2025 Vol. 46, No. 2
Article Contents

SHE Linlin, ZHU Kongyang, LI Mingyue, ZHANG Jianchao, DONG Chuanwan, SHEN Zhongyue, WANG Qiang. 2025. Applications of X-ray computed tomography in geology. East China Geology, 46(2): 149-170. doi: 10.16788/j.hddz.32-1865/P.2024.05.009
Citation: SHE Linlin, ZHU Kongyang, LI Mingyue, ZHANG Jianchao, DONG Chuanwan, SHEN Zhongyue, WANG Qiang. 2025. Applications of X-ray computed tomography in geology. East China Geology, 46(2): 149-170. doi: 10.16788/j.hddz.32-1865/P.2024.05.009

Applications of X-ray computed tomography in geology

More Information
  • X-ray computed tomography (X-CT) technology stands out for its non-destructive, rapid, high-resolution, and multi-scale three-dimensional imaging capabilities, playing an important role in geological research. Presently, there is a scarcity of comprehensive review literature on the application of X-CT technology in geology, and existing review articles often lack adequate consideration for content relevance and systematic arrangement, failing to fully reflect the growing development of X-CT technology and its expanding scope of application in geological studies. To address this gap, this article provides an overview of the current status of X-CT technology utilization in geological research both domestically and internationally. To better ensure coherence and systematics of the content, the article begins by revisiting the historical development, fundamental principles, advantages, and disadvantages of X-CT technology. Subsequently, starting from various levels of evolution of the Earth, including the formation of the Earth, the structure and changes of deep-seated materials (such as melts and magma), and the structure and alterations of shallow Earth materials (involving to processes like weathering, sedimentation, metamorphism and deformation), the paper discusses the status of X-CT technology applications in geology. Finally, the paper concludes with a summary and an outlook on the future development of X-CT technology. Overall, as X-CT technology becomes increasingly involved, geologists will have multi-level understanding on the origin, composition, and evolutionary processes of the Earth, which contributing to the advancement of the entire field of Earth sciences.

  • 加载中
  • [1] ADAMS J E. 1998. Single- and dual-energy: X-ray absorptiometry[M]//GENANT H K, GUGLIELMI G, JERGAS M. Bone densitometry and osteoporosis. Berlin, Heidelberg: Springer, 305-334.

    Google Scholar

    [2] AGOSTINI A, BORGHERESI A, MARI A, FLORIDI C, BRUNO F, CAROTTI M, SCHICCHI N, BARILE A, MAGGI S, GIOVAGNONI A. 2019. Dual-energy CT: theoretical principles and clinical applications[J]. La Radiologia Medica,124(12):1281-1295. doi: 10.1007/s11547-019-01107-8

    CrossRef Google Scholar

    [3] ALFIDI R J, MACINTYRE W J, MEANEY T F, CHERNAK E S, JANICKI P, TARAR R, LEVIN H. 1975. Experimental studies to determine application of CAT scanning to the human body[J]. American Journal of Roentgenology,124(2):199-207. doi: 10.2214/ajr.124.2.199

    CrossRef Google Scholar

    [4] ANTONELLINI M, AYDIN A, POLLARD D D, D’ONFRO P. 1994. Petrophysical study of faults in sandstone using petrographic image analysis and X-ray computerized tomography[J]. Pure and Applied Geophysics,143(1-3):181-201. doi: 10.1007/BF00874328

    CrossRef Google Scholar

    [5] BACKEBERG N R, IACOVIELLO F, RITTNER M, MITCHELL T M, JONES A P, DAY R, WHEELER J, SHEARING P R, VERMEESCH P, STRIOLO A. 2017. Quantifying the anisotropy and tortuosity of permeable pathways in clay-rich mudstones using models based on X-ray tomography[J]. Scientific Reports,7(1):14838. doi: 10.1038/s41598-017-14810-1

    CrossRef Google Scholar

    [6] BAI L P, BAKER D R, POLACCI M, HILL R J. 2011. In-situ degassing study on crystal-bearing Stromboli basaltic magmas: implications for Stromboli explosions[J]. Geophysical Research Letters,38(17):L17309.

    Google Scholar

    [7] BAI Y, ZHENG Z Z, XIU L C, ZHOU H J, XIAO Y X. 2022. UAV hyperspectral remote sensing technology and its application progress in natural resources survey[J]. East China Geology,43(4):527-538(in Chinese with English abstract).

    Google Scholar

    [8] BAILLEUL A M, LU J, LI Z H. 2021. DiceCT applied to fossilized hard tissues: a preliminary case study using a Miocene bird[J]. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution,336(4):364-375. doi: 10.1002/jez.b.23037

    CrossRef Google Scholar

    [9] BAKER D R, MANCINI L, POLACCI M, HIGGINS M D, GUALDA G A R, HILL R J, RIVERS M L. 2012. An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks[J]. Lithos,148:262-276. doi: 10.1016/j.lithos.2012.06.008

    CrossRef Google Scholar

    [10] BARAKA-LOKMANE S, MAIN I G, NGWENYA B T, ELPHICK S C. 2009. Application of complementary methods for more robust characterization of sandstone cores[J]. Marine and Petroleum Geology,26(1):39-56. doi: 10.1016/j.marpetgeo.2007.11.003

    CrossRef Google Scholar

    [11] BENDLE J M, PALMER A P, CARR S J. 2015. A comparison of micro-CT and thin section analysis of Lateglacial glaciolacustrine varves from Glen Roy, Scotland[J]. Quaternary Science Reviews,114:61-77. doi: 10.1016/j.quascirev.2015.02.008

    CrossRef Google Scholar

    [12] BOAS F E, FLEISCHMANN D. 2012. CT artifacts: causes and reduction techniques[J]. Imaging in Medicine,4(2):229-240. doi: 10.2217/iim.12.13

    CrossRef Google Scholar

    [13] BRAVIN A, COAN P, SUORTTI P. 2013. X-ray phase-contrast imaging: from pre-clinical applications towards clinics[J]. Physics in Medicine & Biology,58(1):R1-R35.

    Google Scholar

    [14] BROWN M A, BROWN M, CARLSON W D, DENISON C. 1999. Topology of syntectonic melt-flow networks in the deep crust: inferences from three-dimensional images of leucosome geometry in migmatites[J]. American Mineralogist,84(11-12):1793-1818. doi: 10.2138/am-1999-11-1208

    CrossRef Google Scholar

    [15] BROWN P, SUTIKNA T, MORWOOD M J, SOEJONO R P, JATMIKO, SAPTOMO E W, DUE R A. 2004. A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia[J]. Nature,431(7012):1055-1061. doi: 10.1038/nature02999

    CrossRef Google Scholar

    [16] BRUN F, MANCINI L, KASAE P, FAVRETTO S, DREOSSI D, TROMBA G. 2010. Pore3D: a software library for quantitative analysis of porous media[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 615(3): 326-332.

    Google Scholar

    [17] CAO Y N. 2015. Application CT scanning technology analysis micro-flooding experiments and the residual oil[J]. CT Theory and Applications,24(1):47-56 (in Chinese with English abstract).

    Google Scholar

    [18] CAO S Y, LIU J L. 2006. Modern techniques for the analysis of rock microstructure: EBSD and its application[J]. Advances in Earth Science,21(10):1091-1096 (in Chinese with English abstract).

    Google Scholar

    [19] CARLSON W D, DENISON C. 1992. Mechanisms of porphyroblast crystallization: results from high-resolution computed X-ray tomography[J]. Science,257(5074):1236-1239. doi: 10.1126/science.257.5074.1236

    CrossRef Google Scholar

    [20] CARLSON W D, DENISON C, KETCHAM R A. 1995. Controls on the nucleation and growth of porphyroblasts: kinetics from natural textures and numerical models[J]. Geological Journal,30(3-4):207-225. doi: 10.1002/gj.3350300303

    CrossRef Google Scholar

    [21] CARLSON W D, MCCOY T J. 1998. High-resolution X-ray computed tomography of lodranite GRA 95209[C]//Proceedings of the 29th Lunar and Planetary Science Conference. Houston: Lunar and Planetary Science Institute.

    Google Scholar

    [22] CHAWLA N, SIDHU R S, GANESH V V. 2006. Three-dimensional visualization and microstructure-based modeling of deformation in particle-reinforced composites[J]. Acta Materialia,54(6):1541-1548. doi: 10.1016/j.actamat.2005.11.027

    CrossRef Google Scholar

    [23] CHEN J Y, BOTTJER D J, DAVIDSON E H, DORNBOS S Q, GAO X, YANG Y H, LI C W, LI G, WANG X Q, XIAN D C, WU H J, HWU Y K, TAFFOREAU P. 2006. Phosphatized polar lobe-forming embryos from the Precambrian of southwest China[J]. Science,312(5780):1644-1646. doi: 10.1126/science.1125964

    CrossRef Google Scholar

    [24] CHEN B, LIN J F, CHEN J H, ZHANG H Z, ZENG Q S. 2016. Synchrotron-based high-pressure research in materials science[J]. MRS Bulletin,41(6):473-478. doi: 10.1557/mrs.2016.110

    CrossRef Google Scholar

    [25] CHEN X, REGENAUER-LIEB K, ROSHAN H. 2022. Temperature-induced ductile–brittle transition in porous carbonates and change in compaction band growth revealed by 4-D X-ray tomography[J]. Rock Mechanics and Rock Engineering,55(3):1087-1110. doi: 10.1007/s00603-021-02736-0

    CrossRef Google Scholar

    [26] CHEN L L, SUN Y, WANG C, SHA P, JIN H J, LIU M H, LI A Y. 2023. Study on the characteristics of pore change in tuff under the frost and salt action using high-precision CT scanning equipment[J]. Applied Sciences,13(18):10483. doi: 10.3390/app131810483

    CrossRef Google Scholar

    [27] CHEN J H, WEIDNER D J, WANG L P, VAUGHAN M T, YOUNG C E. 2005. Density measurements of molten materials at high pressure using synchrotron X-ray radiography: melting volume of FeS[M]//CHEN J H, WANG Y B, DUFFY T S, SHEN G Y, DOBRZHINETSKAYA L F. Advances in high-pressure technology for geophysical applications. Amsterdam: Elsevier, 185-194.

    Google Scholar

    [28] CHENG R, QIAN S P, SUN T L, ZHOU H Y. 2020. Non-destructive and fast analysis of content and size distribution of vesicles in volcanic rock by X-ray computed tomography[J]. Rock and Mineral Analysis,39(3):398-407 (in Chinese with English abstract).

    Google Scholar

    [29] CNUDDE V, BOONE M N. 2013. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications[J]. Earth-Science Reviews,123:1-17. doi: 10.1016/j.earscirev.2013.04.003

    CrossRef Google Scholar

    [30] COLES M E, HAZLETT R D, SPANNE P, SOLL W E, MUEGGE E L, JONES K W. 1998. Pore level imaging of fluid transport using synchrotron X-ray microtomography[J]. Journal of Petroleum Science and Engineering,19(1-2):55-63. doi: 10.1016/S0920-4105(97)00035-1

    CrossRef Google Scholar

    [31] COLES M E, MUEGGE E L, SPRUNT E S. 1991. Applications of CAT scanning for oil and gas production[J]. IEEE Transactions on Nuclear Science,38(2):510-515. doi: 10.1109/23.289350

    CrossRef Google Scholar

    [32] CONROY G C, VANNIER M W. 1984. Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography[J]. Science,226(4673):456-458. doi: 10.1126/science.226.4673.456

    CrossRef Google Scholar

    [33] CORMACK A M. 1964. Representation of a function by its line integrals, with some radiological applications. II[J]. Journal of Applied Physics,35(10):2908-2913. doi: 10.1063/1.1713127

    CrossRef Google Scholar

    [34] CURRY III T S, DOWDEY J E, MURRY JR R C. 1990. Christensen’s physics of diagnostic radiology[M]. 4th ed. Philadelphia: Lea and Febiger.

    Google Scholar

    [35] DE BOEVER W, DERLUYN H, VAN LOO D, VAN HOOREBEKE L, CNUDDE V. 2015. Data-fusion of high resolution X-ray CT, SEM and EDS for 3D and pseudo-3D chemical and structural characterization of sandstone[J]. Micron,74:15-21. doi: 10.1016/j.micron.2015.04.003

    CrossRef Google Scholar

    [36] EBEL D S, RIVERS M L. 2007. Meteorite 3-D synchrotron microtomography: methods and applications[J]. Meteoritics & Planetary Science,42(9):1627-1646.

    Google Scholar

    [37] EL ALBANI A, MAZURIER A, EDGECOMBE G D, AZIZI A, EL BAKHOUCH A, BERKS H O, BOUOUGRI E H, CHRAIKI I, DONOGHUE P C J, FONTAINE C, GAINES R R, GHNAHALLA M, MEUNIER A, TRENTESAUX A, PATERSON J R. 2024. Rapid volcanic ash entombment reveals the 3D anatomy of Cambrian trilobites[J]. Science,384(6703):1429-1435. doi: 10.1126/science.adl4540

    CrossRef Google Scholar

    [38] ENDRIZZI M. 2018. X-ray phase-contrast imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878: 88-98.

    Google Scholar

    [39] EVANS C L, WIGHTMAN E M, YUAN X. 2015. Quantifying mineral grain size distributions for process modelling using X-ray micro-tomography[J]. Minerals Engineering,82:78-83. doi: 10.1016/j.mineng.2015.03.026

    CrossRef Google Scholar

    [40] FAN L F, FAN Y D, XI Y, GAO J W. 2022. Spatially distributed damage in sandstone under stress-freeze-thaw coupling conditions[J]. Journal of Rock Mechanics and Geotechnical Engineering,14(6):1910-1922. doi: 10.1016/j.jrmge.2022.04.007

    CrossRef Google Scholar

    [41] FAN L F, QIU B, GAO J W. 2023. Evaluation of microstructure deterioration inside sandstone under three different freezing-thawing cycle treatments[J]. Bulletin of Engineering Geology and the Environment,82(5):161. doi: 10.1007/s10064-023-03157-9

    CrossRef Google Scholar

    [42] FAN N, WANG J R, DENG C B, FAN Y P, WANG T T, GUO X Y. 2020. Quantitative characterization of coal microstructure and visualization seepage of macropores using CT-based 3D reconstruction[J]. Journal of Natural Gas Science and Engineering,81:103384. doi: 10.1016/j.jngse.2020.103384

    CrossRef Google Scholar

    [43] FEIST M, LIU J Y, TAFFOREAU P. 2005. New insights into Paleozoic charophyte morphology and phylogeny[J]. American Journal of Botany,92(7):1152-1160. doi: 10.3732/ajb.92.7.1152

    CrossRef Google Scholar

    [44] FLENNER S, STORM M, KUBEC A, LONGO E, DÖRING F, PELT D M, DAVID C, MÜLLER M, GREVING I. 2020. Pushing the temporal resolution in absorption and Zernike phase contrast nanotomography: enabling fast in situ experiments[J]. Journal of Synchrotron Radiation,27(5):1339-1346. doi: 10.1107/S1600577520007407

    CrossRef Google Scholar

    [45] FORGHANI R, DE MAN B, GUPTA R. 2017. Dual-energy computed tomography: physical principles, approaches to scanning, usage, and implementation: part 1[J]. Neuroimaging Clinics of North America,27(3):371-384. doi: 10.1016/j.nic.2017.03.002

    CrossRef Google Scholar

    [46] FU H, HAN J H, SONG R C, WANG T Z. 2021. Fundamentals of geology[M]. Beijing: Geology Press, 1-4 (in Chinese).

    Google Scholar

    [47] GAO C L,CHENG S Q, SHI X Y, HUANG C, FAN Y F, ZHOU Z J, SUN H. 2024. Radial resistivity characteristics and oil-bearing properties of low-permeability reservoirs: a case study of the Chang 6-1 Formation in the Luohe oilfield, Ordos Basin[J]. Geology and Exploration,60(2):414-424(in Chinese with English abstract).

    Google Scholar

    [48] GIAMAS V, KOUTSOVITIS P, SIDERIDIS A, TURBERG P, GRAMMATIKOPOULOS T A, PETROUNIAS P, GIANNAKOPOULOU P P, KOUKOUZAS N, HATZIPANAGIOTOU K. 2022. Effectiveness of X-ray micro-CT applications upon mafic and ultramafic ophiolitic rocks[J]. Micron,158:103292. doi: 10.1016/j.micron.2022.103292

    CrossRef Google Scholar

    [49] GIOVENCO E, PERRILLAT J P, BOULARD E, KING A, GUIGNOT N, LE GODEC Y. 2021. Quantitative 4D X-ray microtomography under extreme conditions: a case study on magma migration[J]. Journal of Synchrotron Radiation,28(5):1598-1609. doi: 10.1107/S1600577521007049

    CrossRef Google Scholar

    [50] GU L X, LI J H. 2020. The focused ion beam (FIB) technology and its applications for earth and planetary sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1119-1140 (in Chinese with English abstract).

    Google Scholar

    [51] GUAN Z L, XIE C J, DONG H, LUO G P. 2009. 3D imaging and visualization technology of micro pore structure in porous media[J]. Geological Science and Technology Information,28(2):115-121 (in Chinese with English abstract).

    Google Scholar

    [52] GUO Z F, ZHANG M L, CHENG Z H, LIU J Q, ZHANG L H, LI X H. 2011. A Link of measurements of lava flows to Palaeoelevation estimations and its application in Tengchong volcanic eruptive field in Yunnan Province (SW China)[J]. Acta Petrologica Sinica,27(10):2863-2872 (in Chinese with English abstract).

    Google Scholar

    [53] HERIAWAN M N, KOIKE K. 2015. Coal quality related to microfractures identified by CT image analysis[J]. International Journal of Coal Geology,140:97-110. doi: 10.1016/j.coal.2015.02.001

    CrossRef Google Scholar

    [54] HIGASHIGAITO K, EULER A, EBERHARD M, FLOHR T G, SCHMIDT B, ALKADHI H. 2022. Contrast-enhanced abdominal CT with clinical photon-counting detector CT: assessment of image quality and comparison with energy-integrating detector CT[J]. Academic Radiology,29(5):689-697. doi: 10.1016/j.acra.2021.06.018

    CrossRef Google Scholar

    [55] HIRONO T, TAKAHASHI M, NAKASHIMA S. 2003. Direct imaging of fluid flow in fault-related rocks by X-ray CT[M]//MEES F, SWENNEN R, VAN GEET M, JACOBS P. Applications of X-ray computed tomography in the geosciences. London: The Geological Society, 107-115.

    Google Scholar

    [56] HONARPOUR M M, MCGEE K R, CROCKER M E, MAEREFAT N L, SHARMA B. 1986. Detailed core description of a dolomite sample from the Upper Madison Limestone Group[C]//SPE Rocky Mountain Regional Meeting. Richardson: Society of Petroleum Engineers, 501-512.

    Google Scholar

    [57] HOU W, XIE H S. 2003. Meteorite genesis and the origin of the Earth[M]. Beijing: Seismological Press (in Chinese).

    Google Scholar

    [58] HOUNSFIELD G N. 1973. Computerized transverse axial scanning (tomography): part Ⅰ. Description of system[J]. British Journal of Radiology,46(552):1016-1022. doi: 10.1259/0007-1285-46-552-1016

    CrossRef Google Scholar

    [59] HOUNSFIELD G N. 1976. Historical notes on computerized axial tomography[J]. Journal of the Canadian Association of Radiologists,27(3):135-142.

    Google Scholar

    [60] HSIEH J. 2003. Computed tomography: principles, design, artifacts, and recent advances[M]. Bellingham: SPIE Optical Engineering Press.

    Google Scholar

    [61] HU J F, FORSTER C A, XU X, ZHAO Q, HE Y M, HAN F L. 2022. Computed tomographic analysis of the dental system of three Jurassic ceratopsians and implications for the evolution of tooth replacement pattern and diet in early-diverging ceratopsians[J]. eLife,11:e76676. doi: 10.7554/eLife.76676

    CrossRef Google Scholar

    [62] HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117(in Chinese with English abstract).

    Google Scholar

    [63] KATAYAMA Y, TSUJI K, KANDA H, NOSAKA H, YAOITA K, KIKEGAWA T, SHIMOMURA O. 1996. Density of liquid tellurium under pressure[J]. Journal of Non-Crystalline Solids,205-207:451-454. doi: 10.1016/S0022-3093(96)00259-1

    CrossRef Google Scholar

    [64] KATAYAMA Y, TSUJI K, SHIMOMURA O, KIKEGAWA T, MEZOUAR M, MARTINEZ-GARCIA D, BESSON J M, HÄUSERMANN D, HANFLAND M. 1998. Density measurements of liquid under high pressure and high temperature[J]. Journal of Synchrotron Radiation,5(3):1023-1025. doi: 10.1107/S0909049597015239

    CrossRef Google Scholar

    [65] KAWAKATA H, CHO A, YANAGIDANI T, SHIMADA M. 1997. The observations of faulting in westerly granite under triaxial compression by X-ray CT scan[J]. International Journal of Rock Mechanics and Mining Sciences, 34(3-4): 151. e1-151. e12.

    Google Scholar

    [66] KETCHAM R A. 2005. Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography[J]. Journal of Structural Geology,27(7):1217-1228. doi: 10.1016/j.jsg.2005.02.006

    CrossRef Google Scholar

    [67] KETCHAM R A, CARLSON W D. 2001. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences[J]. Computers & Geosciences,27(4):381-400.

    Google Scholar

    [68] KORENBLUM B I, TETELBAUM S I, TYUTIN A A. 1958. About a scheme of tomography[J]. Proceedings of Higher Educational Institutions – Radiophysics,1:151-157.

    Google Scholar

    [69] LAK M, FLECK G, AZAR D, ENGEL M S, KADDUMI H F, NERAUDEAU D, TAFFOREAU P, NEL A. 2009. Phase contrast X-ray synchrotron microtomography and the oldest damselflies in amber (Odonata: Zygoptera: Hemiphlebiidae)[J]. Zoological Journal of the Linnean Society,156(4):913-923. doi: 10.1111/j.1096-3642.2008.00497.x

    CrossRef Google Scholar

    [70] LARUE A, BAKER D R, POLACCI M, ALLARD P, SODINI N. 2013. Can vesicle size distributions assess eruption intensity during volcanic activity?[J]. Solid Earth,4(2):373-380. doi: 10.5194/se-4-373-2013

    CrossRef Google Scholar

    [71] LAUTERBUR P C. 1973. Image formation by induced local interactions: examples employing nuclear magnetic resonance[J]. Nature,242(5394):190-191. doi: 10.1038/242190a0

    CrossRef Google Scholar

    [72] LESHER C E, WANG Y B, GAUDIO S, CLARK A, NISHIYAMA N, RIVERS M. 2009. Volumetric properties of magnesium silicate glasses and supercooled liquid at high pressure by X-ray microtomography[J]. Physics of the Earth and Planetary Interiors,174(1-4):292-301. doi: 10.1016/j.pepi.2008.10.023

    CrossRef Google Scholar

    [73] LI H S. 2011. Classification of deterioration states of historical stone relics and its application[J]. Sciences of Conservation and Archaeology,23(1):1-6 (in Chinese with English abstract).

    Google Scholar

    [74] LI G, CHEN J Y, XIAN D C, YIN Z J, TAFFOREAU P. 2013. Nondestructive investigation of the 3D structures of micron fossils using synchrotron radiation imaging[J]. Chinese Bulletin of Life Sciences,25(8):787-793 (in Chinese with English abstract).

    Google Scholar

    [75] LIU J L, CAO S Y, ZOU Y X, SONG Z J. 2008. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China,27(10):1638-1645 (in Chinese with English abstract).

    Google Scholar

    [76] LIU J, MENG F B, LIU Z C, QIAN J H, SHEN W J. 2023. CT-based 3D atlas of the rock[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [77] LIU Q, SUN M D, SUN X D, LIU B, OSTADHASSAN M, HUANG W X, CHEN X X, PAN Z J. 2023. Pore network characterization of shale reservoirs through state-of-the-art X-ray computed tomography: a review[J]. Gas Science and Engineering,113:204967. doi: 10.1016/j.jgsce.2023.204967

    CrossRef Google Scholar

    [78] LIU Z F, XIANG Y, LIU W, HUANG J Y, LIANG Z, ZHANG Q H, LI W L. 2024. Effect of freeze-thaw cycles on microstructure and hydraulic characteristics of claystone: a case study of slope stability from open-pit mines in wet regions[J]. Water,16(5):640. doi: 10.3390/w16050640

    CrossRef Google Scholar

    [79] LOIS-MORALES P, EVANS C, WEATHERLEY D. 2022. Methodology for quantitative rock characterisation using multiple imaging systems and random particles generation[J]. MethodsX,9:101807. doi: 10.1016/j.mex.2022.101807

    CrossRef Google Scholar

    [80] LOUIS L, WONG T F, BAUD P, TEMBE S. 2006. Imaging strain localization by X-ray computed tomography: discrete compaction bands in Diemelstadt sandstone[J]. Journal of Structural Geology,28(5):762-775. doi: 10.1016/j.jsg.2006.02.006

    CrossRef Google Scholar

    [81] LU Y M, SU K F, FU F F, HUANG B Q, LIU L J, WANG N. 2021. X-ray CT scanning technique and its application to the Core 01 in the northern South China Sea for sedimentary environment reconstruction[J]. Marine Geology & Quaternary Geology,41(4):215-221 (in Chinese with English abstract).

    Google Scholar

    [82] LUTH S, SAHLSTRÖM F, BERGQVIST M, HANSSON A, LYNCH E P, SÄDBOM S, JONSSON E, ANDERSSON S S, ARVANITIDIS N. 2022. Combined X-ray computed tomography and X-ray fluorescence drill core scanning for 3-D rock and ore characterization: implications for the Lovisa stratiform Zn-Pb deposit and its structural setting, Bergslagen, Sweden[J]. Economic Geology,117(6):1255-1273. doi: 10.5382/econgeo.4929

    CrossRef Google Scholar

    [83] LYMBEROPOULOS D P, PAYATAKES A C. 1992. Derivation of topological, geometrical, and correlational properties of porous media from pore-chart analysis of serial section data[J]. Journal of Colloid and Interface Science,150(1):61-80. doi: 10.1016/0021-9797(92)90268-Q

    CrossRef Google Scholar

    [84] MA J, LIU Z C, LI C F, LI G, LIU H, TANG B B. 2021. Discussion on application of CT technology in the mineralogy of uranium ore[J]. Uranium Geology,37(3):512-518 (in Chinese with English abstract).

    Google Scholar

    [85] MATTSSON T, PETRI B, ALMQVIST B, MCCARTHY W, BURCHARDT S, PALMA J O, HAMMER Ø, GALLAND O. 2021. Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy[J]. Journal of Geophysical Research: Solid Earth,126(6):e2021JB021895. doi: 10.1029/2021JB021895

    CrossRef Google Scholar

    [86] MCCOY T J, CARLSON W D, NITTLER L R, STROUD R M, BOGARD D D, GARRISON D H. 2006. Graves Nunataks 95209: a snapshot of metal segregation and core formation[J]. Geochimica et Cosmochimica Acta,70(2):516-531. doi: 10.1016/j.gca.2005.09.019

    CrossRef Google Scholar

    [87] MENA A, FRANCÉS G, PÉREZ-ARLUCEA M, AGUIAR P, BARREIRO-VÁZQUEZ J D, IGLESIAS A, BARREIRO-LOIS A. 2015. A novel sedimentological method based on CT-scanning: use for tomographic characterization of the Galicia Interior Basin[J]. Sedimentary Geology,321:123-138. doi: 10.1016/j.sedgeo.2015.03.007

    CrossRef Google Scholar

    [88] MIAO B K, HU S, CHEN H Y, ZHANG C T, XIA Z P, HUANG L L, XUE Y L, XIE L F. 2021. Progresses of researches on meteoritics and cosmochemistry from 2011 to 2020 in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 40(6): 1272-1286 (in Chinese with English abstract).

    Google Scholar

    [89] MINTO J M, HINGERL F F, BENSON S M, LUNN R J. 2017. X-ray CT and multiphase flow characterization of a 'bio-grouted' sandstone core: the effect of dissolution on seal longevity[J]. International Journal of Greenhouse Gas Control,64:152-162. doi: 10.1016/j.ijggc.2017.07.007

    CrossRef Google Scholar

    [90] MO S Y, HE S L, LUAN G H, ZHANG H Y, LEI G. 2014. Use of CT technology to investigate water flooding in ultra-low permeability sandstone[J]. Science Technology and Engineering,14(9):25-28,43 (in Chinese with English abstract).

    Google Scholar

    [91] MORITZ L, WESENER T. 2019. The first known fossils of the Platydesmida—an extant American genus in Cretaceous amber from Myanmar (Diplopoda: Platydesmida: Andrognathidae)[J]. Organisms Diversity & Evolution,19(3):423-433.

    Google Scholar

    [92] MOURO L D, VIEIRA L D, MOREIRA A C, PIOVESAN E K, FERNANDES C P, FAUTH G, HORODISKY R S, GHILARDI R P, MANTOVANI I F, BAECKER-FAUTH S, KRAHL G, WAICHEL B L, DA SILVA M S. 2021. Testing the X-ray computed microtomography on microfossil identification: an example from Sergipe-Alagoas Basin, Brazil[J]. Journal of South American Earth Sciences,107:103074. doi: 10.1016/j.jsames.2020.103074

    CrossRef Google Scholar

    [93] NI H L, BOON M, GARING C, BENSON S M. 2019. Coreflooding data on nine sandstone cores to measure CO2 residual trapping[J]. Data in Brief,25:104249. doi: 10.1016/j.dib.2019.104249

    CrossRef Google Scholar

    [94] NI B, HUANG Z Q, GUO J, XING G F, ZHANG Y L, NIU S D. 2023. Identification of altered mineral information in the Wuyishan metallogenic belt based on airborne and spaceborne hyperspectral remote sensing[J]. East China Geology,44(1):67-81(in Chinese with English abstract).

    Google Scholar

    [95] NI W J, ZHANG J, MIAO B K. 2017. The technology and processing skills of meteorite sample production[J]. Mineral Resources and Geology,31(1):158-165 (in Chinese with English abstract).

    Google Scholar

    [96] OHTANI E, SUZUKI A, ANDO R, URAKAWA S, FUNAKOSHI K, KATAYAMA Y. 2005. Viscosity and density measurements of melts and glasses at high pressure and temperature by using the multi-anvil apparatus and synchrotron X-ray radiation[M]//CHEN J H, WANG Y B, DUFFY T S, SHEN G Y, DOBRZHINETSKAYA L F. Advances in high-pressure technology for geophysical applications. Amsterdam: Elsevier, 195-209.

    Google Scholar

    [97] OLDENDORF W H. 1961. Isolated flying spot detection of radiodensity discontinuities—displaying the internal structural pattern of a complex object[J]. IRE Transactions on Bio-Medical Electronics,8(1):68-72. doi: 10.1109/TBMEL.1961.4322854

    CrossRef Google Scholar

    [98] OLEJNICZAK A J, GRINE F E. 2005. High-resolution measurement of Neandertal tooth enamel thickness by micro-focal computed tomography: news & views[J]. South African Journal of Science,101(5):219-220.

    Google Scholar

    [99] OLEJNICZAK A J, SMITH T M, FEENEY R N M, MACCHIARELLI R, MAZURIER A, BONDIOLI L, ROSAS A, FORTEA J, DE LA RASILLA M, GARCIA-TABERNERO A, RADOVČIĆ J, SKINNER M M, TOUSSAINT M, HUBLIN J J. 2008. Dental tissue proportions and enamel thickness in Neandertal and modern human molars[J]. Journal of Human Evolution,55(1):12-23. doi: 10.1016/j.jhevol.2007.11.004

    CrossRef Google Scholar

    [100] ORSI T H, EDWARDS C M, ANDERSON A L. 1994. X-ray computed tomography: a nondestructive method for quantitative analysis of sediment cores[J]. Journal of Sedimentary Research,64(3a):690-693. doi: 10.1306/D4267E74-2B26-11D7-8648000102C1865D

    CrossRef Google Scholar

    [101] PARK J, HYUN C U, PARK H D. 2015. Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action[J]. Bulletin of Engineering Geology and the Environment,74(2):555-565. doi: 10.1007/s10064-014-0630-8

    CrossRef Google Scholar

    [102] PERRICHOT V, MARION L, NÉRAUDEAU D, VULLO R, TAFFOREAU P. 2008. The early evolution of feathers: fossil evidence from Cretaceous amber of France[J]. Proceedings of the Royal Society B: Biological Sciences,275(1639):1197-1202. doi: 10.1098/rspb.2008.0003

    CrossRef Google Scholar

    [103] PHILPOTTS A R, BRUSTMAN C M, SHI J Y, CARLSON W D, DENISON C. 1999. Plagioclase-chain networks in slowly cooled basaltic magma[J]. American Mineralogist,84(11-12):1819-1829. doi: 10.2138/am-1999-11-1209

    CrossRef Google Scholar

    [104] PHILPOTTS A R, CARROLL M. 1996. Physical properties of partly melted tholeiitic basalt[J]. Geology,24(11):1029-1032. doi: 10.1130/0091-7613(1996)024<1029:PPOPMT>2.3.CO;2

    CrossRef Google Scholar

    [105] PHILPOTTS A R, DICKSON L D. 2000. The formation of plagioclase chains during convective transfer in basaltic magma[J]. Nature,406(6791):59-61. doi: 10.1038/35017542

    CrossRef Google Scholar

    [106] POHL H, WIPFLER B, GRIMALDI D, BECKMANN F, BEUTEL R G. 2010. Reconstructing the anatomy of the 42-million-year-old fossil Mengea tertiaria (Insecta, Strepsiptera)[J]. Naturwissenschaften,97(9):855-859. doi: 10.1007/s00114-010-0703-x

    CrossRef Google Scholar

    [107] PURCELL C, HARBERT W, SOONG Y, MCLENDON T R, HALJASMAA I V, MCINTYRE D, JIKICH J. 2009. Velocity measurements in reservoir rock samples from the SACROC unit using various pore fluids, and integration into a seismic survey taken before and after a CO2 sequestration flood[J]. Energy Procedia,1(1):2323-2331. doi: 10.1016/j.egypro.2009.01.302

    CrossRef Google Scholar

    [108] RADON J. 1917. Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten[J]. Berichte über die Verhandlungen der Sä chsische Akademie der Wissenschaften,69:262-277.

    Google Scholar

    [109] RIEPPEL O. 2007. The naso-frontal joint in snakes as revealed by high-resolution X-ray computed tomography of intact and complete skulls[J]. Zoologischer Anzeiger - A Journal of Comparative Zoology,246(3):177-191. doi: 10.1016/j.jcz.2007.04.001

    CrossRef Google Scholar

    [110] RIGAUTS H, MARCHAL G, BAERT A L, HUPKE R. 1990. Initial experience with volume CT scanning[J]. Journal of Computer Assisted Tomography,14(4):675-682. doi: 10.1097/00004728-199007000-00035

    CrossRef Google Scholar

    [111] RIVERS M L, WANG Y B, UCHIDA T. 2004. Microtomography at GeoSoilEnviroCARS[C]//Proceedings of SPIE 5535, Developments in X-Ray Tomography IV. Denver: SPIE, 783-791.

    Google Scholar

    [112] RUIZ DE ARGANDOÑA V G, RODRIGUEZ REY A, CELORIO C, SUÁREZ DEL RÍO L M, CALLEJA L, LLAVONA J. 1999. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(7): 633-637.

    Google Scholar

    [113] SAHAGIAN D L, MAUS J E. 1994. Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation[J]. Nature,372(6505):449-451. doi: 10.1038/372449a0

    CrossRef Google Scholar

    [114] SAHAGIAN D L, PROUSSEVITCH A A. 2007. Paleoelevation measurement on the basis of vesicular basalts[J]. Reviews in Mineralogy and Geochemistry,66(1):195-213. doi: 10.2138/rmg.2007.66.8

    CrossRef Google Scholar

    [115] SAHAGIAN D L, PROUSSEVITCH A A, CARLSON W D. 2002a. Analysis of vesicular basalts and lava emplacement processes for application as a paleobarometer/paleoaltimeter[J]. The Journal of Geology,110(6):671-685. doi: 10.1086/342627

    CrossRef Google Scholar

    [116] SAHAGIAN D L, PROUSSEVITCH A A, CARLSON W D. 2002b. Timing of Colorado Plateau uplift: initial constraints from vesicular basalt-derived paleoelevations[J]. Geology,30(9):807-810. doi: 10.1130/0091-7613(2002)030<0807:TOCPUI>2.0.CO;2

    CrossRef Google Scholar

    [117] SAUR H, MOONEN P, AUBOURG C. 2021. Grain fabric heterogeneity in strained shales: insights from XCT measurements[J]. Journal of Geophysical Research: Solid Earth,126(9):e2021JB022025. doi: 10.1029/2021JB022025

    CrossRef Google Scholar

    [118] SCHREURS G, HÄNNI R, PANIEN M, VOCK P. 2003. Analysis of analogue models by helical X-ray computed tomography[M]//MEES F, SWENNEN R, VAN GEET M, JACOBS P. Applications of X-ray computed tomography in the geosciences. London: The Geological Society, 213-223.

    Google Scholar

    [119] SELLERS E, VERVOORT A, VAN CLEYNENBREUGEL J. 2003. Three-dimensional visualization of fractures in rock test samples, simulating deep level mining excavations, using X-ray computed tomography[M]//MEES F, SWENNEN R, VAN GEET M, JACOBS P. Applications of X-ray computed tomography in the geosciences. London: The Geological Society, 69-80.

    Google Scholar

    [120] SHI G L, HERRERA F, HERENDEEN P S, CLARK E G, CRANE P R. 2021. Mesozoic cupules and the origin of the angiosperm second integument[J]. Nature,594(7862):223-226. doi: 10.1038/s41586-021-03598-w

    CrossRef Google Scholar

    [121] SHI H L, ROUGELOT T, XIE S Y, SHAO J F, TALANDIER J. 2023. Investigation of strain fields and anisotropy in triaxial tests on Callovo-Oxfordian claystone by X-ray micro-tomography and digital volume correlation[J]. International Journal of Rock Mechanics and Mining Sciences,163:105330. doi: 10.1016/j.ijrmms.2023.105330

    CrossRef Google Scholar

    [122] SIEGEL M J, KAZA R K, BOLUS D N, BOLL D T, ROFSKY N M, DE CECCO C N, FOLEY W D, MORGAN D E, SCHOEPF U J, SAHANI D V, SHUMAN W P, VRTISKA T J, YEH B M, BERLAND L L. 2016. White paper of the society of computed body tomography and magnetic resonance on dual-energy CT, Part 1: technology and terminology[J]. Journal of Computer Assisted Tomography,40(6):841-845. doi: 10.1097/RCT.0000000000000531

    CrossRef Google Scholar

    [123] SIMONS F J, VERHELST F D R, SWENNEN R. 1997. Quantitative characterization of coal by means of microfocal X-ray computed microtomography (CMT) and color image analysis (CIA)[J]. International Journal of Coal Geology,34(1-2):69-88. doi: 10.1016/S0166-5162(97)00011-6

    CrossRef Google Scholar

    [124] SLOYAN K, MELKONYAN H, APOSTOLERIS H, DAHLEM M S, CHIESA M, AL GHAFERI A. 2021. A review of focused ion beam applications in optical fibers[J]. Nanotechnology,32(47):472004. doi: 10.1088/1361-6528/ac1d75

    CrossRef Google Scholar

    [125] SMITH T M, TAFFOREAU P, REID D J, GRÜN R, EGGINS S, BOUTAKIOUT M, HUBLIN J J. 2007. Earliest evidence of modern human life history in North African early Homo sapiens[J]. Proceedings of the National Academy of Sciences of the United States of America,104(15):6128-6133.

    Google Scholar

    [126] SOK R M, KNACKSTEDT M A, VARSLOT T, GHOUS A, LATHAM S, SHEPPARD A P. 2010. Pore scale characterization of carbonates at multiple scales: integration of micro-CT, BSEM, and FIBSEM[J]. Petrophysics, 51(6):379-387.

    Google Scholar

    [127] SONG S R, JONES K W, LINDQUIST B W, DOWD B A, SAHAGIAN D L. 2001. Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks[J]. Bulletin of Volcanology,63(4):252-263. doi: 10.1007/s004450100141

    CrossRef Google Scholar

    [128] SONG X X, TANG Y G, LI W, FENG Z C, KANG Z Q, LI Y J, XIANG J H. 2013. Advanced characterization of seepage pores in deformed coals based on micro-CT[J]. Journal of China Coal Society,38(3):435-440 (in Chinese with English abstract).

    Google Scholar

    [129] SONG Y J, ZHOU Y, YANG H M, LI C J, CAO J H, SUN Y W, HAN D Y. 2023. Mesoscopic freeze-thaw damage evolution characteristics of fractured sandstone at different saturations[J]. Geofluids,2023:3399012.

    Google Scholar

    [130] SU Y, ZHA M, LIU K Y, DING X J, QU J X, JIN J H. 2021. Characterization of pore structures and implications for flow transport property of tight reservoirs: a case study of the Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwestern China[J]. Energies,14(5):1251. doi: 10.3390/en14051251

    CrossRef Google Scholar

    [131] TAFFOREAU P, BOISTEL R, BOLLER E, BRAVIN A, BRUNET M, CHAIMANEE Y, CLOETENS P, FEIST M, HOSZOWSKA J, JAEGER J J, KAY R F, LAZZARI V, MARIVAUX L, NEL A, NEMOZ C, THIBAULT X, VIGNAUD P, ZABLER S. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens[J]. Applied Physics A,83(2):195-202. doi: 10.1007/s00339-006-3507-2

    CrossRef Google Scholar

    [132] TAKEUCHI A, SUZUKI Y, UESUGI K. 2013. Development of scanning-imaging X-ray microscope for quantitative three-dimensional phase contrast microimaging[J]. Journal of Physics: Conference Series,463:012034. doi: 10.1088/1742-6596/463/1/012034

    CrossRef Google Scholar

    [133] TAO X F, WU D C. 2019. Physical geology[M]. 3rd ed. Beijing: Science Press (in Chinese).

    Google Scholar

    [134] TARLING D H, HROUDA F. 1993. The magnetic anisotropy of rocks[M]. London: Chapman and Hall.

    Google Scholar

    [135] TERASAKI H, NISHIDA K, SHIBAZAKI Y, SAKAMAKI T, SUZUKI A, OHTANI E, KIKEGAWA T. 2010. Density measurement of Fe3C liquid using X-ray absorption image up to 10 GPa and effect of light elements on compressibility of liquid iron[J]. Journal of Geophysical Research: Solid Earth,115(B6):B06207.

    Google Scholar

    [136] TETELBAUM S I. 1956. About the problem of improvement of images obtained with the help of optical and analog instruments[J]. Bulletin of the Kiev Polytechnic Institute,21:222.

    Google Scholar

    [137] TETELBAUM S I. 1957. About a method of obtaining volumetric images by means of X-ray radiation[J]. Bulletin of the Kiev Polytechnic Institute,22:154-160.

    Google Scholar

    [138] VAN GEET M, SWENNEN R, WEVERS M. 2000. Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography[J]. Sedimentary Geology,132(1-2):25-36. doi: 10.1016/S0037-0738(99)00127-X

    CrossRef Google Scholar

    [139] VAN STAPPEN J, DE KOCK T, BOONE M A, OLAUSSEN S, CNUDDE V. 2014. Pore-scale characterisation and modelling of CO2 flow in tight sandstones using X-ray micro-CT; Knorringfjellet Formation of the Longyearbyen CO2 Lab, Svalbard[J]. Norwegian Journal of Geology,94(2-3):201-215.

    Google Scholar

    [140] VOGEL H J, ROTH K. 2001. Quantitative morphology and network representation of soil pore structure[J]. Advances in Water Resources,24(3-4):233-242. doi: 10.1016/S0309-1708(00)00055-5

    CrossRef Google Scholar

    [141] VOORN M, EXNER U, BARNHOORN A, BAUD P, REUSCHLÉ T. 2015. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples[J]. Journal of Petroleum Science and Engineering,127:270-285. doi: 10.1016/j.petrol.2014.12.019

    CrossRef Google Scholar

    [142] WANG H. 2020. Study on mesoscopic damage of freeze-thaw rocks based on CT image processing technology[D]. Xi’an: Xi'an University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [143] WANG C T, REN M J, QIN W, YANG X Y, CAI Y T. 2021. Study on mineral spectral characteristics of ink stone slate in Shexian County, southern Anhui Province[J]. East China Geology,42(3):286-292(in Chinese with English abstract).

    Google Scholar

    [144] WANG G, SHEN J N, CHU X Y, CAO C J, JIANG C H, ZHOU X H. 2017. Characterization and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society,42(8):2074-2080 (in Chinese with English abstract).

    Google Scholar

    [145] WANG M, STIDHAM T A, LI Z H, XU X, ZHOU Z H. 2021. Cretaceous bird with dinosaur skull sheds light on avian cranial evolution[J]. Nature Communications,12(1):3890. doi: 10.1038/s41467-021-24147-z

    CrossRef Google Scholar

    [146] WANG Z, XIAO Y W. 2023. Application of X–ray CT in process mineralogy[J]. Nonferrous Metals (Mineral Processing Section),(2):12-18,40 (in Chinese with English abstract).

    Google Scholar

    [147] WANG D D,ZHANG J D,LIU X F,SHAO C S,ZENG Q N,ZHANG W H,LIU Z. 2023. Application of the Wide Field Electromagnetic Method to Paleozoic Oil and Gas Exploration in the Jiyuan Depression of Western Henan Province[J]. Geology and Exploration,59(2):328-336(in Chinese with English abstract).

    Google Scholar

    [148] WANG K, ZHOU H Y, LAI J, WANG K J, LIU Y. 2020. Application of NMR technology in characterization of petrophysics and pore structure[J]. Chinese Journal of Scientific Instrument,41(2):101-114 (in Chinese with English abstract).

    Google Scholar

    [149] WENNBERG O P, CASINI G, JAHANPANAH A, LAPPONI F, INESON J, WALL B G, GILLESPIE P. 2013. Deformation bands in chalk, examples from the Shetland Group of the Oseberg Field, North Sea, Norway[J]. Journal of Structural Geology,56:103-117. doi: 10.1016/j.jsg.2013.09.005

    CrossRef Google Scholar

    [150] WENNBERG O P, MALM O, NEEDHAM T, EDWARDS E, OTTESEN S, KARLSEN F, RENNAN L, KNIPE R. 2008. On the occurrence and formation of open fractures in the Jurassic reservoir sandstones of the Snøhvit Field, SW Barents Sea[J]. Petroleum Geoscience,14(2):139-150. doi: 10.1144/1354-079308-739

    CrossRef Google Scholar

    [151] WENNBERG O P, RENNAN L. 2018. A brief introduction to the use of X-ray computed tomography (CT) for analysis of natural deformation structures in reservoir rocks[M]//ASHTON M, DEE S J, WENNBERG O P. Subseismic-scale reservoir deformation. London: The Geological Society, 101-120.

    Google Scholar

    [152] WILDENSCHILD D, SHEPPARD A P. 2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[J]. Advances in Water Resources,51:217-246. doi: 10.1016/j.advwatres.2012.07.018

    CrossRef Google Scholar

    [153] WILLSON T.2020. CT and SPECT/CT Artefacts[M]// VAN DEN WYNGAERT T, GNANASEGARAN G, STROBEL K. Clinical atlas of bone SPECT/CT. Cham:Springer International Publishing:1-4.

    Google Scholar

    [154] WITHERS P J, BOUMAN C, CARMIGNATO S, CNUDDE V, GRIMALDI D, HAGEN C K, MAIRE E, MANLEY M, DU PLESSIS A, STOCK S R. 2021. X-ray computed tomography[J]. Nature Reviews Methods Primers,1(1):18. doi: 10.1038/s43586-021-00015-4

    CrossRef Google Scholar

    [155] WITMER L M, CHATTERJEE S, FRANZOSA J, ROWE T. 2003. Neuroanatomy of flying reptiles and implications for flight, posture and behaviour[J]. Nature,425(6961):950-953. doi: 10.1038/nature02048

    CrossRef Google Scholar

    [156] WU Z J, LU H, WENG L, LIU Q S, SHEN J Q. 2021. Investigations on the seepage characteristics of fractured sandstone based on NMR real-time imaging[J]. Chinese Journal of Rock Mechanics and Engineering,40(2):263-275 (in Chinese with English abstract).

    Google Scholar

    [157] XI Y, WU A X, YANG B H, ZHU Z G, SU Y D. 2007. Ore sample interior characters by CT scanning in bioleaching from a mine in Jiangxi[J]. Nonferrous Metals,59(4):82-86 (in Chinese with English abstract).

    Google Scholar

    [158] XIONG D Y, WANG X L, XING G F. 2023. A supercontinental cycles perspective for the formation of Precambrian pegmatitic lithium deposits[J]. East China Geology,44(1):1-12( in Chinese with English abstract).

    Google Scholar

    [159] XU Z X. 2014. Heterogeneity of shale reservoirs based on CT images[J]. Lithologic Reservoirs,26(6):46-49 (in Chinese with English abstract).

    Google Scholar

    [160] XU M Z, LIANG S, SHI J L, JI Y, HUANG Y, LIANG S Y, YAN W B. 2021. Airborne hyperspectral inversion of heavy metal distribution in cultivated soil: A case study of the Guanhe area, north Jiangsu Province[J]. East China Geology,42(1):100-107(in Chinese with English abstract).

    Google Scholar

    [161] YANG C, LI Y, SELBY D, WAN B, GUAN C G, ZHOU C M, LI X H. 2022. Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China[J]. Geology,50(5):562-566. doi: 10.1130/G49734.1

    CrossRef Google Scholar

    [162] YANG G S, SHEN Y J, JIA H L, WEI Y, ZHANG H M, LIU H. 2018. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering,37(3):545-563 (in Chinese with English abstract).

    Google Scholar

    [163] YANG B H, WU A X, MIAO X X, LIU J Z. 2014. 3D characterization and analysis of pore structure of packed ore particle beds based on computed tomography images[J]. Transactions of Nonferrous Metals Society of China,24(3):833-838. doi: 10.1016/S1003-6326(14)63131-9

    CrossRef Google Scholar

    [164] YANG Z N, LIU X R, ZENG Q Z, CHEN Z T. 2000. Hydrology in cold regions of China[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [165] YANG G S, ZHANG C Q. 1999. Initial discussion on the damage propagation of rock under the frost and thaw condition[J]. Journal of Xi'an Mining Institute,19(2):97-100 (in Chinese with English abstract).

    Google Scholar

    [166] YANG X Z, ZHOU Y, SUN J D, XU Y M, CHU Z Y. 2022. Advances on the texture and genesis of phenocryst plagioclase zoning[J]. East China Geology,43(4):415-427(in Chinese with English abstract).

    Google Scholar

    [167] YAO Y B, LIU D M, CAI Y D, LI J Q. 2010. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Science China Earth Sciences,53(6):854-862. doi: 10.1007/s11430-010-0057-4

    CrossRef Google Scholar

    [168] YAO Y B, LIU D M, CHE Y, TANG D Z, TANG S H, HUANG W H. 2009. Non-destructive characterization of coal samples from China using microfocus X-ray computed tomography[J]. International Journal of Coal Geology,80(2):113-123. doi: 10.1016/j.coal.2009.08.001

    CrossRef Google Scholar

    [169] YIN Z J, ZHU M Y, XIAO T Q. 2009. Application of synchrotron X-ray microtomography in paleontology for nondestructive 3-D imaging of fossil specimens[J]. Physics,38(7):504-510 (in Chinese with English abstract).

    Google Scholar

    [170] YU Y M, HU Y Q, LIANG W G, MENG Q R, FENG Z C. 2012. Study on pore characteristics of lean coal at different temperature by CT technology[J]. Chinese Journal of Geophysics,55(2):637-644 (in Chinese with English abstract).

    Google Scholar

    [171] YUAN Q X, DENG B, GUAN Y, ZHANG K, LIU Y J. 2019. Novel developments and applications of nanoscale synchrotron radiation microscopy[J]. Physics,48(4):205-218 (in Chinese with English abstract).

    Google Scholar

    [172] YUAN X H, WANG Y Q, ZHOU W Y, GAN J Z, CHEN G H, KANG F F, MAO D, BI Q S. 2021. EBSD and 3D reconstruction characterization of precious metal ultrafine wire sections[J]. Precious Metals,42(3):64-70 (in Chinese with English abstract).

    Google Scholar

    [173] ZHANG P H, LEE Y I, ZHANG J L. 2019. A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study[J]. Micron,124:102702. doi: 10.1016/j.micron.2019.102702

    CrossRef Google Scholar

    [174] ZHANG Q, LI X. 2021. The application and associated problems of EBSD technique in fabric analysis[J]. Acta Petrologica Sinica,37(4):1000-1014 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.04.04

    CrossRef Google Scholar

    [175] ZHANG Y Y,WU T,GOU W. 2023. Reservoir Characteristics and Hydrocarbon Accumulation Models of the Bach Ho Oilfield in Cuu Long Basin,Vietnam[J]. Geology and Exploration,59(1):170-187(in Chinese with English abstract).

    Google Scholar

    [176] ZHANG N, ZHAO F F, WANG S B, LI J B, SUN D Y. 2018. Review of nuclear magnetic resonance technique based study on pore structure and seepage characteristics of rock[J]. Water Resources and Hydropower Engineering,49(7):28-36 (in Chinese with English abstract).

    Google Scholar

    [177] ZHAO Q. 2000. Medical image equipment[M]. Shanghai: Second Military Medical University Press (in Chinese).

    Google Scholar

    [178] ZHAO Y X, SUN Y F, LIU S M, CHEN Z W, YUAN L. 2018. Pore structure characterization of coal by synchrotron radiation nano-CT[J]. Fuel,215:102-110. doi: 10.1016/j.fuel.2017.11.014

    CrossRef Google Scholar

    [179] ZHU K Y, LI M Y, SHENTU L F, SHEN Z Y, YU Y H. 2017. Evaluation of a small-diameter sampling method in magnetic susceptibility, AMS and X-ray CT studies and its applications to mafic microgranular enclaves (MMEs) in granite[J]. Journal of Volcanology and Geothermal Research,341:208-227. doi: 10.1016/j.jvolgeores.2017.06.002

    CrossRef Google Scholar

    [180] ZWAAN F, SCHREURS G. 2020. 4D X-Ray CT data and surface view videos of analogue models exploring rift interaction in orthogonal and rotational extension[J]. GFZ Data Services.

    Google Scholar

    [181] ZWAAN F, SCHREURS G. 2023. Analog models of lithospheric-scale rifting monitored in an X-ray CT scanner[J]. Tectonics,42(3):e2022TC007291. doi: 10.1029/2022TC007291

    CrossRef Google Scholar

    [182] 白宇, 郑志忠, 修连存, 周航建, 肖盈蓄. 2022. 无人机高光谱遥感技术在自然资源调查中的应用进展[J]. 华东地质,43(4):527-538.

    Google Scholar

    [183] 曹永娜. 2015. CT扫描技术在微观驱替实验及剩余油分析中的应用[J]. CT理论与应用研究,24(1):47-56.

    Google Scholar

    [184] 曹淑云, 刘俊来. 2006. 岩石显微构造分析现代技术——EBSD技术及应用[J]. 地球科学进展,21(10):1091-1096. doi: 10.3321/j.issn:1001-8166.2006.10.014

    CrossRef Google Scholar

    [185] 程荣, 钱生平, 孙添力, 周怀阳. 2020. 基于计算机断层扫描的火山岩气孔含量及大小分布特征无损快速分析[J]. 岩矿测试,39(3):398-407.

    Google Scholar

    [186] 傅恒, 韩建辉, 宋荣彩, 王天泽. 2021. 地质学基础[M]. 北京: 地质出版社, 1-4.

    Google Scholar

    [187] 谷立新, 李金华. 2020. 聚焦离子束显微镜技术及其在地球和行星科学研究中的应用[J]. 矿物岩石地球化学通报,39(6):1119-1140.

    Google Scholar

    [188] 高超利,程时清,师学耀,黄闯,樊云峰,周志杰,孙欢. 2024. 低渗透储层的径向电阻率特征及含油性 ——以鄂尔多斯盆地洛河油田延长组长61为例[J]. 地质与勘探,60(2):414-424.

    Google Scholar

    [189] 关振良, 谢丛姣, 董虎, 罗国平. 2009. 多孔介质微观孔隙结构三维成像技术[J]. 地质科技情报,28(2):115-121.

    Google Scholar

    [190] 郭正府, 张茂亮, 成智慧, 刘嘉麒, 张丽红, 李晓惠. 2011. 火山“熔岩流气泡古高度计”及其在云南腾冲火山区的应用[J]. 岩石学报,27(10):2863-2872.

    Google Scholar

    [191] 侯渭, 谢鸿森. 2003. 陨石成因与地球起源[M]. 北京: 地震出版社.

    Google Scholar

    [192] 黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117.

    Google Scholar

    [193] 黎刚, 陈均远, 冼鼎昌, 殷宗军, TAFFOREAU P. 2013. 微体化石3D结构的同步辐射无损成像研究[J]. 生命科学,25(8):787-793.

    Google Scholar

    [194] 李宏松. 2011. 文物岩石材料劣化形态分类研究及应用[J]. 文物保护与考古科学,23(1):1-6. doi: 10.3969/j.issn.1005-1538.2011.01.001

    CrossRef Google Scholar

    [195] 刘俊来, 曹淑云, 邹运鑫, 宋志杰. 2008. 岩石电子背散射衍射(EBSD)组构分析及应用[J]. 地质通报,27(10):1638-1645. doi: 10.3969/j.issn.1671-2552.2008.10.005

    CrossRef Google Scholar

    [196] 刘洁, 孟范宝, 刘志超, 钱加慧, 沈文杰. 2023. 岩石三维图鉴[M]. 北京: 科学出版社.

    Google Scholar

    [197] 卢亚敏, 苏克凡, 付帆飞, 黄宝琦, 刘乐军, 王娜. 2021. X射线CT扫描与三维重建技术在南海北部岩心Core 01中的应用及沉积环境初探[J]. 海洋地质与第四纪地质,41(4):215-221.

    Google Scholar

    [198] 马嘉, 刘志超, 李春风, 李广, 刘辉, 唐宝彬. 2021. 在铀矿石工艺矿物学研究中引入CT技术的探索[J]. 铀矿地质,37(3):512-518.

    Google Scholar

    [199] 缪秉魁, 胡森, 陈宏毅, 张川统, 夏志鹏, 黄丽霖, 薛永丽, 谢兰芳. 2021. 中国陨石学与天体化学研究进展(2011—2020)[J]. 矿物岩石地球化学通报,40(6):1272-1286.

    Google Scholar

    [200] 莫邵元, 何顺利, 栾国华, 张海勇, 雷刚. 2014. 利用CT技术的超低渗岩心油水驱替特征研究[J]. 科学技术与工程,14(9):25-28,43. doi: 10.3969/j.issn.1671-1815.2014.09.005

    CrossRef Google Scholar

    [201] 倪斌, 黄照强, 郭健, 邢光福, 张亚龙, 牛斯达. 2023. 基于机载和星载高光谱遥感的武夷山成矿带蚀变矿物信息识别研究[J]. 华东地质,44(1):67-81.

    Google Scholar

    [202] 倪文俊, 张洁, 缪秉魁. 2017. 陨石样品制作工艺及处理技巧[J]. 矿产与地质,31(1):158-165. doi: 10.3969/j.issn.1001-5663.2017.01.026

    CrossRef Google Scholar

    [203] 宋晓夏, 唐跃刚, 李伟, 冯增朝, 康志勤, 李妍均, 相建华. 2013. 基于显微CT的构造煤渗流孔精细表征[J]. 煤炭学报,38(3):435-440.

    Google Scholar

    [204] 陶晓风, 吴德超. 2019. 普通地质学[M]. 3版. 北京: 科学出版社.

    Google Scholar

    [205] 王焕. 2020. 基于CT图像处理技术的冻融岩石细观损伤研究[D]. 西安: 西安科技大学.

    Google Scholar

    [206] 王传田, 任明军, 秦伟, 杨晓勇, 蔡逸涛. 2021. 安徽歙县龙潭砚石板岩矿物谱学特征研究[J]. 华东地质,42(3):286-292.

    Google Scholar

    [207] 王刚, 沈俊男, 褚翔宇, 曹春杰, 江成浩, 周晓华. 2017. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报,42(8):2074-2080.

    Google Scholar

    [208] 王臻, 肖仪武. 2023. X射线CT技术在工艺矿物学中的应用[J]. 有色金属(选矿部分),(2):12-18,40.

    Google Scholar

    [209] 王琨, 周航宇, 赖杰, 王坤杰, 刘音. 2020. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报,41(2):101-114.

    Google Scholar

    [210] 王丹丹,张交东,刘旭锋,邵昌盛,曾秋楠,张文浩,刘钊. 2023. 广域电磁法在豫西地区济源凹陷古生界油气勘探中的应用[J]. 地质与勘探,59(2):328-336.

    Google Scholar

    [211] 吴志军, 卢槐, 翁磊, 刘泉声, 沈坚强. 2021. 基于核磁共振实时成像技术的裂隙砂岩渗流特性研究[J]. 岩石力学与工程学报,40(2):263-275.

    Google Scholar

    [212] 习泳, 吴爱祥, 杨保华, 朱志根, 苏永定. 2007. 江西某铜矿微生物堆浸过程中矿石内部特征的CT扫描[J]. 有色金属,59(4):82-86.

    Google Scholar

    [213] 熊定一, 王孝磊, 邢光福. 2023. 从超大陆旋回看前寒武纪伟晶岩型锂矿的形成[J]. 华东地质,44(1):1-12.

    Google Scholar

    [214] 徐祖新. 2014. 基于CT扫描图像的页岩储层非均质性研究[J]. 岩性油气藏,26(6):46-49. doi: 10.3969/j.issn.1673-8926.2014.06.008

    CrossRef Google Scholar

    [215] 徐明钻, 梁森, 石剑龙, 季岩, 黄岩, 梁胜跃, 严维兵. 2021. 航空高光谱反演耕地土壤重金属分布特征——以苏北灌河地区为例[J]. 华东地质,42(1):100-107.

    Google Scholar

    [216] 杨更社, 申艳军, 贾海梁, 魏尧, 张慧梅, 刘慧. 2018. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报,37(3):545-563.

    Google Scholar

    [217] 杨针娘, 刘新仁, 曾群柱, 陈赞廷. 2000. 中国寒区水文[M]. 北京: 科学出版社.

    Google Scholar

    [218] 杨更社, 张长庆. 1999. 冻融循环条件下岩石损伤扩展研究初探[J]. 西安矿业学院学报,19(2):97-100.

    Google Scholar

    [219] 杨献忠, 周延, 孙建东, 徐衍明, 褚志远. 2022. 斑晶斜长石环带结构及成因研究进展[J]. 华东地质,43(4):415-427.

    Google Scholar

    [220] 殷宗军, 朱茂炎, 肖体乔. 2009. 同步辐射X射线相衬显微CT在古生物学中的应用[J]. 物理,38(7):504-510.

    Google Scholar

    [221] 于艳梅, 胡耀青, 梁卫国, 孟巧荣, 冯增朝. 2012. 应用CT技术研究瘦煤在不同温度下孔隙变化特征[J]. 地球物理学报,55(2):637-644. doi: 10.6038/j.issn.0001-5733.2012.02.027

    CrossRef Google Scholar

    [222] 袁清习, 邓彪, 关勇, 张凯, 刘宜晋. 2019. 同步辐射纳米成像技术的发展与应用[J]. 物理,48(4):205-218.

    Google Scholar

    [223] 袁晓虹, 王一晴, 周文艳, 甘建壮, 陈国华, 康菲菲, 毛端, 毕勤嵩. 2021. 贵金属超细丝材截面的EBSD与三维重构表征[J]. 贵金属,42(3):64-70.

    Google Scholar

    [224] 张青, 李馨. 2021. 电子背散射衍射技术(EBSD)在组构分析中的应用和相关问题[J]. 岩石学报,37(4):1000-1014.

    Google Scholar

    [225] 张娜, 赵方方, 王水兵, 李家斌, 孙冻炎. 2018. 岩石孔隙结构与渗流特征核磁共振研究综述[J]. 水利水电技术,49(7):28-36.

    Google Scholar

    [226] 张云逸,吴涛,勾炜. 2023. 越南兰龙盆地白虎油田储集层特征及成藏模式探讨[J]. 地质与勘探,59(1):170-187.

    Google Scholar

    [227] 赵强. 2000. 医学影像设备[M]. 上海: 第二军医大学出版社.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(364) PDF downloads(29) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint