Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2021 Vol. 41, No. 4
Article Contents

YANG Duo, FENG Dongxia, BAI Lin, ZHANG Xiaoyong. Research Progress of Metal Ion Flotation Technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 133-140. doi: 10.13779/j.cnki.issn1001-0076.2021.04.016
Citation: YANG Duo, FENG Dongxia, BAI Lin, ZHANG Xiaoyong. Research Progress of Metal Ion Flotation Technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 133-140. doi: 10.13779/j.cnki.issn1001-0076.2021.04.016

Research Progress of Metal Ion Flotation Technology

More Information
  • Corresponding author: FENG Dongxia  
  • Ion flotation is an effective method of recovery of metal ions from the solution. because it has the advantages of high recovery and environmental protection. By adding surfactant to the flotation system, physical adsorption and chemical adsorption on the liquid-gas interface occurs with the target ions. Then ions separation is obtained by flotation method. Because of its high recovery rate, environmental protection and other advantages, it has been widely used in the fields of wastewater treatment, hydrometallurgy, and water resource utilization. In this paper, the mechanism and influencing factors of metal ion flotation are summarized in detail. The research progress and application status of ion flotation in related fields are briefly described. The technical problems of ion flotation application are analyzed. The development trend of metal ion flotation is pointed out.

  • 加载中
  • [1] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017.

    Google Scholar

    [2] 王霞. 工业废水重金属污染的危害及治理策略分析[J]. 资源节约与环保, 2020(9): 95-96. doi: 10.3969/j.issn.1673-2251.2020.09.057

    CrossRef Google Scholar

    [3] GAVRILESCU M. Removal of heavy metals from the environment by biosorption[J]. Engineering in Life Sciences, 2010, 4(3): 219-232.

    Google Scholar

    [4] 王祥生, 娄虎, 张明海. 野生动物重金属污染研究进展[J]. 生命科学研究, 2019(1): 78-86.

    Google Scholar

    [5] 黄宇, 刘佳琦. 城市地下水污染特征及治污策略研究[J]. 环境科学与管理. 2017, 42(11): 112-114. doi: 10.3969/j.issn.1673-1212.2017.11.026

    CrossRef Google Scholar

    [6] 刘立华, 杨正池, 赵露. 重金属吸附材料的研究进展[J]. 中国材料进展, 2018, 37(2): 100-108, 125.

    Google Scholar

    [7] 王瑛, 林钰清, 李爱军, 等. 重金属危害机制及益生菌清除重金属机制研究进展[J]. 食品与发酵工业, 2020, 46(3): 281-292.

    Google Scholar

    [8] OYARO N, JUDDY O, MURAGO E N M. The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya[J]. Journal of Food Agriculture and Environment, 2007, 5(3): 119-121.

    Google Scholar

    [9] 窦建瑞. 职业性铅中毒的预防[J]. 劳动保护, 2020(8): 74-76. doi: 10.3969/j.issn.1000-4335.2020.08.033

    CrossRef Google Scholar

    [10] RUBIO J, SOUZA M L, SMITH R W. Overview of flotation as a wastewater treatment technique[J]. Minerals Engineering, 2002, 15(3): 139-155. doi: 10.1016/S0892-6875(01)00216-3

    CrossRef Google Scholar

    [11] 朱月锋, 孙春宝, 李政良, 等. 某铜钼浮选分离废水的化学沉淀-絮凝沉降试验[J]. 金属矿山, 2017(5): 171-176. doi: 10.3969/j.issn.1001-1250.2017.05.033

    CrossRef Google Scholar

    [12] 冯霄. 电去离子技术浓缩与脱除水中重金属离子和营养盐研究[D]. 杭州: 浙江大学, 2008.

    Google Scholar

    [13] 葛宜掌, 金红. 茶多酚的离子沉淀提取法[J]. 应用化学, 1995(2): 107-109.

    Google Scholar

    [14] 雷兆武, 孙颖. 离子交换技术在重金属废水处理中的应用[J]. 环境科学与管理, 2008(10): 30-31. doi: 10.3969/j.issn.1673-1212.2008.10.008

    CrossRef Google Scholar

    [15] ZHENG C, WU Q, HU X, et al. Adsorption behavior of heavy metal ions on a polymer-immobilized amphoteric biosorbent: Surface interaction assessment[J]. Journal of Hazardous Materials, 2021, 403: 123801. doi: 10.1016/j.jhazmat.2020.123801

    CrossRef Google Scholar

    [16] 陈刚. 吸附法处理废水中重金属离子的研究[D]. 湘潭: 湘潭大学, 2009.

    Google Scholar

    [17] 田志国. 氧化还原去除海水中重金属离子的研究[D]. 天津: 天津大学, 2012.

    Google Scholar

    [18] 李晓波, 严伟平. 离子浮选技术研究进展[J]. 金属矿山, 2012(4): 100-105. doi: 10.3969/j.issn.1001-1250.2012.04.026

    CrossRef Google Scholar

    [19] 王淀佐, 等. 矿物加工学[M]. 徐州: 中国矿业大学出版社, 2003: 197.

    Google Scholar

    [20] F SEBBA. Concentration by Ion Flotation[J]. Nature, 1959, 184(4692): 1062-1063. doi: 10.1038/1841062a0

    CrossRef Google Scholar

    [21] 赵宝生, 蔡青. 离子浮选法处理放射性废水[J]. 原子能科学技术, 2004(4): 382-384. doi: 10.3969/j.issn.1000-6931.2004.04.022

    CrossRef Google Scholar

    [22] 任学贞, 王淑仁. 离子浮选富集-原子吸收法测定水中痕量铜[J]. 山东大学学报(自然科学版), 1990(3): 349-354.

    Google Scholar

    [23] 何名飞, 简胜, 张晶. 锌浸出渣中银矿物关键选冶技术研究[J]. 云南冶金, 2016, 45(4): 21-24. doi: 10.3969/j.issn.1006-0308.2016.04.005

    CrossRef Google Scholar

    [24] 芝田隼次, 关自斌. 用离子浮选法分离和浓集铀[J]. 铀矿冶, 1976(3): 14-19.

    Google Scholar

    [25] 傅炎初, 吴树森, 王世容. 用离子浮选法处理印染废水中活性染料的研究[J]. 印染, 1992(2): 11-17.

    Google Scholar

    [26] 杨则器, 孙体昌, 黄冲, 等. 含铌冶金熔合物的浸出——离子浮选过程[J]. 有色金属工程, 1990(1): 33-38.

    Google Scholar

    [27] LHVT, JCL. Ion flotation of palladium by using cationic surfactants-Effects of chloride ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126326 doi: 10.1016/j.colsurfa.2021.126326

    CrossRef Google Scholar

    [28] GALVIN K P, NICOL S K, WATERS A G. Selective ion flotation of gold[J]. Colloids and Surfaces, 1992, 64(1): 21-33. doi: 10.1016/0166-6622(92)80158-X

    CrossRef Google Scholar

    [29] 刘有才, 钟宏, 刘洪萍. 重金属废水处理技术研究现状与发展趋势[J]. 广东化工, 2005, 32(4): 36-39. doi: 10.3969/j.issn.1007-1865.2005.04.014

    CrossRef Google Scholar

    [30] DURAIRAJ S, SHANKAR D, GOMATHI V, et al. Application of electro-dialysis on removal of heavy metals[J]. Pollution Research, 2014, 33(3): 627-631.

    Google Scholar

    [31] 陆文霞. 离子表面活性剂水相聚集及固液界面吸附行为研究[D]. 长沙: 中南大学, 2014.

    Google Scholar

    [32] PIISPANEN P S, PERSSON M, CLAESSON P, et al. Surface properties of surfactants derived from natural products. Part 2: Structure/property relationships-Foaming, dispersion, and wetting[J]. Journal of Surfactants and Detergents, 2004, 7(2): 161-167. doi: 10.1007/s11743-004-0299-5

    CrossRef Google Scholar

    [33] 张朝宏, 戴惠新. 铁矿石反浮选捕收剂现状及未来发展趋势[J]. 矿产综合利用, 2012(2): 3-6. doi: 10.3969/j.issn.1000-6532.2012.02.001

    CrossRef Google Scholar

    [34] 阿鲁基奥AC, 周海波, 肖力子. 浮选铁矿的药剂[J]. 国外金属矿选矿, 2009, 46(Z1): 24-27, 79.

    Google Scholar

    [35] FATEMEH SADAT HOSEINIAN; MEHDI IRANNAJAD; ALIREZA JAVADI NOOSHABADI. Ion flotation for removal of Ni (Ⅱ) and Zn (Ⅱ) ions from wastewaters[J]. International Journal of Mineral Processing, 2015, 143: 131-137 doi: 10.1016/j.minpro.2015.07.006

    CrossRef Google Scholar

    [36] SINGH C D, SHIBATA Y, OGITA M. Critical micelle concentration (CMC) measurements using U-shaped fiber optic probes[J]. Sensors & Actuators B Chemical, 2003, 96(1/2): 130-132.

    Google Scholar

    [37] 霍广生, 孙培梅. 离子浮选法从钨酸盐溶液中分离钨钼[J]. 中南工业大学学报, 1999, 30(3): 252-254.

    Google Scholar

    [38] RUBIN A J, JOHNSON J D. Effect of pH onion and precipitate flotation systems[J]. Analytical Chemistry, 1967, 39(3): 298-302. doi: 10.1021/ac60247a009

    CrossRef Google Scholar

    [39] 戴文灿, 陈涛, 孙水裕, 等. 离子浮选法处理电镀废水试验研究[J]. 环境工程学报, 2010, 4(6): 1349-1352.

    Google Scholar

    [40] POLAT H, ERDOGAN D. Heavy metal removal from waste waters by ion flotation[J]. Journal of Hazardous Materials, 2007, 148(1-2): 267-273. doi: 10.1016/j.jhazmat.2007.02.013

    CrossRef Google Scholar

    [41] 郭永文, 崔顺姬. 离子浮选法处理含重金属离子废水的研究[J]. 有色金属, 1986(4): 18-23.

    Google Scholar

    [42] LI YH, Ding J, LUAN Z, et al. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J]. Carbon, 2003, 41(14): 2787-2792. doi: 10.1016/S0008-6223(03)00392-0

    CrossRef Google Scholar

    [43] YUAN XZ, MENG YT, ZENG GM, et al. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2008, 317(1-3): 256-261.

    Google Scholar

    [44] 袁致涛, 张其东, 刘炯天. 金属离子对辉钼矿浮选的影响及机理研究[J]. 东北大学学报(自然科学版), 2016, 37(7): 1013-1016. doi: 10.3969/j.issn.1005-3026.2016.07.022

    CrossRef Google Scholar

    [45] 薛玉兰, 潘焕基, 真宫三男, 等. 常见共存离子对镍离子浮选的影响[J]. 中南大学学报(自然科学版), 1990(3): 254-260

    Google Scholar

    [46] 党晓娥, 淮敏超. CuSO4对氰化提金贫液中SCN-的沉淀效果以及对共存离子浓度的影响[J]. 化工学报, 2020, 71(3): 1310-1316.

    Google Scholar

    [47] ENGEL MD, 许鹏秋. 离子浮选在稀溶液金回收中的一种特殊应用[J]. 国外黄金参考, 1992, 8(3): 23-29.

    Google Scholar

    [48] SUTHEE JANYASUTHIWONGA, ELDON R. RENEA, Giovanni Espositob, et al. Effect of pH on Cu, Ni and Zn removal by biogenic sulfide precipitation in an inversed fluidized bed bioreactor[J]. Hydrometallurgy, 2015, 158: 94-100. doi: 10.1016/j.hydromet.2015.10.009

    CrossRef Google Scholar

    [49] FU FL, WANG Q. Removal of heavy metal ions from wastewaters: A review. [J] Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011

    CrossRef Google Scholar

    [50] 薛玉兰, 王淀佐, 伏雪峰. 冶炼废水中镍钴离子浮选的试验研究[J]. 有色金属, 1991(2): 30-34.

    Google Scholar

    [51] JAFARI M, ABDOLLAHZADEH A A, AGHABABAEI F. Copper ion recovery from mine water by ion flotation[J]. Mine Water & the Environment, 2017, 36(2): 323-327.

    Google Scholar

    [52] 刘玲, 孙玉梅. 苍白杆菌产生物表面活性剂的提取研究[J]. 中国酿造, 2020, 39(6): 26-30.

    Google Scholar

    [53] BODAGH A, KHOSHDAST H, SHARAFI H, et al. Removal of cadmium(Ⅱ) from aqueous solution by ion flotation using rhamnolipid biosurfactant as an ion collector[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3910-3917.

    Google Scholar

    [54] AOYAMA M, HOBO T, SUZUKI S. Ion flotation-spectrophotometric determination of traces of chromium(Ⅵ)[J]. Analytica Chimica Acta, 1981, 129: 237-241. doi: 10.1016/S0003-2670(01)84137-4

    CrossRef Google Scholar

    [55] NEKOUEI F, PARHAM H. Flotation-spectrophotometric determination of traces of lead Ion[J]. Asian Journal of Chemistry, 2010, 22(1): 319.

    Google Scholar

    [56] LIANG SQ, MA HM. Enrichment of trace cerium subgroup rare earths by means of ion flotation[J]. Chinese Journal of Chemistry, 2010, 11(6): 550-553. doi: 10.1002/cjoc.19930110609

    CrossRef Google Scholar

    [57] 陈佳磊, 李治明. 离子浮选法富集测定南药槟榔中痕量铅[J]. 广州化工, 2015, 43(21): 136-138. doi: 10.3969/j.issn.1001-9677.2015.21.049

    CrossRef Google Scholar

    [58] 李琳, 黄淦泉, 冯易君. 二苯碳酰二肼离子浮选石墨炉原子吸收光谱测水中痕量铬(Ⅵ)与铬(Ⅲ)[J]. 四川大学学报(自然科学版), 1997(4): 79-83

    Google Scholar

    [59] 陈长应. 离子浮选比色定量法测定饮用水中Pb2+的研究[J]. 山东农业大学学报·自然科学版, 2010, 41(2): 263-266.

    Google Scholar

    [60] DOYLE F M. Ion flotation-its potential for hydrometallurgical operations[J]. International Journal of Mineral Processing, 2003, 72(1-4): 387-399. doi: 10.1016/S0301-7516(03)00113-3

    CrossRef Google Scholar

    [61] 张帆, 程楚, 王海北, 等. 铅银渣综合利用研究现状[J]. 中国资源综合用, 2015, 33(3): 37-41.

    Google Scholar

    [62] 霍广生. 钨冶炼过程中钨钼分离新工艺及其理论研究[D]. 长沙: 中南大学, 2001.

    Google Scholar

    [63] WILLIAMS P, SORRIBAS A, LIANG Z. New methods to explore marine resources for alzheimers therapeutics[J]. Current Alzheimer Research, 2010, 7(3): 210-213 doi: 10.2174/156720510791050812

    CrossRef Google Scholar

    [64] ARBAB K A, SHAYINDA K, ZADAN K, et al. Marine mineral resources: a newfangled treasure to explore[J]. Research Journal of Marine Sciences, 2015, 3(2): 1-5.

    Google Scholar

    [65] 唐林生, 林强. 锰结核浸出-矿浆离子浮选工艺的研究-矿浆离子浮选试验[J]. 有色金属: 选矿部分, 1995(2): 6-10.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(3330) PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint