2024 Vol. 51, No. 2
Article Contents

JIAO Tianlong, LI Jinwen, GUO Xiangguo, SHE Hongquan, REN Chenghao, LI Changjian. 2024. Discussion on the ore−forming fluids, materials sources and genesis of Erdaohe Pb−Zn−Ag deposit, Inner Mongolia[J]. Geology in China, 51(2): 426-442. doi: 10.12029/gc20200719003
Citation: JIAO Tianlong, LI Jinwen, GUO Xiangguo, SHE Hongquan, REN Chenghao, LI Changjian. 2024. Discussion on the ore−forming fluids, materials sources and genesis of Erdaohe Pb−Zn−Ag deposit, Inner Mongolia[J]. Geology in China, 51(2): 426-442. doi: 10.12029/gc20200719003

Discussion on the ore−forming fluids, materials sources and genesis of Erdaohe Pb−Zn−Ag deposit, Inner Mongolia

    Fund Project: Supported by the National Key Research and Development Program (No.2017YFC0601303).
More Information
  • Author Bio: JIAO Tianlong, male, born in 1996, master, mainly engaged in endogenetic metallogenesis; E-mail: jtl951120@163.com
  • Corresponding author: LI Jinwen, male, born in 1964, researcher, mainly engaged in endogenetic metallogenesis; E-mail: lijinwen958@sina.com
  • This paper is the result of mineral exploration engineering.

    Objective

    The Erdaohe silver−lead−zinc deposit is located in the middle section of the Greater Khingan Range. It is a representative large−scale skarn−type deposit discovered in recent years. Studying the origin of this deposit will help guide the exploration of polymetallic deposits in the middle section of the Greater Khingan Range.

    Methods

    On the basis of field geological survey, this paper made research on the fluid inclusion in the keatite selected at each stage of mineralization, and discussed the ore−forming fluid and material sources in combination with the S and Pb isotopes of ore and the C and O isotopes of calcite.

    Results

    The research result showed the formation of the deposit throughout the process from the skarn stage to the quarte−sulfide stage and to the quartz carbonate stage. According to the temperature measurement result, the inclusion in keatite was mainly characterized by gas−liquid phase, with the homogenization temperature of 310–435℃ at the skarn stage, 195–310℃ at the quarte−sulfide stage and 148–195℃ at the quartz carbonate stage, and the salinity of 11.7%–0.71% NaCleqv at the skarn stage, 12.9%–0.35% NaCleqv at the quartz−sulfide stage and 4.18%–0.35% NaCleqv at the quartz−carbonate stage. The C and O isotopes of calcite indicated a water−rock reaction of the deposit, in which atmospheric precipitation was found. The δ34S value of the S isotope of ore was 5.4‰–10.0‰ from a mixture of sulfurs in magma and strata; as per the characteristic parameter of lead isotope, the source of lead was associated with the orogeny−related magmatism, where the lead was mostly from the upper crust, and slightly from the deep source.

    Conclusions

    Accordingly, the ore−forming fluid and material sources were considered the products of the large−scale magmatism caused by the extension after the closure of Mongolia−Okhotsk for orogeny.

  • 加载中
  • [1] Bai Daming, Fu Guoli, Nie Fengjun, Jiang Sihong, Liu Yifei. 2011. Integrated Ore–prospecting model for the skarn polymetallic deposit in southeastern Inner Mongolia[J]. Journal of Jinlin University (Earth Science Edition), 41(6): 1968−1976 (in Chinese with English abstract).

    Google Scholar

    [2] Baker T, Van Achterberg E, Ryan C G, Lang J R. 2004. Composition and evolution of ore fluids in a magmatic–hydrothermal skarn deposit[J]. Geology, 32(2): 117−120. doi: 10.1130/G19950.1

    CrossRef Google Scholar

    [3] Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57(3): 683−684. doi: 10.1016/0016-7037(93)90378-A

    CrossRef Google Scholar

    [4] Chaussidon M, Lorand J. 1990. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North–Eastern Pyrenees, France): An ion microprobe study[J]. Geochimica et Cosmochimica Acta, 54(10): 2835−2846. doi: 10.1016/0016-7037(90)90018-G

    CrossRef Google Scholar

    [5] Chen Yongqing, Zhou Ding, Guo Lingfen. 2014. Genetic study on the Huaaobaote Pb–Zn–Ag polymetallic deposit in Inner Mongolia: Evidence from fluid inclusions and S, Pb, H, O isotopes[J]. Journal of Jinlin University (Earth Science Edition), 44(5): 1478−1491 (in Chinese with English abstract).

    Google Scholar

    [6] Cui Xuewu, Jiang Shenghua, Li Hongbao, Chang Yaohui. 2015. Integrated prospecting model of Erdaohe silver–lead–zinc deposit in the Zhalantun area, Inner Mongolia[J]. Mineral Exploration, 6(6): 667−678 (in Chinese with English abstract).

    Google Scholar

    [7] Ding Weipin, Xie Caifu, Huang Cheng, Zhang Bin, Xin Zhuo, Zhan Huasi, Zheng Lilong, Kong Fanquan, Wang Hongbing, Huang Fulin. 2022. Sources of Permian lead-zine ore-forming materials in Sichuan‒Yunnan‒Guizhou area: C‒H‒O‒S‒Pb isotope constraints: An example from Taipingzi lead-zinc deposit in Yunnan Provinces[J]. Geology in China, 49(6): 1845‒1861 (in Chinese with English abstract).

    Google Scholar

    [8] Fontbote L, Gorzawski H. 1990. Genesis of the Mississippi valley–type Zn–Pb deposit of San Vicente, central Peru: Geologic and isotopic (Sr, O, C, S, Pb) evidence[J]. Economic Geology, 85(7): 1402−1437. doi: 10.2113/gsecongeo.85.7.1402

    CrossRef Google Scholar

    [9] Ge Wenchun, Wu Fuyuan, Zhou Changyong, Zhang Jiheng. 2005. Zircon U–Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 21(3): 749−762 (in Chinese with English abstract).

    Google Scholar

    [10] Gun Minshan, Lü Xinbiao, Li Jie, Xu Yiqun, Wang Lin, Wang Shaobin. 2015. Study on fluid inclusions in Erdaohe lead–zinc polymetallic deposit in Inner Mongolia[J]. Acta Mineralogica Sinica, 35(S1): 579 (in Chinese).

    Google Scholar

    [11] Guo Xiangguo. 2020. Metallogenesis of Erdaohe Skarn–type Lead–Zinc Deposit in the Middle Segment of the Great Hinggan Range[D]. Beijing: China University of Geosciences (Beijing).

    Google Scholar

    [12] Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl–KCl–H2O solutions[J]. Economic Geology, 83(1): 197−202. doi: 10.2113/gsecongeo.83.1.197

    CrossRef Google Scholar

    [13] Han G Q, Liu Y J, Neubauer F, Genser J, Li W, Zhao Y L, Liang C Y. 2011. Origin of terranes in the eastern Central Asian Orogenic Belt, NE China: U–Pb ages of detrital zircons from Ordovician–Devonian sandstones, North Da Xing'an Mts.[J]. Tectonophysics, 511(3/4): 109−124. doi: 10.1016/j.tecto.2011.09.002

    CrossRef Google Scholar

    [14] He Jing, Huang Ming, Cong Yanan. 2019. Geological characteristics and prospecting indicators of Erdaohe silver–lead–zinc deposit in Inner Mongolia[J]. Inner Mongolia Science Technology and Economy, (12): 58 (in Chinese with English abstract).

    Google Scholar

    [15] Heinrich C A. 2007. Fluid–fluid interactions in magmatic–hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 65(1): 363−387. doi: 10.2138/rmg.2007.65.11

    CrossRef Google Scholar

    [16] Kang Yongjian, She Hongquan, Xiang Anping, Tian Jing, Li Jinwen, Yang Yuncheng, Guo Zhijun, Dong Xuzhou. 2014. Indo–Chinese magmatic activity in the Badaguan ore district of Inner Moingolia and its metallogenic implications[J]. Geology in China, 41(4): 1215−1225 (in Chinese with English abstract).

    Google Scholar

    [17] Leng Chengbiao, Zhang Xingchun, Wang Shouxu, Qin Zhaojian, Wu Kongwen, Ren Tao. 2009. Advances of researches on the evolution of ore–forming fluids and the vapor transport of metals in magmatic–hydrothermal systems[J]. Geological Review, 55(1): 100−112 (in Chinese with English abstract).

    Google Scholar

    [18] Lin W, Charles N, Chen Y, Chen K, Faure M, Wu L, Wang F, Li Q L, Wang J, Wang Q C. 2013. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints[J]. Gondwana Research, 23(1): 78−94. doi: 10.1016/j.gr.2012.02.012

    CrossRef Google Scholar

    [19] Liu Jiajun, He Mingqin, Li Zhiming, Liu Yuping, Li Zhaoying, Zhang Qian, Yang Weiguang, Yang Aiping. 2004. Oxygen and carbon isotopic geochemistry of Baiyangping sliver–copper polymetallic ore concentration area in Lanping Basin of Yunnan Province and its significance[J]. Mineral Deposits, (1): 1−10 (in Chinese with English abstract).

    Google Scholar

    [20] Liu Jianming, Zhang Rui, Zhang Qingzhou. 2004. The regional metallogeny of Da Hing Gan Ling, China[J]. Earth Science Frontiers, (1): 269−277 (in Chinese with English abstract).

    Google Scholar

    [21] Liu Kai, Wu Taotao, Liu Jinlong, Bao Qingzhong, Du Shouying. 2018. Geochronology and geochemistry of volcanic rocks in Manketou'ebo Formation of Tulihe area, northern Da Hinggan Mountains[J]. Geology in China, 45(2): 367−376 (in Chinese with English abstract).

    Google Scholar

    [22] Liu Yanrong, Guan Qiangbing, Zhang Haidong, Zhou Qunjun, Dang Shun'an. 2023. Sulfides Rb-Sr and zircon U‒Pb ages of the Erdaohezi Pb‒Zn deposit in the western slope of the Great Xing'an Range and their constraints on tectonic setting[J]. Geological Bulletin of China, 42(11): 1843‒1853 (in Chinese with English abstract).

    Google Scholar

    [23] Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R, Guo F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late–stage tectonic evolution of the Inner Mongolia–Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5/6): 348−370. doi: 10.1016/j.jseaes.2007.11.005

    CrossRef Google Scholar

    [24] Nie Fengjun, Zhang Wanyi, Du Andao, Jiang Sihong, Liu Yan. 2007. Re–Os isotopic age dating of molybdenite separates from the Chaobuleng iron–polymetallic deposit, Dong Ujimqin Banner, Inner Mongolia[J]. Acta Geoscientica Sinica, 28(4): 315−323 (in Chinese with English abstract).

    Google Scholar

    [25] Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Economic Geology, 67(5): 551−578. doi: 10.2113/gsecongeo.67.5.551

    CrossRef Google Scholar

    [26] O'Neil J R, Clayton R N, Mayeda T K. 1969. Oxygen isotope fractionation in divalent metal carbonates[J]. The Journal of Chemical Physics, 51(12): 5547−5558. doi: 10.1063/1.1671982

    CrossRef Google Scholar

    [27] Ren Jishun, Niu Baogui, Liu Zhigang. 1999. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, (3): 85−93 (in Chinese with English abstract).

    Google Scholar

    [28] Rollinson H. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. London: Longman Scientific and Technical, 52–61.

    Google Scholar

    [29] Rye R O, Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review[J]. Economic Geology, 69(6): 826−842. doi: 10.2113/gsecongeo.69.6.826

    CrossRef Google Scholar

    [30] Sakai H. 1968. Isotopic properties of sulfur compounds in hydrothermal processes[J]. Geochemical Journal, 2(1): 29−49. doi: 10.2343/geochemj.2.29

    CrossRef Google Scholar

    [31] Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 61(1): 633−677. doi: 10.2138/rmg.2006.61.12

    CrossRef Google Scholar

    [32] Shao Jian, Mou Baolei, He Guoqi, Zhang Lüqiao. 1997. The geological function of northern North China during the superimposition of the paleo–Asian and paleo–Pacific regions[J]. Science in China (Earth Science), (5): 390−394 (in Chinese).

    Google Scholar

    [33] Shao Jidong, Wang Hui, Zhang Mei, Zhao Wentao. 2011. Division of tectonic units in Inner Mongolia and its geological characteristics[J]. Western Resources, (2): 51−56 (in Chinese).

    Google Scholar

    [34] She Hongquan, Li Honghong, Li Jinwen, Zhao Shibao, Tan Gang, Zhang Dequan, Jinjun, Dong Yingjun, Feng Chengyou. 2009. The metallogenetical characteristics and prospecting direction of the copper–lead–zinc polymetal deposits in the northern–central Daxing'anling Mountain, Inner Monglia[J]. Acta Geologica Sinica, 83(10): 1456−1472 (in Chinese with English abstract).

    Google Scholar

    [35] She Hongquan, Li Jinwen, Xiang Anping, Guan Jidong, Yang Yuncheng, Zhang Dequan, Tan Gang, Zhang Bin. 2012. U–Pb ages of the zircons from primary rocks in middle–northern Daxinganling and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, (2): 217−240 (in Chinese with English abstract).

    Google Scholar

    [36] Shi Yonghong, Wang Yong, Chen Bailin, Tan Renwen, Gao Yun, Shen Jinghui. 2022. Characteristics of silicon-calcium surface ore-controlling in Fengtai ore‒concentration areas, West Qinling Mountains: Examples from Qiandongshan Pb-Zn deposit[J]. Geology in China, 49(1): 226‒240 (in Chinese with English abstract).

    Google Scholar

    [37] Sun Deyou, Wu Fuyuan, Zhang Yanbin, Gao Shan. 2004. The final closing time of the west Lamulun River–Changchun–Yanji Plate suture zone: Evidence from the Dayushan granitic pluton, Jinlin Province[J]. Journal of Jinlin University (Earth Science Edition), 34(2): 174−181 (in Chinese with English abstract).

    Google Scholar

    [38] Tang Zongyuan. 2019. Petrogenesis and Geodynamic Mechanism of the Mesozoic Volcanic Rocks in the Central Great Xing'an Range[D]. Changchun: Jilin University, 1–174.

    Google Scholar

    [39] Wang Jianjun, Wang Zhong, Zhang Da, Yu Qiuye, Di Yongjun, Sun Yanjie, Xiong Guangqiang, Zhao Hongtao, Liu Min. 2013. Geological characteristics and origin of Erdaohe lead–zinc–silver–copper deposit in Zhalantun, Inner Mongolia[J]. Acta Mineralogica Sinica, 33(S2): 498−499 (in Chinese).

    Google Scholar

    [40] Wang T, Guo L, Zhang L, Yang Q, Zhang J, Tong Y, Ye K. 2015. Timing and evolution of Jurassic–Cretaceous granitoid magmatism in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 97: 365−392. doi: 10.1016/j.jseaes.2014.10.005

    CrossRef Google Scholar

    [41] Wang Xiaohu, Hou Zengqian, Song Yucai, Wang Guanghui, Zhang Hongrui, Zhang Chong, Zhuang Tianming, Wang Zhe, Zhang Tianfu. 2012. Baiyangping Pb–Zn–Cu–Ag polymetallic deposit in Lanping basin: A discussion on characteristics and source of ore–forming fluids and source of metallogenic materials[J]. Earth Science—Journal of China University of Geosciences, 37(5): 1015−1028 (in Chinese with English abstract).

    Google Scholar

    [42] Williams–Jones A E, Samson I M, Ault K M, Gagnon J E, Fryer B J. 2010. The genesis of distal zinc skarns: Evidence from the Mochito deposit, Honduras[J]. Economic Geology, 105(8): 1411−1440. doi: 10.2113/econgeo.105.8.1411

    CrossRef Google Scholar

    [43] Wu F Y, Zhao G C, Sun D Y, Wilde S A, Yang J H. 2007. The Hulan Group: its role in the evolution of the Central Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences, 30(3/4): 542−556.

    Google Scholar

    [44] Xiao Qinghui. 2002. Granite Research Thinking and Methods[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [45] Yang Fating. 2018. Metallogenic regularity and prospecting prediction of Erdaohe silver polymetallic deposit in the middle section of Daxinganling[J]. Western Resources, (6): 71−72 (in Chinese).

    Google Scholar

    [46] Yao Xiaofeng, Ye Tianzhu, Tang Juxing, Zheng Wenbao, Ding Shuai, Li Yongsheng, Zhen Shimin. 2014. The effect of Si–Ca interface on skarn formation and polymetallic mineralization in the Jiama deposit, Tibet[J]. Geology in China, 41(5): 1577−1593 (in Chinese with English abstract).

    Google Scholar

    [47] Zartman R E, Doe B R. 1981. Plumbotectonics—the model[J]. Tectonophysics, 75(1/2): 135−162.

    Google Scholar

    [48] Zeng Qingdong, Liu Jianming, Chu Shaoxiong, Guo Yunpeng, Gao Shuai, Guo Lixiang, Zhai Yuanyuan. 2016. Ploy–metal mineralization and exploration potential in Southern segment of the Da Hinggan Mountains[J]. Journal of Jinlin University (Earth Science Edition), 46(4): 1100−1123 (in Chinese with English abstract).

    Google Scholar

    [49] Zhai Degao, Liu Jiajun, Wang Jianping, Peng Runmin, Wang Shouguang, Li Yuxi, Chang Zhongyao. 2009. Re–Os isotopic chronology of molybdenite from the Taipinggou porphyry–type molybdenum deposit in Inner Mongolia and its geological significance[J]. Geoscience, 23(2): 262−268 (in Chinese with English abstract).

    Google Scholar

    [50] Zhang Changqing, Ye Tianzhu, Wu Yue, Wang Chenghui, Ji Hai, Li Li, Zhang Tingting. 2012. Discussion on controlling role of Si–Ca boundary in locating Pb–Zn deposits and its prospecting significance[J]. Mineral Deposits, 31(3): 405−416 (in Chinese with English abstract).

    Google Scholar

    [51] Zhang Geli, Tian Tao, Wang Ruiting, Gao Weihong, Chang Zongdong. 2020. S, Pb isotopic composition of the Dongtangzi Pb−Zn deposit in the Fengtai ore concentration area of Shaanxi Province for tracing sources of ore−forming materials[J]. Geology in China, 47(2): 472−484 (in Chinese with English abstract).

    Google Scholar

    [52] Zhang Jing, Shao Jun, Jiang Shan, Yang Hongzhi. 2017. A study of the stable isotope geochemistry of Erdaohe Pb–Zn ore deposit in Inner Mongolia[J]. Geological Review, 63(S1): 225−227 (in Chinese).

    Google Scholar

    [53] Zheng Yongfei, Xu Baolong, Zhou Gentao. 2000. Geochemical studies of stable isotopes in minerals[J]. Earth Science Frontiers, (2): 299−320 (in Chinese with English abstract).

    Google Scholar

    [54] Zhu Bingquan, Li Xianhua, Dai Tongmo. 1998. The Theory and Application of Isotope System in Earth Science—Also on the Evolution of Crust and Mantle in Chinese Mainland[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [55] 白大明, 付国立, 聂凤军, 江思宏, 刘翼飞. 2011. 内蒙古东南部矽卡岩型金属矿床的综合找矿模式[J]. 吉林大学学报(地球科学版), 41(6): 1968−1976.

    Google Scholar

    [56] 陈永清, 周顶, 郭令芬. 2014. 内蒙古花敖包特铅锌银多金属矿床成因探讨: 流体包裹体及硫、铅、氢、氧同位素证据[J]. 吉林大学学报(地球科学版), 44(5): 1478−1491.

    Google Scholar

    [57] 崔学武, 姜胜华, 李洪宝, 常耀辉. 2015. 内蒙古二道河银铅锌矿床综合找矿模式[J]. 矿产勘查, 6(6): 667−678. doi: 10.3969/j.issn.1674-7801.2015.06.003

    CrossRef Google Scholar

    [58] 丁伟品, 谢财富, 黄诚, 张斌, 辛卓, 詹华思, 郑立龙, 孔凡全, 王红兵, 黄福林. 2022. 川滇黔二叠系铅锌成矿物质来源:C‒H‒O‒S‒Pb同位素制约—以云南太平子铅锌矿为例[J]. 中国地质, 49(6): 1845‒1861.

    Google Scholar

    [59] 葛文春, 吴福元, 周长勇, 张吉衡. 2005. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U–Pb年龄及地质意义[J]. 岩石学报, 21(3): 749−762. doi: 10.3321/j.issn:1000-0569.2005.03.015

    CrossRef Google Scholar

    [60] 衮民汕, 吕新彪, 李杰, 徐益群, 王琳, 王邵斌. 2015. 内蒙古二道河铅锌多金属矿床流体包裹体研究[J]. 矿物学报, 35(S1): 579.

    Google Scholar

    [61] 郭向国. 2020. 大兴安岭中段二道河矽卡岩型铅锌矿成矿作用研究[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [62] 和静, 黄明, 丛亚楠. 2019. 内蒙古二道河银铅锌矿床地质特征与找矿标志[J]. 内蒙古科技与经济, (12): 58.

    Google Scholar

    [63] 康永建, 佘宏全, 向安平, 田京, 李进文, 杨郧城, 郭志军, 董旭舟. 2014. 内蒙古八大关矿区印支期岩浆活动及其找矿意义[J]. 中国地质, 41(4): 1215−1225. doi: 10.3969/j.issn.1000-3657.2014.04.015

    CrossRef Google Scholar

    [64] 冷成彪, 张兴春, 王守旭, 秦朝建, 吴孔文, 任涛. 2009. 岩浆−热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评, 55(1): 100−112. doi: 10.3321/j.issn:0371-5736.2009.01.012

    CrossRef Google Scholar

    [65] 刘家军, 何明勤, 李志明, 刘玉平, 李朝阳, 张乾, 杨伟光, 杨爱平. 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J]. 矿床地质, (1): 1−10. doi: 10.3969/j.issn.0258-7106.2004.01.001

    CrossRef Google Scholar

    [66] 刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘, (1): 269−277. doi: 10.3321/j.issn:1005-2321.2004.01.024

    CrossRef Google Scholar

    [67] 刘凯, 吴涛涛, 刘金龙, 鲍庆中, 杜守营. 2018. 大兴安岭北段图里河地区满克头鄂博组火山岩年代学及地球化学[J]. 中国地质, 45(2): 367−376. doi: 10.12029/gc20180211

    CrossRef Google Scholar

    [68] 刘艳荣, 关强兵, 张海东, 周群君, 党顺安. 2023. 大兴安岭西坡二道河子铅锌矿床硫化物Rb‒Sr、锆石U‒Pb年龄及其对构造背景的制约[J]. 地质通报, 42(11): 1843‒1853.

    Google Scholar

    [69] 聂凤军, 张万益, 杜安道, 江思宏, 刘妍. 2007. 内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼–锇同位素年龄及地质意义[J]. 地球学报, 28(4): 315−323. doi: 10.3321/j.issn:1006-3021.2007.04.001

    CrossRef Google Scholar

    [70] 任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, (3): 85−93. doi: 10.3321/j.issn:1005-2321.1999.03.008

    CrossRef Google Scholar

    [71] 邵济安, 牟保磊, 何国琦, 张履桥. 1997. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J]. 中国科学(地球科学), (5): 390−394.

    Google Scholar

    [72] 邵积东, 王惠, 张梅, 赵文涛. 2011. 内蒙古大地构造单元划分及其地质特征[J]. 西部资源, (2): 51−56.

    Google Scholar

    [73] 佘宏全, 李红红, 李进文, 赵士宝, 谭刚, 张德全, 金俊, 董英君, 丰成友. 2009. 内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向[J]. 地质学报, 83(10): 1456−1472. doi: 10.3321/j.issn:0001-5717.2009.10.010

    CrossRef Google Scholar

    [74] 佘宏全, 李进文, 向安平, 关继东, 杨郧城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U–Pb测年及其与区域构造演化关系[J]. 岩石学报, 28(2): 217−240.

    Google Scholar

    [75] 石永红, 王永, 陈柏林, 谭人文, 高允, 申景辉. 2022. 西秦岭凤太矿集区铅锌矿床硅钙面控矿作用—以铅硐山铅锌矿床为例[J]. 中国地质, 49(1): 226‒240.

    Google Scholar

    [76] 孙德有, 吴福元, 张艳斌, 高山. 2004. 西拉木伦河—长春—延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报 (地球科学版), 34(2): 174−181.

    Google Scholar

    [77] 唐宗源. 2019. 大兴安岭中段中生代火山岩成因及地球动力学机制[D]. 长春: 吉林大学, 1–174.

    Google Scholar

    [78] 王建军, 王忠, 张达, 于秋野, 狄永军, 孙燕杰, 熊光强, 赵红涛, 刘敏. 2013. 内蒙古扎兰屯二道河铅锌银铜矿床地质特征及成因初探[J]. 矿物学报, 33(S2): 498−499.

    Google Scholar

    [79] 王晓虎, 侯增谦, 宋玉财, 王光辉, 张洪瑞, 张翀, 庄天明, 王哲, 张天福. 2012. 兰坪盆地白秧坪铅锌铜银多金属矿床成矿流体及成矿物质来源[J]. 地球科学(中国地质大学学报), 37(5): 1015−1028.

    Google Scholar

    [80] 肖庆辉. 2002. 花岗岩研究思维与方法[M]. 北京: 地质出版社.

    Google Scholar

    [81] 杨发亭. 2018. 大兴安岭中段二道河银多金属矿床成矿规律及找矿预测[J]. 西部资源, (6): 71−72. doi: 10.3969/j.issn.1672-562X.2018.06.029

    CrossRef Google Scholar

    [82] 姚晓峰, 叶天竺, 唐菊兴, 郑文宝, 丁帅, 李永胜, 甄世民. 2014. 西藏甲玛矿床硅钙界面对矽卡岩成岩及多金属成矿的影响[J]. 中国地质, 41(5): 1577−1593. doi: 10.3969/j.issn.1000-3657.2014.05.014

    CrossRef Google Scholar

    [83] 曾庆栋, 刘建明, 禇少雄, 郭云鹏, 高帅, 郭理想, 翟媛媛. 2016. 大兴安岭南段多金属矿成矿作用和找矿潜力[J]. 吉林大学学报(地球科学版), 46(4): 1100−1123.

    Google Scholar

    [84] 翟德高, 刘家军, 王建平, 彭润民, 王守光, 李玉玺, 常忠耀. 2009. 内蒙古太平沟斑岩型钼矿床Re–Os等时线年龄及其地质意义[J]. 现代地质, 23(2): 262−268. doi: 10.3969/j.issn.1000-8527.2009.02.010

    CrossRef Google Scholar

    [85] 张长青, 叶天竺, 吴越, 王成辉, 吉海, 李莉, 张婷婷. 2012. Si/Ca界面对铅锌矿床定位的控制作用及其找矿意义[J]. 矿床地质, 31(3): 405−416. doi: 10.3969/j.issn.0258-7106.2012.03.001

    CrossRef Google Scholar

    [86] 张革利, 田涛, 王瑞廷, 高卫宏, 常宗东. 2020. 凤太矿集区东塘子铅锌矿床S、Pb同位素组成对成矿物质来源的示踪[J]. 中国地质, 47(2): 472−484. doi: 10.12029/gc20200214

    CrossRef Google Scholar

    [87] 张璟, 邵军, 江山, 杨宏智. 2017. 内蒙古二道河铅锌矿床稳定同位素地球化学研究[J]. 地质论评, 63(S1): 225−227.

    Google Scholar

    [88] 郑永飞, 徐宝龙, 周根陶. 2000. 矿物稳定同位素地球化学研究[J]. 地学前缘, (2): 299−320. doi: 10.3321/j.issn:1005-2321.2000.02.001

    CrossRef Google Scholar

    [89] 朱炳泉, 李献华, 戴橦谟. 1998. 地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M]. 北京: 科学出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(5)

Article Metrics

Article views(882) PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint