Citation: | ZENG Ruiyin, ZHU Xinyou, WANG Rong, LI Qingzhe, ZHAN Yong, ZHANG Xiong, SUN Ning, LI Liang, TAN Kangyu, HUANG Jianye. 2024. Geological and mineralization characteristics of Manono–Kitotolo Li−Cs−Ta pegmatite in the Democratic Republic of Congo[J]. Geology in China, 51(2): 443-456. doi: 10.12029/gc20200819002 |
This paper is the result of mineral exploration engineering.
The Manono–Kitotolo spodumene (40%−70%) pegmatite, one of the lithium−cesium−tantalum pegmatite (LCT) in the world, is located at the Mesoproterozoic Kibaran rare metals metallogenic belt in the Democratic Republic of Congo (DRC). The field works revealed that the symbiotic minerals of pegmatite gradually evolved from outside to inside: granite aplite zone(Ⅰ), muscovite−feldspar quartz zone (Ⅱ), quartz albitite zone (Ⅲ), spodumene zone (Ⅳ) and quartz kernel (Ⅴ).
In this study, the composition of major elements of mica, spodumene, cassiterite and columbite−tantalite are analyzed by Electron probe X−ray micro−analyzer (EPMA) to bring light on Li−Nb−Ta−Sn mineralization and pegmatitic crystallization differentiation.
The results show that the content of Rb, Li, and F in muscovite gradually increased from outward (Ⅰ) to inward (Ⅴ), meanwhile the K/Rb gradually decreased. The content of Fe and Rb in lepidolite (V−1) is relatively higher than in muscovite(Ⅱ), which indicating highly fractionated pegmatite inside. Li mineralization mainly occurs in spodumene pegmatite (Ⅳ).
The grain size of spodumene varies from macro−crystal to coarse grain and medium grain and its principal components keep consistent except Li lost by oxidative leaching, argillation, greisenization and other alterations. Cassiterite with high Nb and Ta is generally formed by greisenization in zone Ⅲ–Ⅳ. Nb−Ta is mineralized in the form of the columbite−tantalite−manganotantalite isomorphism in the zone Ⅱ–Ⅳ, with the development of differentiation, the content of Ta and Mn in minerals increases, while the content of Nb, Fe and Ti decreases and formed Ta−rich and Mn−rich Columbite−tantalite.
[1] | Beurlen H, Da Silva M R R, Thomas R, Soares D R, Olivier P. 2008. Nb–Ta–(Ti–Sn) oxide mineral chemistry as tracer of rare–element granitic pegmatite fractionation in the Borborema Province Northeastern Brazil[J]. Mineralium Deposita, 43: 207−228. doi: 10.1007/s00126-007-0152-4 |
[2] | Bradley D C, McCauley A D, Stillings L M. 2017. Mineral–Deposit Model for Lithium–Cesium–Tantalum Pegmatites: Chapter O of Mineral Deposit Models for Resource Assessment[R]. Reston, Virginia: U.S. Geological Survey, 1–48. |
[3] | Cahen L, Delhal J, Vail J R, Bonhomme M, Ledent D. 1984. The Geochronology and Evolution of Africa[M]. Oxford: Clarendon Press, 1–512. |
[4] | Chen Guojian. 2014. Geological characteristics and genesis of the Nanping granitic pegmatite type Ta–Nb deposit, Fujian Province[J]. Geological Bulletin of China, 33(10): 1550−1561 (in Chinese with English abstract). |
[5] | Cryns Y. 2013. Petrographical, Mineralogical and Geochemical Study of the Sn, Nb–Ta, Li–Mineralized Pegmatites of Manono–Kitotolo, Katanga (D. R. Congo)[D]. Leuven: Katholieke Universiteit Leuven. |
[6] | Dewaele S, De Clerq F, Muchez P, Schneider J, Burgess R, Boyce A, Fernandez–Alonso M. 2010. Geology of the cassiterite mineralization in the Rutongo area, Rwanda (Central Africa): Current state of knowledge[J]. Geologica Belgica, 13(1/2): 91−112. |
[7] | Dewaele S, Henjes–Kunst F, Melcher F, Sitnikova M, Burgess R, Gerdes A, Fernandez–Alonso M, De Clerq F, Muchez P, Lehmann B. 2011. Late Neoproterozoic overprinting of the cassiterite and columbite–tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 61: 10−26. doi: 10.1016/j.jafrearsci.2011.04.004 |
[8] | Dewaele S, Hulsbosch N, Cryns Y, Boyce A, Burgess R, Muchez P. 2016. Geological setting and timing of the world–class Sn Nb–Ta and Li mineralization of Manono–Kitotolo (Katanga, Democratic Republic of Congo)[J]. Ore Geology Reviews, 72: 373−390. doi: 10.1016/j.oregeorev.2015.07.004 |
[9] | Dill H G. 2015. Pegmatites and aplites: Their genetic and applied ore geology[J]. Ore Geology Reviews, 69: 417−561. doi: 10.1016/j.oregeorev.2015.02.022 |
[10] | Eckhof K. 2017. High–grade Lithium Mineralization Now Drill Confirmed over A Strike Length of 4 km within Three Pegmatites at the Kitotolo Sector, Manono Project, DRC[R]. Perth, Western Australia: AVZ Minerals Limited, 1–29. |
[11] | Ferguson N, Johnston G, Chen H L, Brans R, Huljich P. 2019. AVZ 2019 Annual Report[R]. Perth, Western Australia: AVZ Minerals Limited, 1–77. |
[12] | Gerards J, Ledent D L. 1970. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les ages de ces roches[J]. Annal es de la Sociéte Géologique de Belgique, 93: 477−489. |
[13] | Kokonyangi J W, Kampunzu A B, Armstrong R, Yoshida M, Okudaira T, Arima M, Ngulube D A. 2006. The Mesoproterozoic Kibaride belt (Katanga, SE D R Congo)[J]. Journal of African Earth Sciences, 46: 1−35. doi: 10.1016/j.jafrearsci.2006.01.017 |
[14] | Linnen R L, Keppler H. 1997. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the earth's crust[J]. Contributions to Mineralogy and Petrology, 128: 213−227. doi: 10.1007/s004100050304 |
[15] | Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263−278 (in Chinese with English abstract). |
[16] | London D. 2018. Ore–forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349−383. doi: 10.1016/j.oregeorev.2018.04.020 |
[17] | Melcher F, Graupner T, Gäbler H E, Sitnikova M, Henjes–Kunst F, Oberthür T, Gerdes A, Dewaele S, 2015. Tantalum–(niobium–tin) mineralization in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology[J]. Ore Geology Reviews, 64: 667–719. |
[18] | Mulja T, Williams–Jones A E, Martin R F, Wood S A. 1996. Compositional variation and structural state of columbite–tantalite in rare–element granitic pegmatites of the Preissac–Lacorne batholith, Quebec, Canada[J]. American Mineralogist, 81: 146−157. doi: 10.2138/am-1996-1-219 |
[19] | Pirajno F. 2010. Hydrothermal Processes and Mineral Systems[M]. Australia: Geological Survey of Western Australia, 1–1243. |
[20] | Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare–element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract). |
[21] | Shearer C K, Papike J J, Jolliff B L. 1992. Petrogenetic links among granites and pegmatites in the Harney Peak rare–element granite–pegmatite system, Black Hills, South Dakota[J]. Canadian Mineralogist, 30: 785−809. |
[22] | Tack L, Wingate M, DeWaele B, Meert J, Belousova E A, Griffin B, Tahon A, Fernandez–Alonso. 2010. The 1375 Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 180: 63−84. doi: 10.1016/j.precamres.2010.02.022 |
[23] | Tindle A G, Breaks F W. 1998. Oxide minerals of the separation rapids rare element granitic pegmatite group, northwestern Ontario[J]. Canadian Mineralogist, 36(2): 609−635. |
[24] | Vieira R, Roda–Robles E, Pesquera A, Lima A. 2011. Chemical variation and significance of micas from the Fregeneda–Almendra pegmatitic field (Central–Iberian Zone, Spain and Portugal)[J]. American Mineralogist, 96(4): 637−645. doi: 10.2138/am.2011.3584 |
[25] | Wang Denghong, Liu Lijun, Hou Jianglong, Dai Hongzhang, YuYang, Dai Jingjing, Tian Shihong. 2017a. A preliminary review of the application of “Five levels+ Basement” model for Jiajika style rare metal deposits[J]. Earth Science Frontiers, 24(5): 1−17 (in Chinese with English abstract). |
[26] | Wang Denghong, Liu Lijun, Dai Hongzhang, Liu Shanbao, HouJianglong, Wu Xishun. 2017b. Discussion on particularity and prospecting direction of large and superlarge spodumene deposits[J]. Earth Science, 42(12): 2243−2257 (in Chinese with English abstract). |
[27] | Wang Panxi, Zhu Likuang, Liu Lu, Guo Jungang, Wu Qiushen. 2017. Geological and geochemical characteristics of grainitic pegmatite in Guanpo, Henan Province[J]. Geological Survey of China, 4(6): 40−49 (in Chinese with English abstract). |
[28] | Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite–pegmatite–related rare–metal mineralization[J]. Acta Petrologica Sinica, 35(1): 69−75 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.04 |
[29] | Wen Chunhua. 2017. Mineralogical–geochemical characteristics and ore potentiality studies of pegmatite in southern margin of the Mufushan area, Hunan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(1): 67–74 (in Chinese with English abstract). |
[30] | Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745−765 (in Chinese with English abstract). |
[31] | Xiao Huiliang, Li Haili, Fan Feipeng, Zeng Zailin, Chen Lezhu, Zhou Yan, Sun Jiandong, Xiao Fan, Chen Xiaoyong, Chen Binfeng. 2023. The mineral prospecting direction of Li−Be−Nb−Ta deposits in East Nanling region[J]. Geology in China, 50(3): 653–676 (in Chinese with English abstract). |
[32] | Yang Yueqing, Wang Denghong, Liu Shanbao, Liu Lijun, Wang Chenghui, Guo Weiming. 2020. The co–occurrence mechanism of two types of spodumene ore bodies and their prospecting significance in Jiajikan, Sichuan Province[J]. Acta Geologica Sinica, 94(1): 287−302 (in Chinese with English abstract). |
[33] | Zhang A C, Wang R C, Hu H, Zhang H, Zhu J C, Chen X M. 2004. Chemical evolution of Nb–Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China[J]. Mineralogical Magazine, 68(5): 739−756. doi: 10.1180/0026461046850216 |
[34] | Zhao Ruyi, Wang Denghong, Feng Yonggang, Wang Chenghui, Liang Ting, Li Kaixuan, Dai Hongzhang, Shi Yu, Gao Jinggang. 2024. Characteristics of granitic pegmatite type lithium deposits in different mineralization epochs and its enlightenment for prospecting prediction, China[J]. Geology in China, 51(1): 17−41 (in Chinese with English abstract). |
[35] | Zhou Qifeng, Qin Kezhang, Tang Dongmei, Ding Jiangang, Guo Zhenglin. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare–element deposit, Altai[J]. Acta Petrologica Sinica, 29(9): 3004−3022 (in Chinese with English abstract). |
[36] | 陈国建. 2014. 福建南平花岗伟晶岩型钽铌矿床地质特征与成因[J]. 地质通报, 33(10): 1550−1561. doi: 10.3969/j.issn.1671-2552.2014.10.011 |
[37] | 刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263−278. doi: 10.12029/gc20170204 |
[38] | 秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景—兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982. |
[39] | 王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017a. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1−17. |
[40] | 王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙. 吴西顺. 2017b. 试论国内外大型超大型锂辉石矿床特殊性与找矿方向[J]. 地球科学, 42(12): 2243−2257. |
[41] | 王盘喜, 朱黎宽, 刘璐, 郭俊刚, 武秋生. 2017. 河南官坡花岗伟晶岩地质与地球化学特征[J]. 中国地质调查, 4(6): 40−49. |
[42] | 王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩—伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 35(1): 69−75. doi: 10.18654/1000-0569/2019.01.04 |
[43] | 文春华. 2017. 幕阜山南缘地区伟晶岩矿物学、地球化学特征及含矿性分析[J]. 矿物岩石地球化学通报, 36(1): 67−74. doi: 10.3969/j.issn.1007-2802.2017.01.008 |
[44] | 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学, 47(7): 745−765. |
[45] | 肖惠良, 李海立, 范飞鹏, 曾载淋, 陈乐柱, 周延, 孙建东, 肖凡, 陈小勇, 陈斌锋. 2023. 论南岭东段地区锂铍铌钽矿找矿方向[J]. 中国地质, 50(3): 653–676. |
[46] | 杨岳清, 王登红, 刘善宝, 刘丽君, 王成辉, 郭唯明. 2020. 四川甲基卡两类锂辉石矿体共存机制及其找矿意义[J]. 地质学报, 94(1): 287−302. |
[47] | 赵如意, 王登红, 凤永刚, 王成辉, 梁婷, 李凯旋, 代鸿章, 石煜, 高景刚. 2024. 中国不同时代典型花岗伟晶岩型锂矿特征及其对找矿预测的启示[J]. 中国地质, 51(1): 17−41. |
[48] | 周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 29(9): 3004−3022. |
Regional geological map of Kibaran metallogenic belt (modified from Melcher et al., 2015)
Geological map of Manono area (a), Manono–Kitotolo mining area (b) (modified from Ferguson et al., 2019), and sectional schematic diagram of Malata pegmatite dike (c)
Graphs of rock samples in the Manono-Kitotolo pegmatite
Micrographs of rock samples in the Manono–Kitotolo pegmatite
K/Rb vs. Li, F, Rb, Cs, Fe, Mn for micas in the Manono–Kitotolo pegmatite (Li data after Dewaele et al., 2016;F, Rb, Cs, Fe, Mn contents are converted according to the oxide content in Table 1)
Characteristic diagram of rare element content variation of Mpete pegmatite dike (data after Eckhof, 2017)
BSE images and the major element composition of cassiterite in the Manono–Kitotolo pegmatite
BSE images and the major element composition of columbite−tantalite in the Manono–Kitotolo pegmatite