2024 Vol. 51, No. 2
Article Contents

ZENG Ruiyin, ZHU Xinyou, WANG Rong, LI Qingzhe, ZHAN Yong, ZHANG Xiong, SUN Ning, LI Liang, TAN Kangyu, HUANG Jianye. 2024. Geological and mineralization characteristics of Manono–Kitotolo Li−Cs−Ta pegmatite in the Democratic Republic of Congo[J]. Geology in China, 51(2): 443-456. doi: 10.12029/gc20200819002
Citation: ZENG Ruiyin, ZHU Xinyou, WANG Rong, LI Qingzhe, ZHAN Yong, ZHANG Xiong, SUN Ning, LI Liang, TAN Kangyu, HUANG Jianye. 2024. Geological and mineralization characteristics of Manono–Kitotolo Li−Cs−Ta pegmatite in the Democratic Republic of Congo[J]. Geology in China, 51(2): 443-456. doi: 10.12029/gc20200819002

Geological and mineralization characteristics of Manono–Kitotolo Li−Cs−Ta pegmatite in the Democratic Republic of Congo

    Fund Project: Supported by National Natural Science Foundation of China (No.41363002) and the subject of the Key Special Project of the National Key Research and Development Program “Exploitation of Deep Resources” (No.2017YFC0602403).
More Information
  • Author Bio: ZENG Ruiyin, male, born in 1991, master candidate, engineer, majors in mineralogy, petrology, deposits; E-mail: zengqingqin0428@sina.com
  • Corresponding author: ZHU Xinyou, male, born in 1965, professor level senior engineer, mainly engaged in the study of mineral deposit; E-mail: zhuxinyou@outlook.com
  • This paper is the result of mineral exploration engineering.

    Objective

    The Manono–Kitotolo spodumene (40%−70%) pegmatite, one of the lithium−cesium−tantalum pegmatite (LCT) in the world, is located at the Mesoproterozoic Kibaran rare metals metallogenic belt in the Democratic Republic of Congo (DRC). The field works revealed that the symbiotic minerals of pegmatite gradually evolved from outside to inside: granite aplite zone(Ⅰ), muscovite−feldspar quartz zone (Ⅱ), quartz albitite zone (Ⅲ), spodumene zone (Ⅳ) and quartz kernel (Ⅴ).

    Methods

    In this study, the composition of major elements of mica, spodumene, cassiterite and columbite−tantalite are analyzed by Electron probe X−ray micro−analyzer (EPMA) to bring light on Li−Nb−Ta−Sn mineralization and pegmatitic crystallization differentiation.

    Results

    The results show that the content of Rb, Li, and F in muscovite gradually increased from outward (Ⅰ) to inward (Ⅴ), meanwhile the K/Rb gradually decreased. The content of Fe and Rb in lepidolite (V−1) is relatively higher than in muscovite(Ⅱ), which indicating highly fractionated pegmatite inside. Li mineralization mainly occurs in spodumene pegmatite (Ⅳ).

    Conclusions

    The grain size of spodumene varies from macro−crystal to coarse grain and medium grain and its principal components keep consistent except Li lost by oxidative leaching, argillation, greisenization and other alterations. Cassiterite with high Nb and Ta is generally formed by greisenization in zone Ⅲ–Ⅳ. Nb−Ta is mineralized in the form of the columbite−tantalite−manganotantalite isomorphism in the zone Ⅱ–Ⅳ, with the development of differentiation, the content of Ta and Mn in minerals increases, while the content of Nb, Fe and Ti decreases and formed Ta−rich and Mn−rich Columbite−tantalite.

  • 加载中
  • [1] Beurlen H, Da Silva M R R, Thomas R, Soares D R, Olivier P. 2008. Nb–Ta–(Ti–Sn) oxide mineral chemistry as tracer of rare–element granitic pegmatite fractionation in the Borborema Province Northeastern Brazil[J]. Mineralium Deposita, 43: 207−228. doi: 10.1007/s00126-007-0152-4

    CrossRef Google Scholar

    [2] Bradley D C, McCauley A D, Stillings L M. 2017. Mineral–Deposit Model for Lithium–Cesium–Tantalum Pegmatites: Chapter O of Mineral Deposit Models for Resource Assessment[R]. Reston, Virginia: U.S. Geological Survey, 1–48.

    Google Scholar

    [3] Cahen L, Delhal J, Vail J R, Bonhomme M, Ledent D. 1984. The Geochronology and Evolution of Africa[M]. Oxford: Clarendon Press, 1–512.

    Google Scholar

    [4] Chen Guojian. 2014. Geological characteristics and genesis of the Nanping granitic pegmatite type Ta–Nb deposit, Fujian Province[J]. Geological Bulletin of China, 33(10): 1550−1561 (in Chinese with English abstract).

    Google Scholar

    [5] Cryns Y. 2013. Petrographical, Mineralogical and Geochemical Study of the Sn, Nb–Ta, Li–Mineralized Pegmatites of Manono–Kitotolo, Katanga (D. R. Congo)[D]. Leuven: Katholieke Universiteit Leuven.

    Google Scholar

    [6] Dewaele S, De Clerq F, Muchez P, Schneider J, Burgess R, Boyce A, Fernandez–Alonso M. 2010. Geology of the cassiterite mineralization in the Rutongo area, Rwanda (Central Africa): Current state of knowledge[J]. Geologica Belgica, 13(1/2): 91−112.

    Google Scholar

    [7] Dewaele S, Henjes–Kunst F, Melcher F, Sitnikova M, Burgess R, Gerdes A, Fernandez–Alonso M, De Clerq F, Muchez P, Lehmann B. 2011. Late Neoproterozoic overprinting of the cassiterite and columbite–tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 61: 10−26. doi: 10.1016/j.jafrearsci.2011.04.004

    CrossRef Google Scholar

    [8] Dewaele S, Hulsbosch N, Cryns Y, Boyce A, Burgess R, Muchez P. 2016. Geological setting and timing of the world–class Sn Nb–Ta and Li mineralization of Manono–Kitotolo (Katanga, Democratic Republic of Congo)[J]. Ore Geology Reviews, 72: 373−390. doi: 10.1016/j.oregeorev.2015.07.004

    CrossRef Google Scholar

    [9] Dill H G. 2015. Pegmatites and aplites: Their genetic and applied ore geology[J]. Ore Geology Reviews, 69: 417−561. doi: 10.1016/j.oregeorev.2015.02.022

    CrossRef Google Scholar

    [10] Eckhof K. 2017. High–grade Lithium Mineralization Now Drill Confirmed over A Strike Length of 4 km within Three Pegmatites at the Kitotolo Sector, Manono Project, DRC[R]. Perth, Western Australia: AVZ Minerals Limited, 1–29.

    Google Scholar

    [11] Ferguson N, Johnston G, Chen H L, Brans R, Huljich P. 2019. AVZ 2019 Annual Report[R]. Perth, Western Australia: AVZ Minerals Limited, 1–77.

    Google Scholar

    [12] Gerards J, Ledent D L. 1970. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les ages de ces roches[J]. Annal es de la Sociéte Géologique de Belgique, 93: 477−489.

    Google Scholar

    [13] Kokonyangi J W, Kampunzu A B, Armstrong R, Yoshida M, Okudaira T, Arima M, Ngulube D A. 2006. The Mesoproterozoic Kibaride belt (Katanga, SE D R Congo)[J]. Journal of African Earth Sciences, 46: 1−35. doi: 10.1016/j.jafrearsci.2006.01.017

    CrossRef Google Scholar

    [14] Linnen R L, Keppler H. 1997. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the earth's crust[J]. Contributions to Mineralogy and Petrology, 128: 213−227. doi: 10.1007/s004100050304

    CrossRef Google Scholar

    [15] Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263−278 (in Chinese with English abstract).

    Google Scholar

    [16] London D. 2018. Ore–forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349−383. doi: 10.1016/j.oregeorev.2018.04.020

    CrossRef Google Scholar

    [17] Melcher F, Graupner T, Gäbler H E, Sitnikova M, Henjes–Kunst F, Oberthür T, Gerdes A, Dewaele S, 2015. Tantalum–(niobium–tin) mineralization in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology[J]. Ore Geology Reviews, 64: 667–719.

    Google Scholar

    [18] Mulja T, Williams–Jones A E, Martin R F, Wood S A. 1996. Compositional variation and structural state of columbite–tantalite in rare–element granitic pegmatites of the Preissac–Lacorne batholith, Quebec, Canada[J]. American Mineralogist, 81: 146−157. doi: 10.2138/am-1996-1-219

    CrossRef Google Scholar

    [19] Pirajno F. 2010. Hydrothermal Processes and Mineral Systems[M]. Australia: Geological Survey of Western Australia, 1–1243.

    Google Scholar

    [20] Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare–element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract).

    Google Scholar

    [21] Shearer C K, Papike J J, Jolliff B L. 1992. Petrogenetic links among granites and pegmatites in the Harney Peak rare–element granite–pegmatite system, Black Hills, South Dakota[J]. Canadian Mineralogist, 30: 785−809.

    Google Scholar

    [22] Tack L, Wingate M, DeWaele B, Meert J, Belousova E A, Griffin B, Tahon A, Fernandez–Alonso. 2010. The 1375 Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 180: 63−84. doi: 10.1016/j.precamres.2010.02.022

    CrossRef Google Scholar

    [23] Tindle A G, Breaks F W. 1998. Oxide minerals of the separation rapids rare element granitic pegmatite group, northwestern Ontario[J]. Canadian Mineralogist, 36(2): 609−635.

    Google Scholar

    [24] Vieira R, Roda–Robles E, Pesquera A, Lima A. 2011. Chemical variation and significance of micas from the Fregeneda–Almendra pegmatitic field (Central–Iberian Zone, Spain and Portugal)[J]. American Mineralogist, 96(4): 637−645. doi: 10.2138/am.2011.3584

    CrossRef Google Scholar

    [25] Wang Denghong, Liu Lijun, Hou Jianglong, Dai Hongzhang, YuYang, Dai Jingjing, Tian Shihong. 2017a. A preliminary review of the application of “Five levels+ Basement” model for Jiajika style rare metal deposits[J]. Earth Science Frontiers, 24(5): 1−17 (in Chinese with English abstract).

    Google Scholar

    [26] Wang Denghong, Liu Lijun, Dai Hongzhang, Liu Shanbao, HouJianglong, Wu Xishun. 2017b. Discussion on particularity and prospecting direction of large and superlarge spodumene deposits[J]. Earth Science, 42(12): 2243−2257 (in Chinese with English abstract).

    Google Scholar

    [27] Wang Panxi, Zhu Likuang, Liu Lu, Guo Jungang, Wu Qiushen. 2017. Geological and geochemical characteristics of grainitic pegmatite in Guanpo, Henan Province[J]. Geological Survey of China, 4(6): 40−49 (in Chinese with English abstract).

    Google Scholar

    [28] Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite–pegmatite–related rare–metal mineralization[J]. Acta Petrologica Sinica, 35(1): 69−75 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.04

    CrossRef Google Scholar

    [29] Wen Chunhua. 2017. Mineralogical–geochemical characteristics and ore potentiality studies of pegmatite in southern margin of the Mufushan area, Hunan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(1): 67–74 (in Chinese with English abstract).

    Google Scholar

    [30] Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745−765 (in Chinese with English abstract).

    Google Scholar

    [31] Xiao Huiliang, Li Haili, Fan Feipeng, Zeng Zailin, Chen Lezhu, Zhou Yan, Sun Jiandong, Xiao Fan, Chen Xiaoyong, Chen Binfeng. 2023. The mineral prospecting direction of Li−Be−Nb−Ta deposits in East Nanling region[J]. Geology in China, 50(3): 653–676 (in Chinese with English abstract).

    Google Scholar

    [32] Yang Yueqing, Wang Denghong, Liu Shanbao, Liu Lijun, Wang Chenghui, Guo Weiming. 2020. The co–occurrence mechanism of two types of spodumene ore bodies and their prospecting significance in Jiajikan, Sichuan Province[J]. Acta Geologica Sinica, 94(1): 287−302 (in Chinese with English abstract).

    Google Scholar

    [33] Zhang A C, Wang R C, Hu H, Zhang H, Zhu J C, Chen X M. 2004. Chemical evolution of Nb–Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China[J]. Mineralogical Magazine, 68(5): 739−756. doi: 10.1180/0026461046850216

    CrossRef Google Scholar

    [34] Zhao Ruyi, Wang Denghong, Feng Yonggang, Wang Chenghui, Liang Ting, Li Kaixuan, Dai Hongzhang, Shi Yu, Gao Jinggang. 2024. Characteristics of granitic pegmatite type lithium deposits in different mineralization epochs and its enlightenment for prospecting prediction, China[J]. Geology in China, 51(1): 17−41 (in Chinese with English abstract).

    Google Scholar

    [35] Zhou Qifeng, Qin Kezhang, Tang Dongmei, Ding Jiangang, Guo Zhenglin. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare–element deposit, Altai[J]. Acta Petrologica Sinica, 29(9): 3004−3022 (in Chinese with English abstract).

    Google Scholar

    [36] 陈国建. 2014. 福建南平花岗伟晶岩型钽铌矿床地质特征与成因[J]. 地质通报, 33(10): 1550−1561. doi: 10.3969/j.issn.1671-2552.2014.10.011

    CrossRef Google Scholar

    [37] 刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263−278. doi: 10.12029/gc20170204

    CrossRef Google Scholar

    [38] 秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景—兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982.

    Google Scholar

    [39] 王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017a. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1−17.

    Google Scholar

    [40] 王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙. 吴西顺. 2017b. 试论国内外大型超大型锂辉石矿床特殊性与找矿方向[J]. 地球科学, 42(12): 2243−2257.

    Google Scholar

    [41] 王盘喜, 朱黎宽, 刘璐, 郭俊刚, 武秋生. 2017. 河南官坡花岗伟晶岩地质与地球化学特征[J]. 中国地质调查, 4(6): 40−49.

    Google Scholar

    [42] 王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩—伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 35(1): 69−75. doi: 10.18654/1000-0569/2019.01.04

    CrossRef Google Scholar

    [43] 文春华. 2017. 幕阜山南缘地区伟晶岩矿物学、地球化学特征及含矿性分析[J]. 矿物岩石地球化学通报, 36(1): 67−74. doi: 10.3969/j.issn.1007-2802.2017.01.008

    CrossRef Google Scholar

    [44] 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学, 47(7): 745−765.

    Google Scholar

    [45] 肖惠良, 李海立, 范飞鹏, 曾载淋, 陈乐柱, 周延, 孙建东, 肖凡, 陈小勇, 陈斌锋. 2023. 论南岭东段地区锂铍铌钽矿找矿方向[J]. 中国地质, 50(3): 653–676.

    Google Scholar

    [46] 杨岳清, 王登红, 刘善宝, 刘丽君, 王成辉, 郭唯明. 2020. 四川甲基卡两类锂辉石矿体共存机制及其找矿意义[J]. 地质学报, 94(1): 287−302.

    Google Scholar

    [47] 赵如意, 王登红, 凤永刚, 王成辉, 梁婷, 李凯旋, 代鸿章, 石煜, 高景刚. 2024. 中国不同时代典型花岗伟晶岩型锂矿特征及其对找矿预测的启示[J]. 中国地质, 51(1): 17−41.

    Google Scholar

    [48] 周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 29(9): 3004−3022.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(1367) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint