2025 Vol. 46, No. 2
Article Contents

LI Ziting, FU Xiaowei, DONG Zuhua, GAO Shunli, LI Shuai, ZHANG Bocheng. 2025. Revealing the evolutionary history of the Yangtze River based on sediments provenance in the middle and lower reaches and offshore regions: progress, challenges and prospects. East China Geology, 46(2): 171-190. doi: 10.16788/j.hddz.32-1865/P.2025.02.009
Citation: LI Ziting, FU Xiaowei, DONG Zuhua, GAO Shunli, LI Shuai, ZHANG Bocheng. 2025. Revealing the evolutionary history of the Yangtze River based on sediments provenance in the middle and lower reaches and offshore regions: progress, challenges and prospects. East China Geology, 46(2): 171-190. doi: 10.16788/j.hddz.32-1865/P.2025.02.009

Revealing the evolutionary history of the Yangtze River based on sediments provenance in the middle and lower reaches and offshore regions: progress, challenges and prospects

More Information
  • The Yangtze River, as a critical link between the Xizang Plateau and the marginal seas of the western Pacific, serves as an important window for understanding the coupling mechanisms of tectonics, geomorphology, and climate in East Asia. Extensive research has been conducted on the formation and evolution of the Yangtze River, covering a wide range of regions from the upstream plateau gorges and river terraces in Three Gorges to the gravel layers in the mid-lower reaches, the Jianghan Basin and offshore basins. These studies have employed multidisciplinary approaches such as tectonic geomorphology and sedimentology to in-depth analyse. However, the timing of the river’s full connection remains highly debated, with hypotheses ranging from the Eocene, pre-Miocene, late Miocene, to the early-middle Pleistocene transition. Based on provenance analysis of sediments from the middle-lower Yangtze River and the offshore region, this study systematically reviews the methods and progress in the research on the Yangtze River’s evolution, discussing the applicability and challenges of different provenance approaches. Although multiple provenance methods provide crucial evidence for understanding the river’s evolution, each method has its limitations. High-closure-temperature provenance methods (e.g., detrital zircon U-Pb dating) are significantly affected by recycled materials, making it difficult to accurately distinguish sediment contributions from the eastern Xizang Plateau and the middle-lower Yangtze River. Low closure temperature methods (e.g., fission track dating, mica and potassium feldspar 40Ar/39Ar dating) can effectively reflect the unique uplift and erosion processes of the eastern marginal Xizang Plateau, but such studies remain relatively scarce. Moreover, terrestrial sediments are often influenced by local sources and suffer from poor depositional continuity, making it challenging to trace long-term provenance changes. In contrast, marine sedimentary sequences are less affected by local sources and offer advantages such as better continuity and higher chronological precision. It should be highlighted in the combined application of multiple isotopic provenance methods and the research on recording marine sedimentation including East China Sea Basin in the future. A comprehensive analysis with the change of sedimentation rate is expected to effectively reveal the evolution of the Yangtze River.

  • 加载中
  • [1] BARBOUR G.1935.Physiographic history of the Yangtze[M]. XIE J R, trans. Beijing: The National Geological Survey of China and The Institute of Geology of the National Academy of Peking, 17-34 (in Chinese).

    Google Scholar

    [2] CHAPPELL J, ZHENG HB, FIFIELD K. 2006. Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: Sediments from major rivers[J]. Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geo-Sciences, 241(1): 79-94.

    Google Scholar

    [3] CHEN J N, SUN G Y, WEN Y X, LI S Q, WANG X Y, LIU K, JIANG R, ZHOU X H. 2024. Grain sizes characteristics of sediments from QDQ2 borehole in the Yangtze River Delta since the Late Pleistocene and their paleoenvironmental significance[J]. East China Geology, 45(4): 466-477(in Chinese with English abstract).

    Google Scholar

    [4] CHEN J, WANG Z, WANG Z H, CHEN Z Y. 2007. Heavy mineral distribution and its provenance implication in Late Cenozoic sediments in western and eastern area of the Changjiang River Delta[J]. Quaternary Sciences,27(5):700-708 (in Chinese with English abstract).

    Google Scholar

    [5] CHEN C F, ZHONG K, ZHU W L, XU D H, WANG J, ZHANG B C. 2017a. Provenance of sediments and its effects on reservoir physical properties in Lishui Sag, East China Sea Shelf Basin[J]. Oil & Gas Geology,38(5):963-972 (in Chinese with English abstract).

    Google Scholar

    [6] CHEN C F, ZHU W L, FU X W, XU D H, ZHANG B C. 2017b. Provenance change and its influence in Late Paleocene, Jiaojiang Sag, East China Sea Shelf Basin[J]. Journal of Tongji University (Natural Science),45(10):1522-1530,1548 (in Chinese with English abstract).

    Google Scholar

    [7] CHEN X Y, LYU K L, WANG P, HUANG X T, KONG X G. 2022. A Review of Research Progress on the Analytical Method of Large-n Detrital Zircon U-Pb Geochronology[J]. Rock and Mineral Analysis,41(6): 920-934(in Chinese with English abstract).

    Google Scholar

    [8] CHERNIAK D J, WATSON E B. 2001. Pb diffusion in zircon[J]. Chemical Geology,172(1-2):5-24. doi: 10.1016/S0009-2541(00)00233-3

    CrossRef Google Scholar

    [9] CLARK M K, SCHOENBOHM L M, ROYDEN L H, WHIPPLE K X, BURCHFIEL B C, ZHANG X, TANG W, WANG E, CHEN L. 2004. Surface uplift, tectonics, and erosion of eastern Xizang from large-scale drainage patterns[J]. Tectonics,23(1):TC1006.

    Google Scholar

    [10] CLIFT P D. 2006. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean[J]. Earth and Planetary Science Letters,241(3-4):571-580. doi: 10.1016/j.jpgl.2005.11.028

    CrossRef Google Scholar

    [11] DENG K, YANG S Y, LI C, SU N, BI L, CHANG Y P, CHANG S C. 2017. Detrital zircon geochronology of river sands from Taiwan: implications for sedimentary provenance of Taiwan and its source link with the east China mainland[J]. Earth-Science Reviews,164:31-47. doi: 10.1016/j.earscirev.2016.10.015

    CrossRef Google Scholar

    [12] DING L, KAPP P, CAI F L, GARZIONE C N, XIONG Z Y, WANG H Q, WANG C. 2022. Timing and mechanisms of Xizang Plateau uplift[J]. Nature Reviews Earth & Environment,3(10):652-667.

    Google Scholar

    [13] DING D L, XU J S, WANG J L, LI G X, DING D, QIAO L L, YU J J. 2021. A brief introduction on dating methods of marine sediments[J]. East China Geology,42(2):217-228 (in Chinese with English abstract).

    Google Scholar

    [14] FEDO C M, SIRCOMBE K N, RAINBIRD R H. 2003. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry,53(1):277-303. doi: 10.2113/0530277

    CrossRef Google Scholar

    [15] FU X W, YANG R, ZHU W L, YANG S Y, GENG J H, ZHANG L Y. 2022. Initiation of a "lost" large river on the East Asia margin in the Middle Eocene. Preprints, 2022: 2022030017.

    Google Scholar

    [16] FU X W, ZHU W L, CHEN C F, ZHONG K, XU C H. 2015a. Provenance of detrital zircons from the Upper Member of the Mingyuefeng Formation in the western slope of the Lishui-Jiaojiang Sag[J]. Earth Science-Journal of China University of Geosciences,40(12):1987-2001.

    Google Scholar

    [17] FU X W, ZHU W L, GENG J H, YANG S Y, ZHONG K, HUANG X T, ZHANG L Y, XU X. 2021. The present-day Yangtze River was established in the Late Miocene: evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences,205:104600. doi: 10.1016/j.jseaes.2020.104600

    CrossRef Google Scholar

    [18] FU X W, ZHU W L, ZHONG K, CHEN C F. 2015. Discovery of Late Paleozoic detrital zircons in Lishui Sag, East China Sea, and its significance[J]. Journal of Tongji University (Natural Science),43(6):924-931 (in Chinese with English abstract).

    Google Scholar

    [19] GALLAGHER K, BROWN R, JOHNSON C. 1998. Fission track analysis and its applications to geological problems[J]. Annual Review of Earth and Planetary Sciences,26:519-572. doi: 10.1146/annurev.earth.26.1.519

    CrossRef Google Scholar

    [20] HARRISON T M, HEIZLER M T, HAVIV I, AVOUAC J P. 2009. Continuous thermal histories from muscovite 40Ar/39Ar age spectra[J]. Geochimica et Cosmochimica Acta,73:A497.

    Google Scholar

    [21] HE M Y, MEI X, ZHANG X H, LIU J, GUO X W, ZHENG H B. 2019. Provenance discrimination of detrital zircon U-Pb dating in the core CSDP-1 in the continental shelf of South Yellow Sea[J]. Journal of Jilin University (Earth Science Edition),49(1):85-95 (in Chinese with English abstract).

    Google Scholar

    [22] HE M Y, ZHENG H B, CLIFT P D. 2013. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology,360-361:186-203. doi: 10.1016/j.chemgeo.2013.10.020

    CrossRef Google Scholar

    [23] HU S B, KOHN B P, RAZA A, WANG J Y, GLEADOW A J W. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology[J]. Tectonophysics,420(3-4):409-429. doi: 10.1016/j.tecto.2006.03.027

    CrossRef Google Scholar

    [24] HUANG X Y, GAO M S, HOU G H, ZHANG G, DANG X Z. 2023. Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J]. East China Geology,44(4):402-414 (in Chinese with English abstract).

    Google Scholar

    [25] JIA J T, ZHENG H B, HUANG X T, WU F Y, YANG S Y, WANG K, HE M Y. 2010. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River[J]. Chinese Science Bulletin,55(15):1520-1528. doi: 10.1007/s11434-010-3091-x

    CrossRef Google Scholar

    [26] JIANG Y H, ZHOU Q P, NI H Y, CHEN L D, CHENG H Q, LEI M T, GE W Y, MA T, SHI B, CHENG Z Y, DUAN X J, SU J W, ZHU J Q, XIU L C, XIANG F, ZHU Z M, FENG N Q, XIE Z S, TAN J M, PENG K, GUO S Q, FU Y P, REN H Y, SUN J P, YANG Q, ZHU J L, WANG D H, LI M H, LIU G N, FAN C Z, WANG X F, SHI Y J, WANG H M, DONG X Z, CHEN H Y, HAO S F, DENG Y M, LI Y, XIAO Z Y, YANG H, LIU L, JIN Y, ZHANG H, MEI S J, QI Q J, LÜ J S, HOU L L, CHEN G, CHEN Z, JIA Z Y. 2023.Progress of environmental geological investigation and research in the Yangtze River Economic Zone[J]. East China Geology, 44(3): 239-261(in Chinese with English abstract).

    Google Scholar

    [27] KANG C G, LI C A, ZHANG Y F, SHAO L, JIANG H J. 2014. Heavy mineral characteristics of the Yichang gravel layers and provenance tracing[J]. Acta Geologica Sinica,88(2):254-262 (in Chinese with English abstract).

    Google Scholar

    [28] LI J J, XIE S Y, KUANG M S. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 41(2): 125-135.

    Google Scholar

    [29] LI X H, LI Z X, LI W X. 2014. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block, South China: a synthesis[J]. Gondwana Research,25(3):1202-1215. doi: 10.1016/j.gr.2014.01.003

    CrossRef Google Scholar

    [30] LI S H, NAJMAN Y, VERMEESCH P, BARFOD D N, MILLAR I, CARTER A. 2024. A critical appraisal of the sensitivity of detrital zircon U-Pb provenance data to constrain drainage network evolution in Southeast Xizang[J]. Journal of Geophysical Research: Earth Surface,129(2):e2023JF007347. doi: 10.1029/2023JF007347

    CrossRef Google Scholar

    [31] LIN C K. 1989. Sediment and environment in Three Gorges and Gezhouba of the Yangtze River[M]. Nanjing: Nanjing University Press (in Chinese).

    Google Scholar

    [32] LIN X J, ZENG J L, et al. 2024. Sedimentary provenance constraints on the Cretaceous to Cenozoic palaeogeography of the western margin of the Jianhan Basin, South China[J]. Gondwana Research, 125: 343-358.

    Google Scholar

    [33] LIN X, LIU H J, WU Z H, LIU W M, ZHANG Y, CHEN J X. 2021. Provenance study on geochemical elements of detrital K-feldspar in Quaternary gravel layer in Yichang and its geological significance[J]. Journal of Geomechanics,27(6):1024-1034 (in Chinese with English abstract).

    Google Scholar

    [34] LIN X, WU Z H, ZHAO X T, ZHANG Y, CHEN J X, LIU H J. 2022. Detrital zircon U-Pb age characteristics of main rivers around Jianghan Basin and implications of provenance tracing[J]. Acta Geoscientica Sinica,43(1):73-81 (in Chinese with English abstract).

    Google Scholar

    [35] LIU W S, ZHAO H, ZHAO R Y, QIN J H, ZHANG X, JIANG J C, ZHAO C H, LI T J, WANG C H.2022. The Constraints of Carbonaceous Mudstone Re-Os and Detrital Zircons U-Pb Isotopic Dating on the Diagenetic and Metallogenic Ages from the Dabaoshan Copper Deposit in Guangdong Province[J]. Rock and Mineral Analysis, 41(2): 300-313(in Chinese with English abstract).

    Google Scholar

    [36] LIU-ZENG J, TAPPONNIER P, GAUDEMER Y, DING L. 2008. Quantifying landscape differences across the Xizang Plateau: implications for topographic relief evolution[J]. Journal of Geophysical Research: Earth Surface,113(F4):F04018.

    Google Scholar

    [37] LIU-ZENG J, ZHANG J Y, MCPHILLIPS D, REINERS P, WANG W, PIK R, ZENG L S, HOKE G, XIE K J, XIAO P, ZHENG D W, GE Y K. 2018. Multiple episodes of fast exhumation since Cretaceous in southeast Xizang, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters,490:62-76. doi: 10.1016/j.jpgl.2018.03.011

    CrossRef Google Scholar

    [38] MAO G Z, LIU C Y. 2011. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment,33(4):337-348 (in Chinese with English abstract).

    Google Scholar

    [39] MCDOUGALL I, HARRISON T M. 1999. Geochronology and thermochronology by the 40Ar/39Ar method[M]. New York: Oxford University Press.

    Google Scholar

    [40] NAJMAN Y, MARK C, BARFOD D N, CARTER A, PARRISH R, CHEW D, GEMIGNANI L. 2019. Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multi-technique detrital thermochronological study of the Bengal Fan[J]. Geological Society of America Bulletin, 131: 1607-1622.

    Google Scholar

    [41] NAJMAN Y, SOBEL E R, MILLAR I, LUAN X W, ZAPATA S, GARZANTI E, PARRA M, VEZZOLI G, ZHANG P, WA AUNG D, PAW S M T L, LWIN T N. 2022. The timing of collision between Asia and the west Burma Terrane, and the development of the Indo-Burman Ranges[J]. Tectonics,41(7):e2021TC007057. doi: 10.1029/2021TC007057

    CrossRef Google Scholar

    [42] OUIMET W, WHIPPLE K, ROYDEN L, REINERS P, HODGES K, PRINGLE M. 2010. Regional incision of the eastern margin of the Xizang Plateau[J]. Lithosphere,2(1):50-63. doi: 10.1130/L57.1

    CrossRef Google Scholar

    [43] REINERS P W, BRANDON M T. 2006. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences,34:419-466. doi: 10.1146/annurev.earth.34.031405.125202

    CrossRef Google Scholar

    [44] REINERS P W, ZHOU Z Y, EHLERS T A, XU C H, BRANDON M T, DONELICK R A, NICOLESCU S. 2003. Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track thermochronology[J]. American Journal of Science,303(6):489-518. doi: 10.2475/ajs.303.6.489

    CrossRef Google Scholar

    [45] REN J Y, TAMAKI, K, Li S T, ZHANG J X. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics,344(3-4):175-205. doi: 10.1016/S0040-1951(01)00271-2

    CrossRef Google Scholar

    [46] RICHARDSON N J, DENSMORE A L, SEWARD D, WIPF M, YONG L. 2010. Did incision of the Three Gorges begin in the Eocene?[J]. Geology,38(6):551-554. doi: 10.1130/G30527.1

    CrossRef Google Scholar

    [47] ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D. 2008. The geological evolution of the Xizang Plateau[J]. Science,321(5892):1054-1058. doi: 10.1126/science.1155371

    CrossRef Google Scholar

    [48] RUIZ G M H, SEWARD D, WINKLER W. 2004. Detrital thermochronology−a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador[J]. Basin Research,16(3):413-430. doi: 10.1111/j.1365-2117.2004.00239.x

    CrossRef Google Scholar

    [49] SHAO L, LI C A, YUAN S Y, KANG C T, WANG J T, LI T. 2012. Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences,45(4):57-64.

    Google Scholar

    [50] SHAO L, YUAN S Y, LI C A, KANG C G, ZHU W J, LIU Y D, WANG J T. 2015. Changing provenance of late Cenozoic sediments in the Jianghan Basin[J]. Geoscience Frontiers,6(4):605-615.

    Google Scholar

    [51] SHEN C B, DONELICK R A, O’SULLIVAN P B, JONCKHEERE R, YANG Z, SHE Z B, MIU X L, GE X. 2012a. Provenance and hinterland exhumation from LA-ICP-MS zircon U–Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China[J]. Sedimentary Geology,281:194-207. doi: 10.1016/j.sedgeo.2012.09.009

    CrossRef Google Scholar

    [52] SHEN C B, MEI L F, PENG L, CHEN Y Z, YANG Z, HONG G F. 2012b. LA-ICP-MS U-Pb zircon age constraints on the provenance of Cretaceous sediments in the Yichang area of the Jianghan Basin, central China[J]. Cretaceous Research,34:172-183. doi: 10.1016/j.cretres.2011.10.016

    CrossRef Google Scholar

    [53] SUN X L, LI C, KUIPER K F, WANG J T, TIAN Y T, VERMEESCH P, ZHANG Z J, ZHAO J X, WIJBRANS J R. 2018. Geochronology of detrital muscovite and zircon constrains the sediment provenance changes in the Yangtze River during the late Cenozoic[J]. Basin Research,30(4):636-649. doi: 10.1111/bre.12268

    CrossRef Google Scholar

    [54] SUN X L, LI C A, KUIPER K F, ZHANG Z J, GAO J H, WIJBRANS J R. 2016. Human impact on erosion patterns and sediment transport in the Yangtze River[J]. Global and Planetary Change,143:88-99. doi: 10.1016/j.gloplacha.2016.06.004

    CrossRef Google Scholar

    [55] SUN X L, TIAN Y T, KUIPER K F, LI C, ZHANG Z J, WIJBRANS J R. 2021. No Yangtze River prior to the Late Miocene: evidence from detrital muscovite and K-feldspar 40Ar/39Ar geochronology[J]. Geophysical Research Letters,48(5):e2020GL089903. doi: 10.1029/2020GL089903

    CrossRef Google Scholar

    [56] SUN Y X, ZHU X Y, QIU X M, LIU Q D, DUAN H L, QIU Y F. 2024. Characteristics of shale fractures in the second member of Funing Formation in Gaoyou Sag of Subei Basin[J]. Petroleum Reservoir Evaluation and Development,14(3):414-424.

    Google Scholar

    [57] TIAN Y T, KOHN B P, HU S B, GLEADOW A J W. 2015. Synchronous fluvial response to surface uplift in the eastern Xizang Plateau: implications for crustal dynamics[J]. Geophysical Research Letters,42(1):29-35. doi: 10.1002/2014GL062383

    CrossRef Google Scholar

    [58] TANG D L K, SEWARD D, WILSON C J N, SEWELL R J, CARTER A, PAUL B T. 2014. Thermotectonic history of SE China since the Late Mesozoic: insights from detailed thermochronological studies of Hong Kong[J]. Journal of the Geological Society,171(4):591-604. doi: 10.1144/jgs2014-009

    CrossRef Google Scholar

    [59] TYRRELL S, HAUGHTON P D W, DALY J S, KOKFELT T F, GAGNEVIN D. 2006. The use of the common Pb isotope composition of detrital K-feldspar grains as a provenance tool and its application to Upper Carboniferous paleodrainage, Northern England[J]. Journal of Sedimentary Research,76(2):324-345. doi: 10.2110/jsr.2006.023

    CrossRef Google Scholar

    [60] VERVOORT J D, KEMP A I S. 2016. Clarifying the zircon Hf isotope record of crust–mantle evolution[J]. Chemical Geology, 425: 65-75.

    Google Scholar

    [61] VEZZOLI G, GARZANTI E, LIMONTA M, ANDÒ S, YANG S Y. 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets[J]. Geomorphology,261:177-192. doi: 10.1016/j.geomorph.2016.02.031

    CrossRef Google Scholar

    [62] WANG P X. 2004. Cenozoic deformation and the history of sea-land interactions in Asia[M]//CLIFT P, KUHNT W, WANG P, HAYES D. Continental-Ocean Interactions within East Asian Marginal Seas. Washington: American Geophysical Union, 1-22.

    Google Scholar

    [63] WANG W, BIDGOLI T, YANG X H, YE J R. 2018. Source-to-sink links between East Asia and Taiwan from detrital zircon geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin[J]. Geochemistry, Geophysics, Geosystems, 19(10): 3673-3688.

    Google Scholar

    [64] WANG J, CHANG S C, LU H B, ZHANG H C. 2014. Detrital zircon U-Pb age constraints on Cretaceous sedimentary rocks of Lingshan Island and implications for tectonic evolution of eastern Shandong, North China[J]. Journal of Asian Earth Sciences,96:27-45. doi: 10.1016/j.jseaes.2014.09.002

    CrossRef Google Scholar

    [65] WANG L C, CHEN X L, CHU T C. 1997. A contrast analysis on the loads character of the Changjiang River and the Yellow River[J]. Geographical Research,16(4):71-79 (in Chinese with English abstract).

    Google Scholar

    [66] WANG J T, LI C A, YANG Y, SHAO L. 2010. Detrital zircon geochronology and provenance of core sediments in Zhoulao Town, Jianghan Plain, China[J]. Journal of Earth Science,21(3):257-271. doi: 10.1007/s12583-010-0090-4

    CrossRef Google Scholar

    [67] WANG H J, YANG Z S, WANG Y, SAITO Y, LIU J P. 2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s[J]. Journal of Hydrology,349(3-4):318-332. doi: 10.1016/j.jhydrol.2007.11.005

    CrossRef Google Scholar

    [68] WANG P, ZHENG H B, WANG Y D, WEI X C, TANG L Y, JOURDAN F, CHEN J, HUANG X T. 2021. Sedimentology, geochronology, and provenance of the Late Cenozoic “Yangtze Gravel”: implications for Lower Yangtze River reorganization and tectonic evolution in Southeast China[J]. GSA Bulletin,134(1-2):463-486.

    Google Scholar

    [69] WANG X, HAN J Q, ZAN L, LI X L, PENG X P. 2024. Logging evaluation of shale oil in the second member of Funing Formation of Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development,14(3):364-372.

    Google Scholar

    [70] WEI C Y, VOINCHET P, ZHANG Y F, BAHAIN J J, LIU C R, KANG C G, YIN G M, SUN X L, LI C. 2020. Chronology and provenance of the Yichang gravel layer deposits in the Jianghan Basin, middle Yangtze River Valley, China: implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International,550:39-54. doi: 10.1016/j.quaint.2020.03.020

    CrossRef Google Scholar

    [71] WEI H H, WANG E, WU G L, MENG K. 2016. No sedimentary records indicating southerly flow of the paleo-Upper Yangtze River from the First Bend in southeastern Xizang[J]. Gondwana Research,32:93-104. doi: 10.1016/j.gr.2015.02.006

    CrossRef Google Scholar

    [72] WEISLOGEL A L, GRAHAM S A, CHANG E Z, WOODEN J L, GEHRELS G E. 2010. Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: record of collisional tectonics, erosional exhumation, and sediment production[J]. Geological Society of America Bulletin,122(11-12):2041-2062. doi: 10.1130/B26606.1

    CrossRef Google Scholar

    [73] WISSINK G K, HOKE G D. 2016. Eastern margin of Xizang supplies most sediment to the Yangtze River[J]. Lithosphere,8(6):601-614. doi: 10.1130/L570.1

    CrossRef Google Scholar

    [74] WU L, MONIÉ P, WANG F, LIN W, JI W B, BONNO M, MÜNCH P, WANG Q C. 2016. Cenozoic exhumation history of Sulu terrane: implications from (U-Th)/He thermochrology[J]. Tectonophysics,672-673:1-15. doi: 10.1016/j.tecto.2016.01.035

    CrossRef Google Scholar

    [75] WU L L, MEI L F, LIU Y S, LUO J, MIN C Z, LU S L, LI M H, GUO L B. 2017. Multiple provenance of rift sediments in the composite basin-mountain system: Constraints from detrital zircon U-Pb geochronology and heavy minerals of the early Eocene Jianghan Basin, Central China[J]. Sedimentary Geology, 349: 46-61.

    Google Scholar

    [76] WU F, YANG J, WILDE S, LIU X, GUO J, ZHAI M. 2007. Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research,159(3-4):155-177. doi: 10.1016/j.precamres.2007.06.007

    CrossRef Google Scholar

    [77] XIANG F, YANG D, TIAN X, LI Z H, LUO L. 2011. LA-ICP-MS U-Pb geochronology of zircons in the Quaternary sediments from the Yichang area of Hubei Province and its provenance significance[J]. Mineralogy and Petrology,31(2):106-114 (in Chinese with English abstract).

    Google Scholar

    [78] XU X S, O’REILLY S Y, GRIFFIN W L, WANG X L, PEARSON N J, HE Z Y. 2007. The crust of Cathaysia: age, assembly and reworking of two terranes[J]. Precambrian Research,158(1-2):51-78. doi: 10.1016/j.precamres.2007.04.010

    CrossRef Google Scholar

    [79] XU C H, ZHANG L, SHI H S, BRIX M R, HUHMA H, CHEN L H, ZHANG M Q, ZHOU Z Y. 2017. Tracing an Early Jurassic magmatic arc from south to East China Seas[J]. Tectonics,36(3):466-492. doi: 10.1002/2016TC004446

    CrossRef Google Scholar

    [80] YAN Y, CARTER A, HUANG C Y, CHAN L S, HU X Q, LAN Q. 2012. Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J]. Geochemistry, Geophysics, Geosystems, 13(3): Q03001.

    Google Scholar

    [81] YANG J, GAO S, CHEN C, TANG Y Y, YUAN H L, GONG H J, XIE S W, WANG J Q. 2009. Episodic crustal growth of North China as revealed by U–Pb age and Hf isotopes of detrital zircons from modern rivers[J]. Geochimica et Cosmochimica Acta,73(9):2660-2673. doi: 10.1016/j.gca.2009.02.007

    CrossRef Google Scholar

    [82] YANG R, SEWARD D, ZHOU Z Y. 2010. Provenance study by U-Pb dating of the detrital zircons in the Yangtze River[J]. Marine Geology & Quaternary Geology,30(6):73-83 (in Chinese with English abstract).

    Google Scholar

    [83] YANG Z, SHEN C B, RATSCHBACHER L, ENKELMANN E, JONCKHEERE R, WAUSCHKUHN B, DONG Y P. 2017. Sichuan Basin and beyond: eastward foreland growth of the Xizang Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Xizang Plateau, Qinling, and Daba Shan[J]. Journal of Geophysical Research: Solid Earth,122(6):4712-4740. doi: 10.1002/2016JB013751

    CrossRef Google Scholar

    [84] YANG C Q, SHEN C B, ZATTIN M, YU W. 2021. Formation of the Yangtze Three Gorges: insights from detrital apatite fission-track dating of sediments from the Jianghan Basin[J]. Terra Nova,33(5):511-520. doi: 10.1111/ter.12543

    CrossRef Google Scholar

    [85] YANG C Q, SHEN C B, ZATTIN M, YU W, SHI S X, MEI L F. 2019. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges[J]. International Geology Review,61(16):1980-1999. doi: 10.1080/00206814.2019.1576066

    CrossRef Google Scholar

    [86] YANG S Y, WANG Z B, GUO Y, LI C X, CAI J G. 2009. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences,35(1):56-65. doi: 10.1016/j.jseaes.2008.12.002

    CrossRef Google Scholar

    [87] YANG S Y, WEI G J, SHI X F. 2015. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(5): 902-910 (in Chinese with English abstract).

    Google Scholar

    [88] YANG S L, XU K H, MILLIMAN J D, YANG H F, WU C S. 2015. Decline of Yangtze River water and sediment discharge: impact from natural and anthropogenic changes[J]. Scientific Reports,5:12581. doi: 10.1038/srep12581

    CrossRef Google Scholar

    [89] YANG S Y, ZHANG F, WANG Z B. 2012. Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China[J]. Chemical Geology,296-297:26-38. doi: 10.1016/j.chemgeo.2011.12.016

    CrossRef Google Scholar

    [90] YU J J, LIU P, LIN F Z, WANG J L, DING D L, PENG B, WU B, LAO J X. 2022. Sediment sources and environment evolution since 90 ka in Sansha Bay, Fujian Province[J]. East China Geology,43(1):30-39 (in Chinese with English abstract).

    Google Scholar

    [91] YUAN S Y, LI C A, ZHANG Y F, SHAO L, WANG J T. 2012. Trace element characteristics of sediments in Jianghan Basin: implications for expansion of the upper reaches of the Yangtze River[J]. Geology in China,39(4):1042-1048 (in Chinese with English abstract).

    Google Scholar

    [92] ZHANG Z J, DALY J S, LI C, TYRRELL S, SUN X L, BADENSZKI E, LI Y W, ZHANG D, TIAN Y T, YAN Y. 2021. Formation of the Three Gorges (Yangtze River) no earlier than 10 Ma[J]. Earth-Science Reviews,216:103601. doi: 10.1016/j.earscirev.2021.103601

    CrossRef Google Scholar

    [93] ZHANG Z J, DALY J S, TIAN Y T, TYRRELL S, SUN X L, BADENSZKI E, QIN Y H, CHENG Z Y, GUO R J. 2022. Sedimentary provenance perspectives on the evolution of the major rivers draining the eastern Xizang Plateau[J]. Earth-Science Reviews,232:104151. doi: 10.1016/j.earscirev.2022.104151

    CrossRef Google Scholar

    [94] ZHANG X C, HUANG C Y, WANG Y J, CLIFT P D, YAN Y, FU X W, CHEN D F. 2017. Evolving Yangtze River reconstructed by detrital zircon U-Pb dating and petrographic analysis of Miocene marginal Sea sedimentary rocks of the Western Foothills and Hengchun Peninsula, Taiwan[J]. Tectonics,36(4):634-651. doi: 10.1002/2016TC004357

    CrossRef Google Scholar

    [95] ZHANG Y F, LI C A, WANG Q L, CHEN L, MA Y F, KANG C G. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin,53(4):584-590. doi: 10.1007/s11434-008-0111-1

    CrossRef Google Scholar

    [96] ZHANG J Y, LU Y C, KRIJGSMAN W, LIU J S, LI X Q, DU X B, WANG C, LIU X C, FENG L, WEI W, LIN H. 2018. Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea Shelf Basin[J]. Marine and Petroleum Geology,98:733-745. doi: 10.1016/j.marpetgeo.2018.09.014

    CrossRef Google Scholar

    [97] ZHANG Z J, TYRRELL S, LI C A, DALY J S, SUN X L, BLOWICK A, LIN X. 2016. Provenance of detrital K-feldspar in Jianghan Basin sheds new light on the Pliocene-Pleistocene evolution of the Yangtze River[J]. Geological Society of America Bulletin,128(9-10):1339-1351. doi: 10.1130/B31445.1

    CrossRef Google Scholar

    [98] ZHANG X C, YAN Y, HUANG C Y, CHEN D F, SHAN Y H, LAN Q, CHEN W H, YU M M. 2014. Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance[J]. Journal of Asian Earth Sciences,85:26-39. doi: 10.1016/j.jseaes.2014.01.021

    CrossRef Google Scholar

    [99] ZHAO X D, ZHANG H P, HETZEL R, KIRBY E, DUVALL A R, WHIPPLE K X, XIONG J G, LI Y F, PANG J Z, WANG Y, WANG P, LIU K, MA P F, ZHANG B, LI X M, ZHANG J W, ZHANG P Z. 2021. Existence of a continental-scale river system in eastern Xizang during the Late Cretaceous–early Palaeogene[J]. Nature Communications,12(1):7231. doi: 10.1038/s41467-021-27587-9

    CrossRef Google Scholar

    [100] ZHENG H B. 2015. Birth of the Yangtze River: age and tectonic-geomorphic implications[J]. National Science Review,2(4):438-453. doi: 10.1093/nsr/nwv063

    CrossRef Google Scholar

    [101] ZHENG L S. 2013. The provenance analysis of Xinghua-2 core from the Late Miocene, Subei Basin[D]. Nanjing: Nanjing Normal University (in Chinese with English abstract).

    Google Scholar

    [102] ZHENG H B, CLIFT P D, HE M Y, BIAN Z X, LIU G Z, LIU X C, XIA L, YANG Q, JOURDAN F. 2021. Formation of the first bend in the Late Eocene gave birth to the modern Yangtze River, China[J]. Geology,49(1):35-39. doi: 10.1130/G48149.1

    CrossRef Google Scholar

    [103] ZHENG H B, CLIFT P D, WANG P, TADA R, JIA J T, HE M Y, JOURDAN F. 2013. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America,110(19):7556-7561.

    Google Scholar

    [104] ZHENG H B, JIA D, CHEN J, WANG P. 2011. Did incision of the Three Gorges begin in the Eocene? Comment[J]. Geology,39(9):e244. doi: 10.1130/G31944C.1

    CrossRef Google Scholar

    [105] ZHU X F, SHEN C B, ZHOU R J, XU J Y, ZHAO J X, WANG L, GE X. 2020. Paleogene sediment provenance and paleogeographic reconstruction of the South Yellow Sea Basin, East China: constraints from detrital zircon U-Pb geochronology and heavy mineral assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 553: 109776.

    Google Scholar

    [106] ZHU W L, ZHONG K, FU X W, CHEN C F, ZHANG M Q, GAO S L. 2019. The formation and evolution of the East China Sea Shelf Basin: a new view[J]. Earth-Science Reviews,190:89-111. doi: 10.1016/j.earscirev.2018.12.009

    CrossRef Google Scholar

    [107] ZHUANG G S, NAJMAN Y, GUILLOT S, RODDAZ M, ANTOINE P O, MÉTAIS G, CARTER A, MARIVAUX L, SOLANGI S H. 2015. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the Lower Indus Basin, Pakistan[J]. Earth and Planetary Science Letters,432:363-373. doi: 10.1016/j.jpgl.2015.10.026

    CrossRef Google Scholar

    [108] 巴尔博. 1935. 扬子江流域地文发育史[M]. 谢家荣, 译. 北京: 实业部地质调查所国立北平研究院地质学研究所, 17-34.

    Google Scholar

    [109] 陈嘉诺,孙高远,温永祥,李思琦,王鑫宇,刘凯,蒋仁,周效华. 2024. 长江三角洲QDQ2钻孔晚更新世以来沉积物粒度特征及其古环境意义[J]. 华东地质,45(4):466-477.

    Google Scholar

    [110] 陈静, 王哲, 王张华, 陈中原. 2007. 长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J]. 第四纪研究,27(5):700-708. doi: 10.3321/j.issn:1001-7410.2007.05.011

    CrossRef Google Scholar

    [111] 陈春峰, 钟楷, 朱伟林, 徐东浩, 王军, 张伯成. 2017a. 东海丽水凹陷物源及其对储层物性影响[J]. 石油与天然气地质,38(5):963-972.

    Google Scholar

    [112] 陈春峰, 朱伟林, 付晓伟, 徐东浩, 张伯成. 2017b. 东海椒江凹陷晚古新世物源变化[J]. 同济大学学报(自然科学版),45(10):1522-1530,1548.

    Google Scholar

    [113] 陈玺贇, 吕开来, 王平, 黄湘通, 孔兴功. 2022.大样本量(large-n)碎屑锆石U-Pb年代学分析技术研究进展[J]. 岩矿测试, 41(6): 920-934.

    Google Scholar

    [114] 丁大林, 徐继尚, 王继龙, 李广雪, 丁咚, 乔璐璐, 于俊杰. 2021. 海洋沉积物测年方法综述[J]. 华东地质,42(2):217-228.

    Google Scholar

    [115] 付晓伟,朱伟林,陈春峰,钟锴,许长海.2015a.丽水—椒江凹陷西斜坡明月峰组上段碎屑锆石物源.地球科学(中国地质大学学报), 40(12):1987-2001.

    Google Scholar

    [116] 付晓伟, 朱伟林, 钟锴, 陈春峰. 2015b. 东海丽水凹陷晚古生代碎屑锆石的发现及其意义[J]. 同济大学学报(自然科学版),43(6):924-931.

    Google Scholar

    [117] 何梦颖, 梅西, 张训华, 刘健, 郭兴伟, 郑洪波. 2019. 南黄海陆架区CSDP-1孔沉积物碎屑锆石U-Pb年龄物源判别[J]. 吉林大学学报(地球科学版),49(1):85-95.

    Google Scholar

    [118] 黄学勇, 高茂生, 侯国华, 张戈, 党显璋. 2023. 莱州湾海洋沉积物粒度特征及其环境响应分析[J]. 华东地质,44(4):402-414.

    Google Scholar

    [119] 姜月华, 周权平, 倪化勇, 陈立德, 程和琴, 雷明堂, 葛伟亚, 马腾, 施斌, 程知言, 段学军, 苏晶文, 朱锦旗, 修连存, 向芳, 朱志敏, 冯乃琦, 谢忠胜, 谭建民, 彭轲, 郭盛乔, 伏永朋, 任海彦, 孙建平, 杨强, 朱继良, 王东辉, 李明辉, 刘广宁, 范晨子, 王新峰, 史玉金, 王寒梅, 董贤哲, 陈焕元, 郝社峰, 邓娅敏, 李云, 肖则佑, 杨海, 刘林, 金阳, 张鸿, 梅世嘉, 齐秋菊, 吕劲松, 侯莉莉, 陈刚, 陈孜, 贾正阳. 2023. 长江经济带环境地质调查研究进展[J]. 华东地质,44(3):239-261. doi: 10.16788/j.hddz.32-1865/P.2023.03.001

    CrossRef Google Scholar

    [120] 康春国, 李长安, 张玉芬, 邵磊, 江华军. 2014. 宜昌砾石层重矿物组合特征及物源示踪分析[J]. 地质学报,88(2):254-262.

    Google Scholar

    [121] 林承坤. 1989. 长江三峡与葛洲坝的泥沙及环境[M]. 南京: 南京大学出版社.

    Google Scholar

    [122] 林旭, 刘海金, 吴中海, 刘维明, 张洋, 陈济鑫. 2021. 宜昌第四纪砾石层钾长石主、微量元素物源研究及其地质意义[J]. 地质力学学报,27(6):1024-1034.

    Google Scholar

    [123] 林旭, 吴中海, 赵希涛, 张洋, 陈济鑫, 刘海金. 2022. 江汉盆地河流碎屑锆石U-Pb年龄特征及其对物源研究的启示[J]. 地球学报,43(1):73-81.

    Google Scholar

    [124] 刘武生, 赵鸿, 赵如意, 秦锦华, 张熊, 蒋金昌, 赵晨辉, 李挺杰, 王成辉. 2022.炭质泥岩Re-Os和碎屑锆石U-Pb同位素定年对广东大宝山铜矿床成矿时代的约束[J]. 岩矿测试, 41(2): 300-313.

    Google Scholar

    [125] 毛光周, 刘池洋. 2011. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,33(4):337-348. doi: 10.3969/j.issn.1672-6561.2011.04.002

    CrossRef Google Scholar

    [126] 任美锷, 包浩生, 韩同春, 王飞燕, 黄培华. 1959. 云南西北部金沙江河谷地貌与河流袭夺问题[J]. 地理学报,(2):135-155. doi: 10.11821/xb195902003

    CrossRef Google Scholar

    [127] 孙雅雄, 朱相羽, 邱旭明, 刘启东, 段宏亮, 仇永峰, 巩磊. 2024. 苏北盆地高邮凹陷阜宁组二段页岩裂缝特征分析[J]. 油气藏评价与开发, 14(3): 414-424.

    Google Scholar

    [128] 王腊春, 陈晓玲, 储同庆. 1997. 黄河、长江泥沙特性对比分析[J]. 地理研究,16(4):71-79.

    Google Scholar

    [129] 王欣, 韩建强, 昝灵,李小龙, 彭兴平. 2024. 苏北盆地溱潼凹陷阜宁组二段页岩油测井评价研究[J]. 油气藏评价与开发, 14(3): 364-372.

    Google Scholar

    [130] 向芳, 杨栋, 田馨, 李志宏, 罗来. 2011. 湖北宜昌地区第四纪沉积物中锆石的U-Pb年龄特征及其物源意义[J]. 矿物岩石,31(2):106-114.

    Google Scholar

    [131] 杨蓉, SEWARD D, 周祖翼. 2010. 长江流域现代沉积物碎屑锆石U-Pb年龄物源探讨[J]. 海洋地质与第四纪地质,30(6):73-83.

    Google Scholar

    [132] 杨守业, 韦刚健, 石学法. 2015. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报,34(5):902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003

    CrossRef Google Scholar

    [133] 于俊杰, 刘平, 林丰增, 王继龙, 丁大林, 彭博, 武彬, 劳金秀. 2022. 福建三沙湾90 ka以来沉积物来源及环境演变研究[J]. 华东地质,43(1):30-39.

    Google Scholar

    [134] 袁胜元, 李长安, 张玉芬, 邵磊, 王节涛. 2012. 江汉盆地沉积物微量元素特征与长江上游水系拓展[J]. 中国地质,39(4):1042-1048. doi: 10.3969/j.issn.1000-3657.2012.04.020

    CrossRef Google Scholar

    [135] 张玉芬, 李长安, 王秋良, 陈亮, 马永法, 康春国. 2008. 江汉平原沉积物磁学特征及对长江三峡贯通的指示[J]. 科学通报,53(5):577-582. doi: 10.3321/j.issn:0023-074X.2008.05.013

    CrossRef Google Scholar

    [136] 郑良烁. 2013. 苏北兴化2孔晚中新世以来重矿物物源示踪研究[D]. 南京: 南京师范大学.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(282) PDF downloads(43) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint