2024 Vol. 51, No. 2
Article Contents

LI Xiangzhi, CAO Wengeng, LI Ying, ZHAO Zhipeng, REN Yu, XIAO Shunyu, LI Zeyan, NA Jing. 2024. Harmfulness of fluorine−bearing groundwater and its current situation and progress of treatment technology[J]. Geology in China, 51(2): 457-482. doi: 10.12029/gc20230513001
Citation: LI Xiangzhi, CAO Wengeng, LI Ying, ZHAO Zhipeng, REN Yu, XIAO Shunyu, LI Zeyan, NA Jing. 2024. Harmfulness of fluorine−bearing groundwater and its current situation and progress of treatment technology[J]. Geology in China, 51(2): 457-482. doi: 10.12029/gc20230513001

Harmfulness of fluorine−bearing groundwater and its current situation and progress of treatment technology

    Fund Project: Supported by the projects of National Key Research and Development Program (No.2022YFC3703701), Outstanding Youth Science Fund of Hebei Natural Science Foundation (No.D2020504032), Basic Scientific Research of Chinese Academy of Geological Sciences and China Geological Survey (No.KY202301), and Small Highland Project of Research Talents on Groundwater and Ecological Environmental Effects in Ningxia.
More Information
  • Author Bio: LI Xiangzhi, male, born in 1988, Ph.D., assistant researcher, mainly engaged in hydrogeology and water resources research; E-mail: lixiangzhi@mail.cgs.gov.cn
  • Corresponding author: CAO Wengeng, male, born in 1985, Ph.D., associate researcher, mainly engaged in hydrogeology and hydrogeochemistry research; E-mail: caowengeng@mail.cgs.gov.cn
  • This paper is the result of hydrogeological survey engineering.

    Objective

    Fluorine contaminated groundwater is considered a major public health hazard worldwide. According to statistics, over 200 million people worldwide are at risk of fluorosis, and at least 28 countries have experienced fluorosis incidents caused by drinking high fluoride water. High fluoride groundwater is mainly distributed in underdeveloped areas with drought and water scarcity, and there is a general lack of alternative drinking water sources, making the problem of endemic fluorosis difficult to effectively solve for a long time. Therefore, developing economically feasible fluoride removal technologies has become the key to solving the problem of high fluoride groundwater.

    Methods

    Based on the results of literature research and the current global pollution status of fluorinated groundwater, This article summarized and analyzed the research and application cases of fluorinated groundwater both domestically and internationally, taking into account various factors such as research depth, theoretical and application feasibility, removal efficiency, and renewability comprehensively.

    Results

    This article systematically introduced the causes and distribution of fluorinated groundwater worldwide, summarized the advantages and disadvantages of existing mainstream fluorinated groundwater treatment technologies, fluoride removal mechanisms and application progress, and analyzed and prospected the existing problems and future development trends.

    Conclusions

    Each technology had its own processing advantages and certain limitations, and when selecting and applying specific technologies, it was necessary to comprehensively consider the water quality and target requirements of fluorine contaminated groundwater. At the same time, there were also problems in the current research and development process of groundwater fluoride removal technology, such as lack of targeted service objectives, poor comprehensive treatment efficiency, and significant deviation between the application of adsorption capacity and theoretical values. The coupling application of multiple treatment processes could better leverage the advantages of different treatment technologies and achieved the effect of complementing each other's strengths, which was receiving increasing attention from people. In addition, the joint removal of multiple pollutants and the design and development of new adsorption materials with manually adjustable structures are also important development directions in the future.

  • 加载中
  • [1] Abiye T, Bybee G, Leshomo J. 2018. Fluoride concentrations in the arid Namaqualand and the Waterberg groundwater, South Africa: understanding the controls of mobilization through hydrogeochemical and environmental isotopic approaches[J]. Groundwater for Sustainable Development, 6: 112−120. doi: 10.1016/j.gsd.2017.12.004

    CrossRef Google Scholar

    [2] Aliaskari M, Schäfer A I. 2021. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater[J]. Water Research, 190: 116683. doi: 10.1016/j.watres.2020.116683

    CrossRef Google Scholar

    [3] Amini M, Mueller K, Abbaspour K C, Rosenberg T, Afyuni M, Møller K N, Sarr M, Johnson C A. 2008. Statistical modeling of global geogenic fluoride contamination in groundwaters[J]. Environmental Science & Technology, 42(10): 3662−3668.

    Google Scholar

    [4] An Yonghui, Zhang Fucun, Sun Jianping, Cai Wutian, Yao Xiuju, Li Xufeng. 2006. Geological environment characteristics and prevention and control strategies of drinking water endemic diseases in China[J]. Chinese Journal of Endemic Diseases, 25(2): 220−221 (in Chinese).

    Google Scholar

    [5] Arya A, Iqbal M, Yadav V, Agarwal T, Gawali R, Jana K S, Datta D. 2022. Fluoride ion removal using amine modified polymeric resin: Batch and column studies[J]. Materials Today: Proceedings, 57: 1626−1636. doi: 10.1016/j.matpr.2021.12.234

    CrossRef Google Scholar

    [6] Ayoob S, Gupta A K, Bhat V T. 2008. A conceptual overview on sustainable technologies for the defluoridation of drinking water[J]. Critical Reviews in Environmental Science & Technology, 38(6): 401−470.

    Google Scholar

    [7] Ayoob S, Gupta A K. 2006. Fluoride in drinking water: A review on the status and stress effects[J]. Critical Reviews in Environmental Science and Technology, 36(6): 433−487. doi: 10.1080/10643380600678112

    CrossRef Google Scholar

    [8] Balarak D, Mahdavi Y, Bazrafshan E, Mahvi A H, Esfandyari Y. 2016. Adsorption of fluoride from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetic, and thermodynamic parameters[J]. Fluoride, 49(1): 71.

    Google Scholar

    [9] Bennajah M, Gourich B, Essadki A H, Vial C, Delmas H. 2009. Defluoridation of Morocco drinking water by electrocoagulation / electroflottation in an electrochemical external−loop airlift reactor[J]. Chemical Engineering Journal, 148(1): 122−131. doi: 10.1016/j.cej.2008.08.014

    CrossRef Google Scholar

    [10] Bornff C S. 1934. Removal of fluorides from drinking waters[J]. Industrial & Engineering Chemistry, 26(1): 69−71.

    Google Scholar

    [11] Bouhadjar S I, Kopp H, Britsch P, Deowan A S, Hoinkis J, Bundschuh J. 2019. Solar powered nanofiltration for drinking water production from fluoride−containing groundwater—A pilot study towards developing a sustainable and low−cost treatment plant[J]. Journal of Environmental Management, 231: 1263−1269. doi: 10.1016/j.jenvman.2018.07.067

    CrossRef Google Scholar

    [12] Cao H, Xie X, Wang Y, Liu H. 2022. Predicting geogenic groundwater fluoride contamination throughout China[J]. Journal of Environmental Sciences, 115: 140−148. doi: 10.1016/j.jes.2021.07.005

    CrossRef Google Scholar

    [13] Cao Wengeng, Wang Yanyan, Ren Yu, Fei Yuhong, Li Jincheng, Li Zeyan, Zhang Dong, Shuai Guanyin. 2022. Status and progress of treatment technologies for arsenic−containing groundwater[J]. Geology in China, 49(5): 1408−1426 (in Chinese with English abstract).

    Google Scholar

    [14] Castaneda L F, Rodriguez J F, Nava J L. 2021. Electrocoagulation as an affordable technology for decontamination of drinking water containing fluoride: A critical review[J]. Chemical Engineering Journal, 413: 127529. doi: 10.1016/j.cej.2020.127529

    CrossRef Google Scholar

    [15] Castel C, Schweizer M, Simonnot M O, Sardin M. 2000. Selective removal of fluoride ions by a two−way ion−exchange cyclic process[J]. Chemical Engineering Science, 55(17): 3341−3352. doi: 10.1016/S0009-2509(00)00009-9

    CrossRef Google Scholar

    [16] Chae G T, Yun S T, Mayer B, Kim K H, Kim S Y, Kwon J S, Kim K, Koh Y K. 2007. Fluorine geochemistry in bedrock groundwater of South Korea[J]. Science of the Total Environment, 385(1/3): 272−283. doi: 10.1016/j.scitotenv.2007.06.038

    CrossRef Google Scholar

    [17] Chandrajith R, Diyabalanage S, Dissanayake C. 2020. Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health[J]. Groundwater for Sustainable Development, 10: 100359. doi: 10.1016/j.gsd.2020.100359

    CrossRef Google Scholar

    [18] Chang Bing. 2016. Simultaneous Removal Arseanate and Phosphate from Groundwater with Aluminum−Zirconiium Composite Metal Oxide[D]. Yangling: Northwest A & F University(in Chinese with English abstract).

    Google Scholar

    [19] Chen Congcong, Qian Guanglei, Xie Chenxin, Zhao Hui, Lei Taiping, Teng Houkai, Zhou Lishan. 2020. Influencing factors and kinetics analysis of electrocoagulation with bipolar aluminum electrodes treating high fluorine groundwater[J]. Chinese Journal of Environmental Engineering, 14(5): 1216−1223 (in Chinese with English abstract).

    Google Scholar

    [20] Chen Jingxian. 2017. Preparation of Metal Modified Chitosancomposite Adsorbent and Performance of Fluoride Removal from Water[D]. Guangzhou: Guangdong Pharmaceutical University(in Chinese with English abstract).

    Google Scholar

    [21] Chen Lang. 2020. Study on Fluoride Removal from Groundwater Using CTAB Modified Composite Material of Lanthanum and Iron[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstract).

    Google Scholar

    [22] Chen Nan. 2012. Research on Fluoride Adsorption Behavior from Groundwater Using Natural and Synthesized Porous Clay Materials[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [23] Cui Bing, Jin Yi, Yang Zekun. 2023. Research on the treatment of high fluoride wastewater by calcium salt−coagulation method[J]. Industrial Water Treatment, 43(6): 150−155 (in Chinese with English abstract).

    Google Scholar

    [24] Cui Zimin. 2011. Simultaneous Removal Arsenate Andfluoride from Groundwater with Coprecipitated Aluminum−Ironhydroxide[D]. Harbin: Harbin Institute of Technology(in Chinese with English abstract).

    Google Scholar

    [25] Das D, Nandi B K. 2022. Removal of co−existing Fe (II), As (V) and fluoride ions from groundwater by electrocoagulation[J]. Groundwater for Sustainable Development, 17: 100752. doi: 10.1016/j.gsd.2022.100752

    CrossRef Google Scholar

    [26] Davis M E. 1991. Zeolites and molecular sieves: not just ordinary catalysts[J]. Industrial & Engineering Chemistry Research, 30(8): 1675−1683.

    Google Scholar

    [27] Dayananda D, Sarva V R, Prasad S V, Arunachalam J, Ghosh N N. 2014. Preparation of CaO loaded mesoporous Al2O3: Efficient adsorbent for fluoride removal from water[J]. Chemical Engineering Journal, 248: 430−439. doi: 10.1016/j.cej.2014.03.064

    CrossRef Google Scholar

    [28] Dehghani M H, Haghighat G A, Yetilmezsoy K, Mckay G, Heibati B, Tyagi I, Agarwal S, Gupta V K. 2016. Adsorptive removal of fluoride from aqueous solution using single−and multi−walled carbon nanotubes[J]. Journal of Molecular Liquids, 216: 401−410. doi: 10.1016/j.molliq.2016.01.057

    CrossRef Google Scholar

    [29] Devlin T R, Kowalski M S, Pagaduan E, Zhang X, Wei V, Oleszkiewicz J A. 2019. Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes[J]. Journal of Hazardous Materials, 368: 862−868. doi: 10.1016/j.jhazmat.2018.10.017

    CrossRef Google Scholar

    [30] Dolottseva I. 2013. Effects of environmental fluoride on plants, animals and humans[J]. Prospects of Territories Development: The Theory and Practice, 19(5): 8−11.

    Google Scholar

    [31] Dong Q, Yang D, Luo L, He Q, Cai F, Cheng S, Chen Y. 2021. Engineering porous biochar for capacitive fluorine removal[J]. Separation and Purification Technology, 257: 117932. doi: 10.1016/j.seppur.2020.117932

    CrossRef Google Scholar

    [32] Dong Runjian, Li Jian, Hu Hao, Liu Feng, Li Jia, Luo Gang. 2018. Experiment of technological process for high fluoride−containing groundwater treatment[J]. Water Purification Technology, 37(6): 49−53, 67 (in Chinese with English abstract).

    Google Scholar

    [33] Dong S, Liu B, Chen Y, Ma M, Liu X, Wang C. 2022. Hydro−geochemical control of high arsenic and fluoride groundwater in arid and semi−arid areas: A case study of Tumochuan Plain, China[J]. Chemosphere, 301: 134657. doi: 10.1016/j.chemosphere.2022.134657

    CrossRef Google Scholar

    [34] Dou Ruoan, Chen Binbin, Luo Shengqiao, Luo Kai. 2016. Study on the treatment of high concentration fluoride− containing wastewater by chemical precipitation process[J]. Organo−Fluorine Industry, 2: 9−11, 27 (in Chinese with English abstract).

    Google Scholar

    [35] Dzieniszewska A, Nowicki J, Rzepa G, Kyziol−Komosinska J, Semeniuk I, Kiełkiewicz D, Czupioł J. 2022. Adsorptive removal of fluoride using ionic liquid−functionalized chitosan–Equilibrium and mechanism studies[J]. International Journal of Biological Macromolecules, 210: 483−493. doi: 10.1016/j.ijbiomac.2022.04.179

    CrossRef Google Scholar

    [36] Feng Haiyuan, Wu Zhongzhong. 2019. Groundwater fluorine pollution in kashin−beck disease area in sichuan province and study on the removal process[J]. Anhui Chemical Industry, 45(3): 94−95, 98 (in Chinese with English abstract).

    Google Scholar

    [37] Gao Y, Li M, Ru Y, Fu J. 2021. Fluoride removal from water by using micron zirconia/zeolite molecular sieve: Characterization and mechanism[J]. Groundwater for Sustainable Development, 13: 100567. doi: 10.1016/j.gsd.2021.100567

    CrossRef Google Scholar

    [38] Gao Zongren. 2022. Application of ultrafiltration−reverse osmosis process in a project of fluoride removal from groundwater[J]. Industrial Water & Wastewater, 53(2): 12−15 (in Chinese with English abstract).

    Google Scholar

    [39] Gasparotto J M, Pinto D, de Paula N, Maraschin M, Franco D S P, Carissimi E, Foletto E L, Jahn S L, Silva L F O, Dotto G L. 2023. Preparation of alumina−supported Fe−Al−La composite for fluoride removal from an aqueous matrix[J]. Environmental Science and Pollution Research, 30(14): 42416−42426. doi: 10.1007/s11356-023-25231-1

    CrossRef Google Scholar

    [40] Ghorai S, Pant K K. 2005. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Separation & Purification Technology, 42(3): 265−271.

    Google Scholar

    [41] Ghosh S, Malloum A, Igwegbe C A, Ighalo J O, Ahmadi S, Dehghani M H, Othmani A, Gökkuş Ö, Mubarak N M. 2022. New generation adsorbents for the removal of fluoride from water and wastewater: A review [J]. Journal of Molecular Liquids, 346: 118257.

    Google Scholar

    [42] Gitari W M, Izuagie A A, Gumbo J R. 2020. Synthesis, characterization and batch assessment of groundwater fluoride removal capacity of trimetal Mg/Ce/Mn oxide−modified diatomaceous earth[J]. Arabian Journal of Chemistry, 13(1): 1−16. doi: 10.1016/j.arabjc.2017.01.002

    CrossRef Google Scholar

    [43] Gitari W, Ngulube T, Masindi V, Gumbo J. 2015. Defluoridation of groundwater using Fe3+−modified bentonite clay: Optimization of adsorption conditions[J]. Desalination and Water Treatment, 53(6): 1578−1590. doi: 10.1080/19443994.2013.855669

    CrossRef Google Scholar

    [44] Gmar S, Ben Salah Sayadi I, Helali N, Tlili M, Ben Amor M. 2015. Desalination and defluoridation of tap water by electrodialysis[J]. Environmental Processes, 2(Suppl.1): 209−222.

    Google Scholar

    [45] Golbad S, Khoshnoud P, Keleney G, Abu−Zahra N. 2020. Synthesis and characterization of highly crystalline Na−X zeolite from class F fly ash[J]. Water and Environment Journal, 34(3): 342−349. doi: 10.1111/wej.12468

    CrossRef Google Scholar

    [46] Goncharuk V, Deremeshko L, Balakina M, Kucheruk D. 2013. Purification of waters containing fluorine by low pressure reverse osmosis for their complex treatment[J]. Journal of Water Chemistry and Technology, 35: 122−127. doi: 10.3103/S1063455X13030053

    CrossRef Google Scholar

    [47] Govindan K, Raja M, Maheshwari S U, Noel M, Oren Y. 2015. Comparison and understanding of fluoride removal mechanism in Ca2+, Mg2+ and Al3+ ion assisted electrocoagulation process using Fe and Al electrodes[J]. Journal of Environmental Chemical Engineering, 3(3): 1784−1793. doi: 10.1016/j.jece.2015.06.014

    CrossRef Google Scholar

    [48] Guo Huaming, Yang Suzhen, Shen Zhaoli. 2007. High arsenic groundwater in the world: Overview and research[J]. Perspectives Advances in Earth Science, 22(11): 1109−1117 (in Chinese with English abstract).

    Google Scholar

    [49] Guo W, Lin H F, Zhu H X, Lei M, Feng J P. 2023. Preparation and application of magnesium oxide nanoparticles for superiorly fluoride removal[J]. Journal of Alloys and Compounds, 960(2023): 170935.

    Google Scholar

    [50] Gupta S, Mondal D. 2015. Fluoride accumulation in crops and vegetables: Indian perspectives. Fluorine: Chemistry, Analysis, Function and Effects[J]. The Royal Society of Chemistry, UK: 117−139.

    Google Scholar

    [51] Hailemariam R H, Woo Y C, Damtie M M, Kim B C, Park K D, Choi J S. 2020. Reverse osmosis membrane fabrication and modification technologies and future trends: A review[J]. Advances in Colloid and Interface Science, 276: 102100. doi: 10.1016/j.cis.2019.102100

    CrossRef Google Scholar

    [52] Haldar A, Gupta A. 2020. Application of electrocoagulation: Issues with community−level defluoridation[J]. International Journal of Environmental Science and Technology, 17: 789−798. doi: 10.1007/s13762-019-02323-5

    CrossRef Google Scholar

    [53] Han Jianxun, He Aiguo. 2004. Methods of treatment of wastewater containing fluorine[J]. Organo−Fluorine Industry, 3: 27−36 (in Chinese with English abstract).

    Google Scholar

    [54] Han Ying, Zhang Hongmin, Zhang Yongfeng, Zhang Xin. 2017. Distribution reqularity, origin and quality division of high arsenic, fluorine and iodine contents in groundwater in Datong Basin[J]. Geological Survey of China, 4(1): 57−68 (in Chinese with English abstract).

    Google Scholar

    [55] He Jin, Zhang Fucun, Han Shuangbao, Li Xufeng, Yao Xiuju, Zhang Hui. 2010. The distribution and genetic types of high−fluoride groundwater in northern China[J]. Geology in China, 37(3): 621−626 (in Chinese with English abstract).

    Google Scholar

    [56] Hoinkis J, Valero−Freitag S, Caporgno M P, Pätzold C. 2011. Removal of nitrate and fluoride by nanofiltration–a comparative study[J]. Desalination and Water Treatment, 30(1/3): 278−288. doi: 10.5004/dwt.2011.2103

    CrossRef Google Scholar

    [57] Hu H, Yang L, Lin Z, Xiang X, Jiang X, Hou L. 2018. Preparation and characterization of novel magnetic Fe3O4/chitosan/Al(OH)3 beads and its adsorption for fluoride[J]. International Journal of Biological Macromolecules, 114: 256−262. doi: 10.1016/j.ijbiomac.2018.03.094

    CrossRef Google Scholar

    [58] Huang H M, Liu J H, Zhang P, Zhang D D, Gao F M. 2017. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J]. Chemical Engineering Journal, 307: 696−706. doi: 10.1016/j.cej.2016.08.134

    CrossRef Google Scholar

    [59] Huang J Y, Liu T, Zhang Y M, Hu P C. 2023. Reinforced adsorption mechanism of fluorine ions by calcium−depleted hydroxyapatite and application in the raffinate from the vanadium industry[J]. Chemical Engineering Journal, 452: 139379. doi: 10.1016/j.cej.2022.139379

    CrossRef Google Scholar

    [60] Hudak P F, Sanmanee S. 2003. Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the woodbine aquifer of North−Central Texas[J]. Environmental Monitoring and Assessment, 82: 311−320. doi: 10.1023/A:1021946402095

    CrossRef Google Scholar

    [61] Inaniyan M, Raychoudhury T. 2019. Application of activated carbon–metal composite for fluoride removal from contaminated groundwater in India[J]. International Journal of Environmental Science and Technology, 16: 7545−7554. doi: 10.1007/s13762-018-2097-9

    CrossRef Google Scholar

    [62] Iwar R T, Ugwudike B O. 2022. Groundwater fluoride removal by novel activated carbon/aluminium oxide composite derived from raffia palm shells: Optimization of batch operations and field−scale point of use system evaluation[J]. Results in Engineering, 14: 100407. doi: 10.1016/j.rineng.2022.100407

    CrossRef Google Scholar

    [63] Jadhav S V, Bringas E, Yadav G D, Rathod V K, Ortiz I, Marathe K V. 2015. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal[J]. Journal of Environmental Management, 162: 306−325.

    Google Scholar

    [64] Jha P K, Tripathi P. 2021. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India[J]. Groundwater for Sustainable Development, 13: 100576. doi: 10.1016/j.gsd.2021.100576

    CrossRef Google Scholar

    [65] Jia Y, Xi B, Jiang Y, Guo H, Yang Y, Lian X, Han S. 2018. Distribution, formation and human−induced evolution of geogenic contaminated groundwater in China: A review[J]. Science of the Total Environment, 643: 967−993. doi: 10.1016/j.scitotenv.2018.06.201

    CrossRef Google Scholar

    [66] Kang D, Yu X, Tong S, Ge M, Zuo J, Cao C, Song W. 2013. Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution[J]. Chemical Engineering Journal, 228: 731−740. doi: 10.1016/j.cej.2013.05.041

    CrossRef Google Scholar

    [67] Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas[J]. Frontiers in Life Science, 8(1): 23−39. doi: 10.1080/21553769.2014.933716

    CrossRef Google Scholar

    [68] Kimambo V, Bhattacharya P, Mtalo F, Mtamba J, Ahmad A. 2019. Fluoride occurrence in groundwater systems at global scale and status of defluoridation–state of the art[J]. Groundwater for Sustainable Development, 9: 100223. doi: 10.1016/j.gsd.2019.100223

    CrossRef Google Scholar

    [69] Ku Y, Chiou H, Wang W. 2002. The removal of fluoride ion from aqueous solution by a cation synthetic resin[J]. Separation Science and Technology, 37(1): 89−103. doi: 10.1081/SS-120000323

    CrossRef Google Scholar

    [70] Kumar R, Sharma P, Yang W, Sillanpää M, Shang J, Bhattacharya P, Vithanage M, Maity J P. 2022. State−of−the−art of research progress on adsorptive removal of fluoride−contaminated water environments using biochar−based materials: Practical feasibility through reusability and column transport studies[J]. Environmental Research: 114043.

    Google Scholar

    [71] Kumari P, Kumari N, Pathak G. 2015. Defluoridation of water by a biomass: Shorea robusta[J]. International Journal of Advanced Technology in Engineering and Science, 3(1): 1−15.

    Google Scholar

    [72] Kumari U, Siddiqi H, Bal M, Meikap B. 2020. Calcium and zirconium modified acid activated alumina for adsorptive removal of fluoride: Performance evaluation, kinetics, isotherm, characterization and industrial wastewater treatment[J]. Advanced Powder Technology, 31(5): 2045−2060. doi: 10.1016/j.apt.2020.02.035

    CrossRef Google Scholar

    [73] Kurniawan T A, Lo W, Liang X, Goh H H, Othman M H D, Chong K K, Chew K W. 2023. Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): A critical review and way forward to contribute to carbon neutrality[J]. Separation and Purification Technology: 123474.

    Google Scholar

    [74] Lacson C F Z, Lu M C, Huang Y H. 2021. Chemical precipitation at extreme fluoride concentration and potential recovery of CaF2 particles by fluidized−bed homogenous crystallization process[J]. Chemical Engineering Journal, 415: 128917. doi: 10.1016/j.cej.2021.128917

    CrossRef Google Scholar

    [75] Li Yadan, Zhu Shufa, Zhou Ming, Liu Yana. 2020. Electrodialysis removal of water−soluble fluoride from red mud[J]. Chinese Journal of Environmental Engineering, 14(7): 1934−1943 (in Chinese with English abstract).

    Google Scholar

    [76] Liu C H, Zhao X Q, Faria A F, Quiñones K E D, Zhang C H, He Q, Ma J, Shen Y, Zhi Y. 2022. Evaluating the efficiency of nanofiltration and reverse osmosis membrane processes for the removal of per−and polyfluoroalkyl substances from water: A critical review[J]. Separation and Purification Technology, 122161.

    Google Scholar

    [77] Liu D X, Li Y, Liu C, Li B L. 2023. Porous lanthanum−zirconium phosphate with superior adsorption capability of fluorine for water treatment[J]. Journal of Colloid and Interface Science, 636: 588−601. doi: 10.1016/j.jcis.2023.01.062

    CrossRef Google Scholar

    [78] Liu Jie. 2016. Modified Natural Materals for Enhanced Removal of Fluorine From Aqueous Solution: Characteristics and Mechanisms[D]. Changsha: Hunan University(in Chinese with English abstract).

    Google Scholar

    [79] Liu Y C, Zhang Z J, Zhao X Y, Wen M T, Cao S W, Li Y S. 2021. Arsenic contamination caused by roxarsone transformation with spatiotemporal variation of microbial community structure in a column experiment[J]. Journal of Groundwater Science and Engineering, 9(4): 304−316.

    Google Scholar

    [80] Loganathan P, Vigneswaran S, Kandasamy J, Naidu R. 2013. Defluoridation of drinking water using adsorption processes[J]. Journal of Hazardous Materials, 248: 1−19.

    Google Scholar

    [81] Long J R, Yaghi O M. 2009. The pervasive chemistry of metal–organic frameworks[J]. Chemical Society Reviews, 38(5): 1213−1214. doi: 10.1039/b903811f

    CrossRef Google Scholar

    [82] Lü L, He J, Wei M, Evans D, Duan X. 2006. Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides[J]. Journal of Hazardous Materials, 133(1/3): 119−128. doi: 10.1016/j.jhazmat.2005.10.012

    CrossRef Google Scholar

    [83] Lü Xiaoli, Zheng Yuejun, Liu Ke, Li Chunyan, Zhao Wei, Han Zhantao. 2024. Characteristics and driving factors of fluoride in groundwater in different urban functional area of Lanzhou city[J]. Hydrogeology & Engineering Geology, 51(2): 215−226 (in Chinese with English abstract).

    Google Scholar

    [84] Malin A J, Bose S, Busgang S A, Gennings C, Thorpy M, Wright R O, Wright R J, Arora M. 2019. Fluoride exposure and sleep patterns among older adolescents in the United States: A cross−sectional study of NHANES 2015–2016[J]. Environmental Health, 18(1): 1−9. doi: 10.1186/s12940-018-0440-8

    CrossRef Google Scholar

    [85] Meenakshi S, Viswanathan N. 2007. Identification of selective ion−exchange resin for fluoride sorption[J]. Journal of Colloid and Interface Science, 308(2): 438−450. doi: 10.1016/j.jcis.2006.12.032

    CrossRef Google Scholar

    [86] Mei L, Qiao H, Ke F, Peng C, Hou R, Wan X, Cai H. 2020. One−step synthesis of zirconium dioxide−biochar derived from Camellia oleifera seed shell with enhanced removal capacity for fluoride from water[J]. Applied Surface Science, 509: 144685. doi: 10.1016/j.apsusc.2019.144685

    CrossRef Google Scholar

    [87] Meng Fanping, Li Yongfu, Zhao Shunshun. 2010. Recent research progress of preparation of modified chitosan for defluoridating drinking water[J]. Modern Chemical Industry, 30(4): 16−20 (in Chinese with English abstract).

    Google Scholar

    [88] Meng X S, Zeng P, Lin S Y, Lin S Y, Wu M R, Yang L, Bao H J, Kang J H, Han H S, Zhang C Y, Sun W. 2023. Deep removal of fluoride from tungsten smelting wastewater by combined chemical coagulation−electrocoagulation treatment: From laboratory test to pilot test[J]. Journal of Cleaner Production, 137914.

    Google Scholar

    [89] Minju N, Venkat Swaroop K, Haribabu K, Sivasubramanian V, Senthil Kumar P. 2015. Removal of fluoride from aqueous media by magnesium oxide−coated nanoparticles[J]. Desalination and Water Treatment, 53(11): 2905−2914. doi: 10.1080/19443994.2013.868837

    CrossRef Google Scholar

    [90] Mon M, Bruno R, Ferrando−Soria J, Armentano D, Pardo E. 2018. Metal–organic framework technologies for water remediation: towards a sustainable ecosystem[J]. Journal of Materials Chemistry A, 6(12): 4912−4947. doi: 10.1039/C8TA00264A

    CrossRef Google Scholar

    [91] Mondal P, Mehta D, George S. 2016. Defluoridation studies with synthesized magnesium−incorporated hydroxyapatite and parameter optimization using response surface methodology[J]. Desalination and Water Treatment, 57(56): 27294−27313. doi: 10.1080/19443994.2016.1167628

    CrossRef Google Scholar

    [92] Mwakabona H T, Mlay H R, Van Der Bruggen B, Njau K N. 2019. Water defluoridation by Fe (III)−loaded sisal fibre: Understanding the influence of the preparation pathways on biosorbents' defluoridation properties[J]. Journal of Hazardous Materials, 362: 99−106. doi: 10.1016/j.jhazmat.2018.08.088

    CrossRef Google Scholar

    [93] Nagaraj A, Sadasivuni K K, Rajan M. 2017. Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water[J]. Carbohydrate Polymers, 176: 402−410. doi: 10.1016/j.carbpol.2017.08.089

    CrossRef Google Scholar

    [94] National Health Commission of the People's Republic of China. 2019. China Health Statistics Yearbook [M]. Beijing: China Union Medical College Press(in Chinese).

    Google Scholar

    [95] Nehra S, Raghav S, Kumar D. 2020. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study[J]. Environmental Pollution, 258: 113773. doi: 10.1016/j.envpol.2019.113773

    CrossRef Google Scholar

    [96] Olaka L A, Wilke F D, Olago D O, Odada E O, Mulch A, Musolff A. 2016. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study[J]. Science of the Total Environment, 545: 641−653.

    Google Scholar

    [97] Onyango M S, Leswifi T Y, Ochieng A, Kuchar D, Otieno F O, Matsuda H. 2009. Breakthrough analysis for water defluoridation using surface−tailored zeolite in a fixed bed column[J]. Industrial & Engineering Chemistry Research, 48(2): 931−937.

    Google Scholar

    [98] Ouyang Z, Yang B, Yi J, Zhu S, Lu S, Liu Y, Li Y, Li Y, Mehmood K, Hussain R. 2021. Exposure to fluoride induces apoptosis in liver of ducks by regulating Cyt−C/Caspase 3/9 signaling pathway[J]. Ecotoxicology and Environmental Safety, 224: 112662. doi: 10.1016/j.ecoenv.2021.112662

    CrossRef Google Scholar

    [99] Özmen Ö, Koç S, Çelik M. 2011. Evaluation of groundwater quality and contamination around fluorite mineralization, Kaman region, Central Anatolia, Turkey[J]. Geochemistry International, 49: 76−89.

    Google Scholar

    [100] Patel A K, Das N, Goswami R, Kumar M. 2019. Arsenic mobility and potential co−leaching of fluoride from the sediments of three tributaries of the Upper Brahmaputra floodplain, Lakhimpur, Assam, India[J]. Journal of Geochemical Exploration. 203: 45−58.

    Google Scholar

    [101] Poudyal M, Babel S. 2015. Removal of fluoride using granular activated carbon and domestic sewage sludge[C]// Proceedings of the 4th International Conference on Informatics, Environment, Energy and Applications. Pattaya, 139−143.

    Google Scholar

    [102] Ramesha G, Kumara A V, Muralidhara H, Sampath S. 2011. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes[J]. Journal of Colloid and Interface Science, 361(1): 270−277. doi: 10.1016/j.jcis.2011.05.050

    CrossRef Google Scholar

    [103] Rashid U S, Das T K, Sakthivel T S, Seal S, Bezbaruah A N. 2021. GO−CeO₂ nanohybrid for ultra−rapid fluoride removal from drinking water[J]. Science of the Total Environment, 793: 148547. doi: 10.1016/j.scitotenv.2021.148547

    CrossRef Google Scholar

    [104] Rasool A, Xiao T, Baig Z T, Masood S, Mostofa K M, Iqbal M. 2015. Co−occurrence of arsenic and fluoride in the groundwater of Punjab, Pakistan: source discrimination and health risk assessment[J]. Environmental Science and Pollution Research, 22: 19729−19746. doi: 10.1007/s11356-015-5159-2

    CrossRef Google Scholar

    [105] Rego R M, Kuriya G, Kurkuri M D, Kigga M. 2021. MOF based engineered materials in water remediation: Recent trends[J]. Journal of Hazardous Materials, 403: 123605. doi: 10.1016/j.jhazmat.2020.123605

    CrossRef Google Scholar

    [106] Rosales M, Coreño O, Nava J L. 2018. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve−cell stack[J]. Chemosphere, 211: 149−155. doi: 10.1016/j.chemosphere.2018.07.113

    CrossRef Google Scholar

    [107] Sahoo S K, Hota G. 2018. Surface functionalization of GO with MgO/MgFe2O4 binary oxides: a novel magnetic nanoadsorbent for removal of fluoride ions[J]. Journal of Environmental Chemical Engineering, 6(2): 2918−2931. doi: 10.1016/j.jece.2018.04.054

    CrossRef Google Scholar

    [108] Sandoval M A, Fuentes R, Nava J L, Coreño O, Li Y, Hernández J H. 2019. Simultaneous removal of fluoride and arsenic from groundwater by electrocoagulation using a filter−press flow reactor with a three−cell stack[J]. Separation and Purification Technology, 208: 208−216. doi: 10.1016/j.seppur.2018.02.018

    CrossRef Google Scholar

    [109] Sang Shuo, Tie Jingxi, Zhang Nan. 2022. Research progress on fluoride removal from groundwater[J]. Technology Innovation and Application, 12(2): 78−82 (in Chinese).

    Google Scholar

    [110] Santhosh C, Velmurugan V, Jacob G, Jeong S K, Grace A N, Bhatnagar A. 2016. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal, 306: 1116−1137. doi: 10.1016/j.cej.2016.08.053

    CrossRef Google Scholar

    [111] Savari A, Hashemi S, Arfaeinia H, Dobaradaran S, Foroutan R, Mahvi A H, Fouladvand M, Sorial G A, Farjadfard S, Ramavandi B. 2020. Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite−zirconium in modes of pulsed & continuous sonication and stirring[J]. Advanced Powder Technology, 31(8): 3521−3532. doi: 10.1016/j.apt.2020.06.039

    CrossRef Google Scholar

    [112] Savenko A. 2001. Interaction between clay minerals and fluorine−containing solutions[J]. Water Resources, 28: 274−277. doi: 10.1023/A:1010496606751

    CrossRef Google Scholar

    [113] Shang Y, Xu X, Gao B, Yue Q. 2018. Highly selective and efficient removal of fluoride from aqueous solution by ZrLa dual−metal hydroxide anchored bio−sorbents[J]. Journal of Cleaner Production, 199: 36−46. doi: 10.1016/j.jclepro.2018.07.162

    CrossRef Google Scholar

    [114] Sharif M, Davis R, Steele K, Kim B, Kresse T, Fazio J. 2008. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA)[J]. Journal of Hydrology, 350(1/2): 41−55. doi: 10.1016/j.jhydrol.2007.11.027

    CrossRef Google Scholar

    [115] Sharma B, Agrawal J, Gupta A K. 2011. Emerging challenge: Fluoride contamination in groundwater in Agra District, Uttar Pradesh[J]. Asian Journal of Biological Sciences, 2(1): 131−134.

    Google Scholar

    [116] Shi Tingting, Yang Xiuli, Wang Ningtao. 2009. Experimental study on removing fluoride from wastewater using PFS and CaCl2[J]. Safety and Environmental Engineering, 16(2): 58−61 (in Chinese with English abstract).

    Google Scholar

    [117] Song Qian. 2018. Performance and Mechanism of Fluoride Adsorption from Aqueous Solution by Granular Ceramic Adsorbent Based on Native Volcanic Rocks[D]. Tianjin: Tianjin University(in Chinese with English abstract).

    Google Scholar

    [118] Takmil F, Esmaeili H, Mousavi, S M, Hashemi S A. 2020. Nano−magnetically modifed activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion[J]. Advanced Powder Technology, 31(8): 3236−3245. doi: 10.1016/j.apt.2020.06.015

    CrossRef Google Scholar

    [119] Tan H M, Pan C G, Yin C, Yu K F. 2023. Toward systematic understanding of adsorptive removal of legacy and emerging per−and polyfluoroalkyl substances (PFASs) by various activated carbons (ACs)[J]. Environmental Research: 116495.

    Google Scholar

    [120] Tang D, Zhang G. 2016. Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism[J]. Chemical Engineering Journal, 283: 721−729. doi: 10.1016/j.cej.2015.08.019

    CrossRef Google Scholar

    [121] Tang X, Zhou C, Xia W, Liang Y, Zeng Y, Zhao X, Xiong W, Cheng M, Wang Z. 2022. Recent advances in metal–organic framework−based materials for removal of fluoride in water: Performance, mechanism, and potential practical application[J]. Chemical Engineering Journal, 446: 137299.

    Google Scholar

    [122] The Central Patriotic Health Movement Committee. 1990. Atlas of Drinking Water Places in China [M]. Beijing: SinoMaps Press (in Chinese).

    Google Scholar

    [123] Thompson T, Fawell J, Kunikane S, Jackson D, Appleyard S, Callan P, Bartram J, Kingston P, Water S, Organization W H. 2007. Chemical Safety of Drinking Water: Assessing Priorities for Risk Management[M]. Geneva: World Health Organization.

    Google Scholar

    [124] Tian Jian, Liu Yang, Hu Pan, Zhu Yanzhao, Zhang Xiang, Li En. 2021. Research progress of application of magnesium oxide in environmental pollution control[J]. Journal of Hubei University (Natural Science), 43(1): 74−79 (in Chinese with English abstract).

    Google Scholar

    [125] Tomar G, Thareja A, Sarkar S. 2015. Enhanced fluoride removal by hydroxyapatite−modified activated alumina[J]. International Journal of Environmental Science and Technology, 12: 2809−2818. doi: 10.1007/s13762-014-0653-5

    CrossRef Google Scholar

    [126] Vasudevan S, Kannan B S, Lakshmi J, Mohanraj S, Sozhan G. 2011. Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water[J]. Journal of Chemical Technology & Biotechnology, 86(3): 428−436.

    Google Scholar

    [127] Velazquez−Jimenez L H, Vences−Alvarez E, Flores−Arciniega J L, Flores−Zuniga H, Rangel−Mendez J R. 2015. Water defluoridation with special emphasis on adsorbents−containing metal oxides and/or hydroxides: A review[J]. Separation and Purification Technology, 150: 292−307. doi: 10.1016/j.seppur.2015.07.006

    CrossRef Google Scholar

    [128] Vik E A, Carlson D A, Eikum A S, Gjessing E T. 1984. Electrocoagulation of potable water[J]. Water Research, 18(11): 1355−1360. doi: 10.1016/0043-1354(84)90003-4

    CrossRef Google Scholar

    [129] Vithanage M, Bhattacharya P. 2015. Fluoride in the environment: Sources, distribution and defluoridation[J]. Environmental Chemistry Letters, 13: 131−147. doi: 10.1007/s10311-015-0496-4

    CrossRef Google Scholar

    [130] Waghmare S S, Arfin T. 2015. Fluoride removal from water by various techniques[J]. International Journal of Environmental Science and Technology, 2(3): 560−571.

    Google Scholar

    [131] Wan S, Lin J, Tao W, Yang Y, Li Y, He F. 2019. Enhanced fluoride removal from water by nanoporous biochar−supported magnesium oxide[J]. Industrial & Engineering Chemistry Research, 58(23): 9988−9996.

    Google Scholar

    [132] Wang Fang. 2019. Research on the characteristics of fly ash and its impact on concrete[J]. China High and New Technology, 4(6): 17−20 (in Chinese).

    Google Scholar

    [133] Wang H, Jiang W W, Nie P F, Hu B, Hu Y S, Huang M H, Liu J Y. 2022. Selective fluoride removal on LaHAP/3D−rGO composite electrode by capacitive deionization[J]. Electrochimica Acta, 429: 141029. doi: 10.1016/j.electacta.2022.141029

    CrossRef Google Scholar

    [134] Wang Jiahong, Mao Min, Yin Xiaolong. 2016. Thermodynamic and kinetic of fluoride adsorption onto zirconium modified attapulqite[J]. Environmental Chemistry, 35(5): 1067−1075 (in Chinese with English abstract).

    Google Scholar

    [135] Wang Yanxin, Su Chunli, Xie Xianjun, Xie Zuoming. 2010. The genesis of high arsenic groundwater: A case study in Datong basin[J]. Geology in China, 37(3): 771−780 (in Chinese with English abstract).

    Google Scholar

    [136] Wang Z, Gu X, Zhang Y, Zhang X, Ngo H H, Liu Y, Jiang W, Tan X, Wang X, Zhang J. 2021. Activated nano−Al2O3 loaded on polyurethane foam as a potential carrier for fluorine removal[J]. Journal of Water Process Engineering, 44: 102444. doi: 10.1016/j.jwpe.2021.102444

    CrossRef Google Scholar

    [137] Wei Yong, Li Xianjian, Luo Zhengbo, Li Keying, Guo Ziyin, Shi Rongkai. 2023. Efficiency and mechanism of fluoride removal by electroadsorption of alumina modified activated carbon fiber[J]. China Environmental Science, 43(8): 3974−3982 (in Chinese with English abstract).

    Google Scholar

    [138] Wen D, Zhang F, Zhang E, Wang C, Han S, Zheng Y. 2013. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 135: 1−21. doi: 10.1016/j.gexplo.2013.10.012

    CrossRef Google Scholar

    [139] Wu Huaxiong, Meng Linzhen, Xu Weizong. 1998. Experimental study on the treatment of fluorine−containing wastewater by reverse osmosis method[J]. Electric Power Technology and Environmental Protection, 3: 1−5 (in Chinese).

    Google Scholar

    [140] Xiong Y Y, Li J Q, Feng X F, Meng L N, Zhang L, Meng P P, Luo M B, Luo F. 2017. Using MOF−74 for Hg2+ removal from ultra−low concentration aqueous solution[J]. Journal of Solid State Chemistry, 246: 16−22. doi: 10.1016/j.jssc.2016.10.018

    CrossRef Google Scholar

    [141] Xu Jingsheng. 2014. Enhanced Removal of Fluoride by Polystyrene Anionexchanger Supported Hydrous Zirconium Oxide Nanoparticles[D]. Nanjing: Nanjing University(in Chinese with English abstract).

    Google Scholar

    [142] Xu L, Gao X L, Li Z K, Gao C J. 2015. Removal of fluoride by nature diatomite from high−fluorine water: an appropriate pretreatment for nanofiltration process[J]. Desalination, 369: 97−104. doi: 10.1016/j.desal.2015.04.033

    CrossRef Google Scholar

    [143] Xu N, Li S, Li W, Liu Z. 2020. Removal of fluoride by graphene oxide/alumina nanocomposite: Adsorbent preparation, characterization, adsorption performance and mechanisms[J]. Chemistry Select, 5(6): 1818−1828. doi: 10.1002/slct.201904867

    CrossRef Google Scholar

    [144] Xu X, Zhu X. 2004. Treatment of refectory oily wastewater by electro−coagulation process[J]. Chemosphere, 56(10): 889−894. doi: 10.1016/j.chemosphere.2004.05.003

    CrossRef Google Scholar

    [145] Xu Yuequn, Liu Jia, Gu Jihao. 2021. Study on the defluorination effect of zinc aluminum electrode electrocoagulation on fluorinated water[J]. Yellow River, 43(5): 100−103, 109 (in Chinese with English abstract).

    Google Scholar

    [146] Yadav K K, Gupta N, Kumar V, Khan S A, Kumar A. 2018. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability[J]. Environment International, 111: 80−108. doi: 10.1016/j.envint.2017.11.014

    CrossRef Google Scholar

    [147] Yadav K K, Kumar S, Pham Q B, Gupta N, Rezania S, Kamyab H, Yadav S, Vymazal J, Kumar V, Tri D Q. 2019. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review[J]. Ecotoxicology and Environmental Safety, 182: 109362. doi: 10.1016/j.ecoenv.2019.06.045

    CrossRef Google Scholar

    [148] Yadav K, Jagadevan S. 2021. Influence of torrefaction and pyrolysis on engineered biochar and its applicability in defluoridation: Insight into adsorption mechanism, batch adsorber design and artificial neural network modelling[J]. Journal of Analytical and Applied Pyrolysis, 154: 105015. doi: 10.1016/j.jaap.2021.105015

    CrossRef Google Scholar

    [149] Yang Biao, 2012. The Relationship among Water Fluoride, Soil, Cropfluorine in the High Fluoride Area[D]. Taiyuan: Shanxi University(in Chinese with English abstract).

    Google Scholar

    [150] Yang Yanguo, Li Bingchuan, Ma Zhijun, Wang Juncheng, Zhang Wei. 2014. Study on the preparation of modified zeolite and its fluorine removal performance[J]. Bulletin of the Chinese Ceramic Society, 33(7): 1649−1654 (in Chinese with English abstract).

    Google Scholar

    [151] Ye C, Yan B, Ji X, Liao B, Gong R, Pei X, Liu G. 2019. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling[J]. Ecotoxicology and Environmental Safety, 180: 366−373. doi: 10.1016/j.ecoenv.2019.04.086

    CrossRef Google Scholar

    [152] Ye Y, Liu W, Jiang W, Kang J, Ngo H H, Guo W, Liu Y. 2018. Defluoridation by magnesia–pullulan: Surface complexation modeling and pH neutralization of treated fluoride water by aluminum[J]. Journal of the Taiwan Institute of Chemical Engineers, 93: 625−631. doi: 10.1016/j.jtice.2018.09.011

    CrossRef Google Scholar

    [153] Yin Dong. 2021. Adsorption of environmental pollutants by carbon nanotubes and their influencing factors[J]. Environmental Science & Technology, 44(S2): 276−283.

    Google Scholar

    [154] Yu T, Chen Y L, Zhang Y Z, Tan X, Xie T, Shao B Y, Huang X. 2021. Novel reusable sulfate−type zirconium alginate ion−exchanger for fluoride removal[J]. Chinese Chemical Letters, 32(11): 3410−3415. doi: 10.1016/j.cclet.2021.04.057

    CrossRef Google Scholar

    [155] Zakir H, Li D S, Li X, Kang J X. 2015. Defluoridation by a Mg–Al–La triple−metal hydrous oxide: Synthesis, sorption, characterization and emphasis on the neutral pH of treated water[J]. RSC Advances, 5(55): 43906−43916. doi: 10.1039/C5RA05539C

    CrossRef Google Scholar

    [156] Zhang Jing. 2019. Composite Adjusting and Structure Controlling of Chitosan/Graphene Oxide Based Adsorbents for Fluoride Removal[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [157] Zhang Kaisheng. 2016. Design and Preparation of Nano−Adsorbents and Adsorption mechanism for Fluoride in Water[D]. Hefei: University of Science and Technology of China(in Chinese with English abstract).

    Google Scholar

    [158] Zhang Ping, Chen Wei, Li Xiaochen, Gao Yan. 2017. Application of modified ion exchange resin in arctic removal[J]. China Science Technology Overview, 10: 10−11 (in Chinese).

    Google Scholar

    [159] Zhang R J, Wang X M, Ali A, Su J F, Wang Z, Li J W, Liu Y. 2022. Single−step removal of calcium, fluoride, and phenol from contaminated water by Aquabacterium sp. CZ3 via facultative anaerobic microbially induced calcium precipitation: Kinetics, mechanism, and characterization[J]. Bioresource Technology, 361: 127707. doi: 10.1016/j.biortech.2022.127707

    CrossRef Google Scholar

    [160] Zhang X, Qi Y, Chen Z, Song N, Li X, Ren D, Zhang S. 2021. Evaluation of fluoride and cadmium adsorption modification of corn stalk by aluminum trichloride[J]. Applied Surface Science, 543: 148727. doi: 10.1016/j.apsusc.2020.148727

    CrossRef Google Scholar

    [161] Zhao X, Zhang J, Dai Z, Lei Y, Liu X, Liu G. 2022. Simple preparation and efficient fluoride removal of La anchored Zr−based metal–organic framework adsorbent[J]. Journal of Environmental Chemical Engineering, 10(6): 108807. doi: 10.1016/j.jece.2022.108807

    CrossRef Google Scholar

    [162] Zhao Yan, Lu Mengnan, Sun Bin, Li Jingfeng, Xu Zhiqing, Teng Dongyu. 2020. Research on industrial application of coagulation and adsorption combined with fluorine removal technology in fluorine−containing mine water[J]. Coal Science and Technology, 48(9): 166−172 (in Chinese with English abstract).

    Google Scholar

    [163] Zhou J, Zhu W, Yu J, Zhang H, Zhang Y, Lin X, Luo X. 2018. Highly selective and efficient removal of fluoride from ground water by layered Al−Zr−La Tri−metal hydroxide[J]. Applied Surface Science, 435: 920−927. doi: 10.1016/j.apsusc.2017.11.108

    CrossRef Google Scholar

    [164] Zhou X. 2017. Arsenic distribution and source in groundwater of Yangtze River Delta economic region, China[J]. Journal of Groundwater Science and Engineering, 5(4): 343−353. doi: 10.26599/JGSE.2017.9280034

    CrossRef Google Scholar

    [165] Zhu Lixia, Zhang Dong. 2008. The comparing of active Al2O3 and active mgo in removing fluoride[J]. Environmental Science and Management, 33(10): 127−129 (in Chinese with English abstract).

    Google Scholar

    [166] 安永会, 张福存, 孙建平, 蔡五田, 姚秀菊, 李旭峰. 2006. 我国饮水型地方病地质环境特征与防治对策[J]. 中国地方病学杂志, 25(2): 220−221.

    Google Scholar

    [167] 曹文庚, 王妍妍, 任宇, 费宇红, 李谨丞, 李泽岩, 张栋, 帅官印. 2022. 含砷地下水的治理技术现状与进展[J]. 中国地质, 49(5): 1408−1426. doi: 10.12029/gc20220504

    CrossRef Google Scholar

    [168] 常冰. 2016. 新型铝基颗粒去除水中砷、氟的效能及机理研究[D]. 杨凌: 西北农林科技大学.

    Google Scholar

    [169] 陈聪聪, 钱光磊, 谢陈鑫, 赵慧, 雷太平, 滕厚开, 周立山. 2020. 双铝电极电絮凝处理高含氟地下水的影响因素及动力学分析[J]. 环境工程学报, 14(5): 1216−1223. doi: 10.12030/j.cjee.201907180

    CrossRef Google Scholar

    [170] 陈静娴. 2017. 金属改性壳聚糖复合吸附剂的制备及水中除氟性能研究[D]. 广州: 广东药科大学.

    Google Scholar

    [171] 陈浪. 2020. CTAB改性镧铁复合材料去除地下水中氟的研究[D]. 成都: 成都理工大学.

    Google Scholar

    [172] 陈男. 2012. 天然及合成多孔性粘土材料对地下水中氟化物的吸附性能研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [173] 崔兵, 金怡, 杨泽坤. 2022. 钙盐−混凝法处理高氟废水的实验研究[J]. 工业水处理, 43(6): 150−155.

    Google Scholar

    [174] 崔自敏. 2011. 铁铝复合吸附剂共除地下水中砷和氟的研究[D]. 哈尔滨: 哈尔滨工业大学.

    Google Scholar

    [175] 董润坚, 李健, 胡浩, 刘枫, 李佳, 罗罡. 2018. 高氟地下水处理工艺技术的试验[J]. 净水技术, 37(6): 49−53,67.

    Google Scholar

    [176] 窦若岸, 陈彬彬, 罗生乔, 罗凯. 2016. 化学沉淀法处理高浓度含氟废水的研究[J]. 有机氟工业, 2: 9−11,27.

    Google Scholar

    [177] 凤海元, 吴忠忠. 2019. 四川省大骨节病区地下水氟污染及除氟工艺研究[J]. 安徽化工, 45(3): 94−95,98. doi: 10.3969/j.issn.1008-553X.2019.03.031

    CrossRef Google Scholar

    [178] 高宗仁. 2022. 超滤−反渗透工艺在地下水除氟工程中的应用[J]. 工业用水与废水, 53(2): 12−15. doi: 10.3969/j.issn.1009-2455.2022.02.003

    CrossRef Google Scholar

    [179] 郭华明, 杨素珍, 沈照理. 2007. 富砷地下水研究进展[J]. 地球科学进展, 22(11): 1109−1117. doi: 10.3321/j.issn:1001-8166.2007.11.002

    CrossRef Google Scholar

    [180] 韩建勋, 贺爱国. 2004. 含氟废水处理方法[J]. 有机氟工业, 3: 27−36.

    Google Scholar

    [181] 韩颖, 张宏民, 张永峰, 张欣. 2017. 大同盆地地下水高砷、氟、碘分布规律与成因分析及质量区划[J]. 中国地质调查, 4(1): 57−68.

    Google Scholar

    [182] 何锦, 张福存, 韩双宝, 李旭峰, 姚秀菊, 张徽. 2010. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 37(3): 621−626. doi: 10.3969/j.issn.1000-3657.2010.03.012

    CrossRef Google Scholar

    [183] 李雅丹, 朱书法, 周鸣, 刘亚纳. 2020. 赤泥中水溶性氟化物的电渗析去除[J]. 环境工程学报, 14(7): 1934−1943. doi: 10.12030/j.cjee.201911005

    CrossRef Google Scholar

    [184] 刘杰. 2016. 天然材料改性与吸附水中氟的性能研究[D]. 长沙: 湖南大学.

    Google Scholar

    [185] 吕晓立, 郑跃军, 刘可, 李春燕, 赵伟, 韩占涛. 2024. 兰州不同城镇功能区地下水氟赋存特征及影响因素[J]. 水文地质工程地质, 51(2): 215−226.

    Google Scholar

    [186] 孟范平, 李永富, 赵顺顺, 2010. 基于饮用水除氟的改性壳聚糖制备技术研究进展[J]. 现代化工, 30(4): 16−20.

    Google Scholar

    [187] 桑硕, 帖靖玺, 张南. 2022. 地下水除氟研究进展[J]. 科技创新与应用, 12(2): 78−82.

    Google Scholar

    [188] 史婷婷, 杨秀丽, 王宁涛. 2009. 聚合硫酸铁和钙盐除氟试验研究[J]. 安全与环境工程, 16(2): 58−61. doi: 10.3969/j.issn.1671-1556.2009.02.015

    CrossRef Google Scholar

    [189] 宋倩. 2018. 火山岩基多孔陶粒吸附去除地下水中氟的特性和机理研究[D]. 天津: 天津大学.

    Google Scholar

    [190] 田键, 刘洋, 胡攀, 朱艳超, 张祥, 李恩. 2021. 氧化镁在环境污染治理中应用研究进展[J]. 湖北大学学报(自然科学版), 43(1): 74−79.

    Google Scholar

    [191] 王芳. 2019. 粉煤灰的特性及对混凝土的影响研究[J]. 中国高新科技, 4(6): 17−20.

    Google Scholar

    [192] 王家宏, 毛敏, 尹小龙. 2016. 锆改性凹凸棒土对水中氟的吸附热力学与动力学研究[J]. 环境化学, 35(5): 1067−1075. doi: 10.7524/j.issn.0254-6108.2016.05.2015112602

    CrossRef Google Scholar

    [193] 王焰新, 苏春利, 谢先军, 谢作明. 2010. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 37(3): 771−780. doi: 10.3969/j.issn.1000-3657.2010.03.033

    CrossRef Google Scholar

    [194] 魏永, 李贤建, 罗政博, 李克英, 郭子寅, 施荣凯. 2023. 氧化铝改性活性炭纤维电吸附除氟效能及机理[J]. 中国环境科学, 43(8): 3974−3982. doi: 10.3969/j.issn.1000-6923.2023.08.013

    CrossRef Google Scholar

    [195] 吴华雄, 孟林珍, 许维宗. 1998. 反渗透法处理含氟废水的试验研究[J]. 电力环境保护, 3: 1−5.

    Google Scholar

    [196] 徐敬生. 2014. 多孔聚苯乙烯树脂负载纳米水合氧化锆的制备及其除氟性能研究[D]. 南京: 南京大学.

    Google Scholar

    [197] 徐越群, 刘佳, 顾吉浩. 2021. 锌铝电极电絮凝法对含氟水除氟效果研究[J]. 人民黄河, 43(5): 100−103,109. doi: 10.3969/j.issn.1000-1379.2021.05.019

    CrossRef Google Scholar

    [198] 杨彪. 2012. 高氟病区水氟与土壤、作物氟积累的相关关系研究[D]. 太原: 山西大学.

    Google Scholar

    [199] 杨艳国, 李冰川, 马志军, 王俊成, 张威. 2014. 改性沸石的制备与除氟性能研究[J]. 硅酸盐通报, 33(7): 1649−1654.

    Google Scholar

    [200] 尹东. 2021. 碳纳米管对环境污染物的吸附及其影响因素[J]. 环境科学与技术, 44(S2): 276−283.

    Google Scholar

    [201] 张静. 2019. 壳聚糖/氧化石墨烯氟吸附剂的组分调变与结构调控的研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [202] 张开胜. 2016. 纳米吸附材料的设计、制备及对水中氟离子去除机理研究[D]. 合肥: 中国科学技术大学.

    Google Scholar

    [203] 张萍, 陈卫, 李晓晨, 高雁. 2017. 改性离子交换树脂除砷方面的应用[J]. 中国科技纵横, 10: 10−11. doi: 10.3969/j.issn.1671-2064.2017.17.008

    CrossRef Google Scholar

    [204] 赵焰, 陆梦楠, 孙斌, 李井峰, 徐志清, 腾东玉. 2020. 含氟矿井水混凝吸附联合除氟技术工业化应用研究[J]. 煤炭科学技术, 48(9): 166−172.

    Google Scholar

    [205] 中华人民共和国国家卫生健康委员会. 2019. 中国卫生健康统计年鉴[M]. 北京: 中国协和医科大学出版社.

    Google Scholar

    [206] 中央爱国卫生运动委员会. 1990. 中国生活饮用水地图集[M]. 北京: 中国地图出版社.

    Google Scholar

    [207] 朱利霞, 张东. 2008. 活性氧化铝和活性氧化镁处理高氟饮用水的比较[J]. 环境科学与管理, 33(10): 127−129. doi: 10.3969/j.issn.1673-1212.2008.10.035

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(1)

Article Metrics

Article views(1623) PDF downloads(186) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint