Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

LIN Shengjian, RAO Feng, ZHENG Yanjin, LI Jing. Research Progress on Resource Utilization of Phosphorus Tailings, Phosphogypsum and Yellow Phosphorous Slag by Geological Polymerization[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 150-156. doi: 10.13779/j.cnki.issn1001-0076.2021.04.018
Citation: LIN Shengjian, RAO Feng, ZHENG Yanjin, LI Jing. Research Progress on Resource Utilization of Phosphorus Tailings, Phosphogypsum and Yellow Phosphorous Slag by Geological Polymerization[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 150-156. doi: 10.13779/j.cnki.issn1001-0076.2021.04.018

Research Progress on Resource Utilization of Phosphorus Tailings, Phosphogypsum and Yellow Phosphorous Slag by Geological Polymerization

More Information
  • With the increase of phosphate rock mining, the inventory of phosphate rock solid waste is also increasing year by year, which has caused serious harm to the natural environment. This paper summarizes the utilization status of phosphorus tailings, phosphogypsum and yellow phosphorus slag solid waste resources and the mechanism of alkali stimulated geological polymerization, compares alkali stimulated geological polymer concrete and ordinary portland cement concrete, and expounds the current situation of resource comprehensive utilization of phosphorus tailings, phosphogypsum and yellow phosphorus slag through alkali stimulated geological polymerization.

  • 加载中
  • [1] 刘志强, 郝梓国, 刘恋, 等. 我国尾矿综合利用研究现状及建议[J]. 地质论评, 2016(5): 1277-1282.

    Google Scholar

    [2] 周亚敏. 以碳达峰与碳中和目标促我国产业链转型升级[J]. 中国发展观察, 2021(Z1): 56-58.

    Google Scholar

    [3] RAO F, LIU Q. Geopolymerization and Its Potential Application in Mine Tailings Consolidation: A Review[J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(6): 399-409. doi: 10.1080/08827508.2015.1055625

    CrossRef Google Scholar

    [4] YHM AMRAN, R ALYOUSEF, H ALABDULJABBAR, et al. Clean production and properties of geopolymer concrete: A review[J]. Journal of Cleaner Production, 2020, 251: 119679. doi: 10.1016/j.jclepro.2019.119679

    CrossRef Google Scholar

    [5] 李鹏毅, 张冬冬, 宁平, 等. 磷尾矿资源化利用研究[J]. 化工矿物与加工, 2019, 48(2): 66-70.

    Google Scholar

    [6] 张汉泉, 周峰, 许鑫, 等. 中国磷矿开发利用现状[J]. 武汉工程大学学报, 2020, 42(2): 159-164.

    Google Scholar

    [7] 周倩倩, 周克清. 磷尾矿资源综合利用现状研究[J]. 化工矿物与加工, 2018, 47(9): 67-70.

    Google Scholar

    [8] 尹丽文. 中国磷矿资源分布及开发建议[J]. 资源与人居环境, 2009(10): 26-27. doi: 10.3969/j.issn.1672-822X.2009.10.012

    CrossRef Google Scholar

    [9] 朱志伟, 何东升, 陈飞, 等. 磷石膏预处理与综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 19-25.

    Google Scholar

    [10] 张汉泉, 许鑫, 胡超杰, 等. 磷化工固体废弃物综合利用技术现状[J]. 中国矿业, 2021, 30(4): 50-55+63. doi: 10.3969/j.issn.1009-105x.2021.04.005

    CrossRef Google Scholar

    [11] K GNANDI, MHR BOROON, P EDORH. The geochemical characterization of mine effluents from the phosphorite processing plant of kpémé (southern togo)[J]. Mine Water and the Environment, 2009, 28(1): 65-73. doi: 10.1007/s10230-008-0058-0

    CrossRef Google Scholar

    [12] Zhang Z, Provis JL, Reid A, et al. Geopolymer foam concrete: An emerging material for sustainable construction[J]. Construction and Building Materials, 2014, 56(5): 113-127.

    Google Scholar

    [13] A GHARZOUNI, E JOUSSEIN, B SAMET, et al. Effect of the reactivity of alkaline solution and metakaolin on geopolymer formation[J]. Journal of Non-Crystalline Solids, 2015, 410(5): 127-134.

    Google Scholar

    [14] SINGH NB, MIDDENDORF B. Geopolymers as an alternative to Portland cement: An overview[J]. Construction and Building Materials, 2020, 237(5): 117455.

    Google Scholar

    [15] DUAN P, YAN C, ZHOU W, et al. An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure[J]. Materials & Design, 2015, 74(6): 125-137.

    Google Scholar

    [16] WAN Q, RAO F, SONG S, et al. Chemical forms of lead immobilization in alkali-activated binders based on mine tailings[J]. Cement and Concrete Composites, 2018, 92: 198-204. doi: 10.1016/j.cemconcomp.2018.06.011

    CrossRef Google Scholar

    [17] ATIŞ CD, GÖRVR EB, KARAHAN O, et al. Very high strength (120MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration[J]. Construction and Building Materials, 2015, 96(5): 673-678.

    Google Scholar

    [18] RASHAD AM. Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars[J]. Construction Materials, 2019, 172(1): 34-77.

    Google Scholar

    [19] 李夕兵, 刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.

    Google Scholar

    [20] 刘建功, 王翰秋, 赵家巍. 煤矿固体充填采煤技术发展回顾与展望[J]. 煤炭科学技术, 2020, 48(9): 27-38.

    Google Scholar

    [21] EDRAKI M, BAUMGARTL T, MANLAPIG E, et al. Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. Journal of Cleaner Production, 2014, 84: 411-420. doi: 10.1016/j.jclepro.2014.04.079

    CrossRef Google Scholar

    [22] 吴洁, 饶峰, 印万忠. 通过地质聚合反应共同固结磷矿浮选尾矿与炉渣[J]. 金属矿山, 2020(8): 216-220.

    Google Scholar

    [23] 刘冬梅, 刘玉娇, 彭艳周, 等. 固硫灰基磷尾矿充填体的性能及浸出液水质[J]. 非金属矿, 2020, 43(4): 11-15. doi: 10.3969/j.issn.1000-8098.2020.04.004

    CrossRef Google Scholar

    [24] SHI Y, CHENG L, TAO M, et al. Using modified quartz sand for phosphate pollution control in cemented phosphogypsum (PG) backfill[J]. Journal of Cleaner Production, 2020, 283(3): 124652.

    Google Scholar

    [25] LI M, CHEN Z. Strength Properties of Phosphogypsum Based Composite Filling Materials[C]. In Chinese Materials Conference. Springer, Singapore, 2017.

    Google Scholar

    [26] ZHANG S, ZHAO Y, DING H, ET AL. Recycling flue gas desulfurisation gypsum and phosphogypsum for cemented paste backfill and its acid resistance[J]. Construction and Building Materials, 2021, 275(5): 122170.

    Google Scholar

    [27] XUE X, KE Y, KANG Q, et al. Cost-effective treatment of hemihydrate phosphogypsum and phosphorous slag as cemented paste backfill material for underground mine[J]. Advances in Materials Science and Engineering, 2019, 2019: 1-11.

    Google Scholar

    [28] CHEN Q, ZHANG Q, FOURIE A, et al. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill[J]. Journal of Environmental Management, 2017, 201(5): 19-27.

    Google Scholar

    [29] JIANG G, WU A, WANG Y, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material[J]. Construction and Building Materials, 2018, 167: 263-270. doi: 10.1016/j.conbuildmat.2018.02.022

    CrossRef Google Scholar

    [30] ZHOU S, LI X, ZHOU Y, et al. Effect of phosphorus on the properties of phosphogypsum-based cemented backfill[J]. Journal of hazardous materials, 2020, 399(5): 122993.

    Google Scholar

    [31] LI X, ZHOU S, ZHOU Y, et al. Durability Evaluation of Phosphogypsum-Based Cemented Backfill Through Drying-Wetting Cycles[J]. Minerals, 2019, 9(5): 321. doi: 10.3390/min9050321

    CrossRef Google Scholar

    [32] ZHENG K, ZHOU J, GBOZEE M. Influences of phosphate tailings on hydration and properties of Portland cement[J]. Construction and Building Materials, 2015, 98(5): 593-601.

    Google Scholar

    [33] 李家劲, 向兴, 尹亚, 等. 以磷尾矿作为填料制备泡沫混凝土的研究[J]. 混凝土, 2016(12): 151-153. doi: 10.3969/j.issn.1002-3550.2016.12.039

    CrossRef Google Scholar

    [34] 赵士豪, 王桂明, 孙涛, 等. 过硫磷石膏水泥砌筑用免烧砖的制备及养护制度研究[J]. 建材世界, 2017, 38(2): 18-21.

    Google Scholar

    [35] 郭小雨, 樊传刚, 裴立宅, 等. 磷石膏免烧砖的性能及其重金属离子固定研究[J]. 新型建筑材料, 2020, 47(10): 127-131+152. doi: 10.3969/j.issn.1001-702X.2020.10.030

    CrossRef Google Scholar

    [36] ALLAHVERDI A, PILEHVAR S, MAHINROOSTA M. Influence of curing conditions on the mechanical and physical properties of chemically-activated phosphorous slag cement[J]. Powder Technology, 2016, 288: 132-139. doi: 10.1016/j.powtec.2015.10.053

    CrossRef Google Scholar

    [37] 张敏, 马倩敏, 郭荣鑫, 等. 磷渣-水泥复合及碱磷渣胶凝材料力学性能试验研究[J]. 硅酸盐通报, 2020, 281(2): 46-52+71.

    Google Scholar

    [38] YANG R, YU R, SHUI Z, et al. Low carbon design of an Ultra-High Performance Concrete (UHPC) incorporating phosphorous slag[J]. Journal of Cleaner Production, 2019, 240: 118157. doi: 10.1016/j.jclepro.2019.118157

    CrossRef Google Scholar

    [39] WANG L, GUO F, LIN Y, et al. Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cement-based materials[J]. Construction and Building Materials, 2020, 250(5): 118807.

    Google Scholar

    [40] 刘方华. 碱激发磷矿渣复合胶凝材料的水化特性[J]. 建筑材料学报, 2020, 23(5): 1038-1045. doi: 10.3969/j.issn.1007-9629.2020.05.007

    CrossRef Google Scholar

    [41] MAGHSOODLOORAD H, HAMIDREZA K, ALI A. Alkali-activated phosphorous slag performance under different curing conditions: Compressive strength, hydration products, and microstructure[J]. Journal of Materials in Civil Engineering, 2018, 30(1): 04017253. doi: 10.1061/(ASCE)MT.1943-5533.0002101

    CrossRef Google Scholar

    [42] 张建辉, 赵嘉鑫, 陈继才, 等. 碱激发磷渣基胶凝材料的性能及微观结构分析[J]. 硅酸盐通报, 2019, 276(9): 297-303.

    Google Scholar

    [43] 廖国燕, 李夕兵, 赵国彦. 黄磷渣充填胶凝材料激发剂的选择与优化[J]. 金属矿山, 2010(3): 17-19+99.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(1)

Article Metrics

Article views(2908) PDF downloads(335) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint