES AEC. Investigation on alternative depressants for iron ore flotation[C]//Proceedings of Flotation 09(CD-ROM). 2009: 1-7.

    Google Scholar

    [49] SANTOS I, OLIVEIRA J FA. Utilization of humic acid as a depressant for hematite in the reverse flotation of iron ore[J]. Minerals Engineering, 2007, 20(10): 1003-1007. doi: 10.1016/j.mineng.2007.03.007

    CrossRef Google Scholar

    [50] 马X, 张裕书, 雨田. 木质素磺酸盐对滑石可浮性的影响[J]. 国外金属矿选矿, 2008, 45(3): 28-33.

    Google Scholar

    [51] 梁爽, 路亮, 张行荣. 有机抑制剂在黄铁矿浮选中的研究进展[J]. 中国矿业, 2020, 29(z2): 300-302, 307.

    Google Scholar

    [52] 张卫星. 难选鲕状铁矿石选矿工艺及机理研究[D]. 赣州: 江西理工大学, 2012.

    Google Scholar

    [53] AT A, RD A, LDSLF B, et al. Tannin: An eco-friendly depressant for the green flotation separation of hematite from quartz[J]. Minerals Engineering, 2021, 168: 106917. doi: 10.1016/j.mineng.2021.106917

    CrossRef Google Scholar

    [54] 郝佳美, 刘建, 董文超, 等. 壳聚糖及其衍生物在硫化矿浮选分离中的研究进展[J]. 金属矿山, 2020(2): 96-102. DOI:10.19614/j.cnki.jsks.202002017.

    CrossRef Google Scholar

    [55] MLA B, JL C, YH B, et al. Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation[J]. Carbohydrate Polymers, 2020, 240: 116334. doi: 10.1016/j.carbpol.2020.116334

    CrossRef Google Scholar

    [56] ZHANG X, ZHU Y, XIE Y, et al. A novel macromolecular depressant for reverse flotation: Synthesis and depressing mechanism in the separation of hematite and quartz[J]. Separation and Purification Technology, 2017, 186: 175-181. doi: 10.1016/j.seppur.2017.05.051

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2122) PDF downloads(90) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint