Citation: | LI Guangwei, CAI Dongxu, LI Xinwei, YANG Yifan, LI Xiaoya, HE Zhijun. 2025. Low-temperature thermochronology methodology and applications (Part 1). East China Geology, 46(2): 127-148. doi: 10.16788/j.hddz.32-1865/P.2024.12.007 |
Low-temperature thermochronology methods refer to radiometric dating techniques with partial annealing/retention zones (closure temperatures) below 300 ℃. These methods can quantitatively determine the temperature history experienced by minerals/rocks in the upper crust during geological process, reconstruct the thermal evolution of geological bodies, hence have been widely applied in the fields of basic geology, ore geology, oil and gas basins, geomorphology, and planetary science. The main methods include fission track and (U-Th)/He dating techniques.This paper briefly reviews the development process, principles, experimental techniques, and basic data composition of the two dating methods, and discusses the factors affecting the accuracy of these dating methods as well as the research progress of the new low-temperature thermochronology methods. Low-temperature thermochronology data usually need to be combined with geological constraints and interpreted by numerical modeling, and in the final part of the article, we briefly describe the commonly used numerical simulation tools in thermochronology. The application of these methods can deepen our understanding on geological processes and geomorphic evolution.
[1] | BENDER M L. 1973. Helium-uranium dating of corals[J]. Geochimica et Cosmochimica Acta,37(5):1229-1247. doi: 10.1016/0016-7037(73)90058-6 |
[2] | BOYCE J W, HODGES K V, OLSZEWSKI W J, JERCINOVIC M J, CARPENTER B D, REINERS P W. 2006. Laser microprobe (U-Th)/He geochronology[J]. Geochimica et Cosmochimica Acta,70(12):3031-3039. doi: 10.1016/j.gca.2006.03.019 |
[3] | BRAUN J, GEMIGNANI L, VAN DER BEEK P. 2018. Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands[J]. Earth Surface Dynamics,6(1):257-270. doi: 10.5194/esurf-6-257-2018 |
[4] | BRAUN J, VAN DER BEEK P, VALLA P, ROBERT X, HERMAN F, GLOTZBACH C, PEDERSEN V, PERRY C, SIMON-LABRIC T, PRIGENT C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE[J]. Tectonophysics,524-525:1-28. doi: 10.1016/j.tecto.2011.12.035 |
[5] | BRENNAN C J, STOCKLI D F, PATTERSON D B. 2020. Zircon 4He/3He fractional loss step-heating and characterization of parent nuclide distribution[J]. Chemical Geology,549:119692. doi: 10.1016/j.chemgeo.2020.119692 |
[6] | BROWN R W, BEUCHER R, ROPER S, PERSANO C, STUART F, FITZGERALD P. 2013. Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer[J]. Geochimica et Cosmochimica Acta,122:478-497. doi: 10.1016/j.gca.2013.05.041 |
[7] | BURTNER R L, NIGRINI A, DONELICK R A. 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt[J]. AAPG bulletin,78(10):1613-1636. |
[8] | CAI D X, WANG X Y, LI G W, JIAO R H, KOHN B, ZHU W B, DE GRAVE J, LU H Y. 2023. Fault systems impede incision of the Yarlung river into the Xizang plateau[J]. Communications Earth & Environment,4(1):200. |
[9] | CARLSON W D, DONELICK R A, KETCHAM R A. 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results[J]. American Mineralogist,84(9):1213-1223. doi: 10.2138/am-1999-0901 |
[10] | CHEN Y L, DING R X, SUN Z, LU S C. 2024. Advancements in(U-Th)/He thermochronology of new minerals[J]. Advances in Earth Science,39(4):357-373 (in Chinese with English abstract). |
[11] | CHEW D M, DONELICK R A. 2012. Combined apatite fission track and U-Pb dating by LA-ICPMS[C]//EGU General Assembly Conference Abstracts. Washington: EGU, 2012: 1192. |
[12] | CHEW D M, SPIKINGS R A. 2015. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface[J]. Elements,11(3):189-194. doi: 10.2113/gselements.11.3.189 |
[13] | COGNÉ N, GALLAGHER K. 2021. Some comments on the effect of uranium zonation on fission track dating by LA-ICP-MS[J]. Chemical Geology,573:120226. doi: 10.1016/j.chemgeo.2021.120226 |
[14] | COX R, KOSLER J, SYLVESTER P, HODYCH J. 2000. Apatite fission-track (FT) dating by LAM-ICO-MS analysis[C]//Goldschmidt Conference. Oxford: Cambridge University Press, 322. |
[15] | DANIŠÍK M, PFAFF K, EVANS N J, MANOLOUKOS C, STAUDE S, MCDONALD B J, MARKL G. 2010. Tectonothermal history of the Schwarzwald Ore District (Germany): an apatite triple dating approach[J]. Chemical Geology,278(1-2):58-69. doi: 10.1016/j.chemgeo.2010.08.022 |
[16] | DODSON M H. 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,40(3):259-274. doi: 10.1007/BF00373790 |
[17] | DONELICK R A, KETCHAM R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects[J]. American Mineralogist,84(9):1224-1234. doi: 10.2138/am-1999-0902 |
[18] | DONELICK R A, MILLER D S. 1991. Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,18(3):301-307. doi: 10.1016/1359-0189(91)90022-A |
[19] | DONELICK R A, O’SULLIVAN P B, KETCHAM R A. 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry,58(1):49-94. doi: 10.2138/rmg.2005.58.3 |
[20] | EVANS N J, BYRNE J P, KEEGAN J T, DOTTER L E. 2005. Determination of uranium and thorium in zircon, apatite, and fluorite: Application to laser (U-Th)/He thermochronology[J]. Journal of Analytical Chemistry,60(12):1159-1165. doi: 10.1007/s10809-005-0260-1 |
[21] | EVANS N J, MCINNES B I A, MCDONALD B, DANIŠÍK M, BECKER T, VERMEESCH P, SHELLEY M, MARILLO-SIALER E, PATTERSON D B. 2015. An in situ technique for (U-Th-Sm)/He and U-Pb double dating[J]. Journal of Analytical Atomic Spectrometry,30(7):1636-1645. doi: 10.1039/C5JA00085H |
[22] | FANALE F P, SCHAEFFER O A. 1965. Helium-uranium ratios for Pleistocene and tertiary fossil aragonites[J]. Science,149(3681):312-317. doi: 10.1126/science.149.3681.312 |
[23] | FARLEY K A. 2000. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research: Solid Earth,105(B2):2903-2914. doi: 10.1029/1999JB900348 |
[24] | FARLEY K A, FLOWERS R M. 2012. (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon[J]. Earth and Planetary Science Letters,359-360:131-140. doi: 10.1016/j.jpgl.2012.10.010 |
[25] | FARLEY K A, SHUSTER D L, KETCHAM R A. 2011. U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J]. Geochimica et Cosmochimica Acta,75(16):4515-4530. doi: 10.1016/j.gca.2011.05.020 |
[26] | FARLEY K A, STOCKLI D F. 2002. (U-Th)/He dating of phosphates: apatite, monazite, and xenotime[J]. Reviews in Mineralogy and Geochemistry,48(1):559-577. doi: 10.2138/rmg.2002.48.15 |
[27] | FARLEY K A, WOLF R A, SILVER L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica et Cosmochimica Acta,60(21):4223-4229. doi: 10.1016/S0016-7037(96)00193-7 |
[28] | FEDO C M, SIRCOMBE K N, RAINBIRD R H. 2003. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry,53(1):277-303. doi: 10.2113/0530277 |
[29] | FERREIRA M P, MACEDO R, COSTA V, REYNOLDS J H, RILEY JR J E, ROWE M W. 1975. Rare-gas dating, II. Attempted uranium-helium dating of young volcanic rocks from the Madeira Archipelago[J]. Earth and Planetary Science Letters,25(2):142-150. doi: 10.1016/0012-821X(75)90190-9 |
[30] | FLEROV G N, PETRJAK K A. 1940. Spontaneous fission of uranium[J]. Physical Review, 58(1): 89. |
[31] | FLOWERS R M, FARLEY K A. 2012. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon[J]. Science,338(6114):1616-1619. doi: 10.1126/science.1229390 |
[32] | FLOWERS R M, KETCHAM R A, ENKELMANN E, GAUTHERON C, REINERS P W, METCALF J R, DANIŠÍK M, STOCKLI D F, BROWN R W. 2023a. (U-Th)/He chronology: Part 2. Considerations for evaluating, integrating, and interpreting conventional individual aliquot data[J]. GSA Bulletin,135(1-2):137-161. doi: 10.1130/B36268.1 |
[33] | FLOWERS R M, WERNICKE B P, FARLEY K A. 2008. Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry[J]. Geological Society of America Bulletin,120(5-6):571-587. doi: 10.1130/B26231.1 |
[34] | FLOWERS R M, ZEITLER P K, DANIŠÍK M, REINERS P W, GAUTHERON C, KETCHAM R A, METCALF J R, STOCKLI D F, ENKELMANN E, BROWN R W. 2023b. (U-Th)/He chronology: Part 1. Data, uncertainty, and reporting[J]. Bulletin of the Geological Society of America,135(1-2):104-136. doi: 10.1130/B36266.1 |
[35] | FOX M, HERMAN F, WILLETT S D, MAY D A. 2013. A linear inversion method to infer exhumation rates in space and time from thermochronometric data[J]. Earth Surface Dynamics Discussions,2(1):207-259. |
[36] | GALBRAITH R F. 2005. Statistics for fission track analysis[M]. Boca Raton: Chapman & Hall/CRC, 1-219. |
[37] | GALLAGHER K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research: Solid Earth,117(B2):B02408. |
[38] | GALLAGHER K, PARRA M. 2020. A new approach to thermal history modelling with detrital low temperature thermochronological data[J]. Earth and Planetary Science Letters,529:115872. doi: 10.1016/j.jpgl.2019.115872 |
[39] | GAUTHERON C, BARBARAND J, KETCHAM R A, TASSAN-GOT L, VAN DER BEEK P, PAGEL M, PINNA-JAMME R, COUFFIGNAL F, FIALIN M. 2013. Chemical influence on α-recoil damage annealing in apatite: implications for (U-Th)/He dating[J]. Chemical Geology,351:257-267. doi: 10.1016/j.chemgeo.2013.05.027 |
[40] | GLEADOW A J W, BELTON D X, KOHN B P, BROWN R W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite[J]. Reviews in Mineralogy and Geochemistry,48(1):579-630. doi: 10.2138/rmg.2002.48.16 |
[41] | GLEADOW A J W, GLEADOW S J, BELTON D X, KOHN B P, KROCHMAL M S, BROWN R W. 2009. Coincidence mapping a key strategy for automated counting in fission track dating[M]//LISKER F, VENTURA B, GLASMACHER U A. Thermochronological methods: from palaeotemperature constraints to landscape evolution models. London: Geological Society of London, 25-36. |
[42] | GLEADOW A, HARRISON M, KOHN B, LUGO-ZAZUETA R, PHILLIPS D. 2015. The fish canyon tuff: a new look at an old low-temperature thermochronology standard[J]. Earth and Planetary Science Letters,424:95-108. doi: 10.1016/j.jpgl.2015.05.003 |
[43] | GLEADOW A, KOHN B, SEILER C. 2019. The future of fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 77-92. |
[44] | GUENTHNER W R, REINERS P W, KETCHAM R A, NASDALA L, GIESTER G. 2013. Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science,313(3):145-198. doi: 10.2475/03.2013.01 |
[45] | HASEBE N, BARBARAND J, JARVIS K, CARTER A, HURFORD A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS[J]. Chemical Geology,207(3-4):135-145. doi: 10.1016/j.chemgeo.2004.01.007 |
[46] | HASEBE N, TAMURA A, ARAI S. 2013. Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating[J]. Island Arc,22(3):280-291. doi: 10.1111/iar.12040 |
[47] | HOLDEN N E, HOFFMAN D C. 2000. Spontaneous fission half-lives for ground-state nuclide (Technical report)[J]. Pure and Applied Chemistry,72(8):1525-1562. doi: 10.1351/pac200072081525 |
[48] | HORNE A M, VAN SOEST M C, HODGES K V. 2019. U/Pb and (U-Th-Sm)/He “double” dating of detrital apatite by laser ablation: a critical evaluation[J]. Chemical Geology,506:40-50. doi: 10.1016/j.chemgeo.2018.12.004 |
[49] | HOUSE M A, WERNICKE B P, FARLEY K A. 2001. Paleo-geomorphology of the Sierra Nevada, California, from (U-TH)/He ages in apatite[J]. American Journal of Science,301(2):77-102. doi: 10.2475/ajs.301.2.77 |
[50] | HUANG X W, MENG Y M, QI L, ZHOU M F, GAO J F, TAN H M R, XIE H, TAN M, YANG Z S, GAO Y H, ZHANG X. 2024. Magnetite: research methods and applications to ore deposit research[J]. East China Geology,45(1):1-15 (in Chinese with English abstract). |
[51] | HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117 (in Chinese with English abstract). |
[52] | HURFORD A J. 2019. An historical perspective on fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 3-23. |
[53] | HURLEY P M. 1954. The helium age method and the distribution and migration of helium in rocks[M]. New York: Wiley, Nuclear Geology, 301-329. |
[54] | JIAO R H, CAI S Z, BRAUN J. 2024. Solving crustal heat transfer for thermochronology using physics-informed neural networks[J]. Geochronology,6(2):227-245. doi: 10.5194/gchron-6-227-2024 |
[55] | JONES S, GLEADOW A, KOHN B, REDDY S M. 2019. Etching of fission tracks in monazite: An experimental study[J]. Terra Nova,31(3):179-188. doi: 10.1111/ter.12382 |
[56] | KETCHAM R A. 2019. Fission-track annealing: from geologic observations to thermal history modeling[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 49-75. |
[57] | KETCHAM R A, CARTER A, HURFORD A J. 2015. Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite[J]. American Mineralogist,100(7):1452-1468. doi: 10.2138/am-2015-5167 |
[58] | KETCHAM R A, DONELICK R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales[J]. American Mineralogist,84(9):1235-1255. doi: 10.2138/am-1999-0903 |
[59] | KETCHAM R A, GAUTHERON C, TASSAN-GOT L. 2011. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: refinement of the baseline case[J]. Geochimica et Cosmochimica Acta,75(24):7779-7791. doi: 10.1016/j.gca.2011.10.011 |
[60] | KOHN B, CHUNG L, GLEADOW A. 2019. Fission-track analysis: field collection, sample preparation and data acquisition[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 25-48. |
[61] | KOHN B P, GLEADOW A J W, BROWN R W, GALLAGHER K, O'SULLIVAN P B, FOSTER D A. 2002. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes[J]. Australian Journal of Earth Sciences,49(4):697-717. doi: 10.1046/j.1440-0952.2002.00942.x |
[62] | KOHN B P, KETCHAM R A, VERMEESCH P, BOONE S C, HASEBE N, CHEW D, BERNET M, CHUNG L, DANIŠÍK M, GLEADOW A J W. 2024. Interpreting and reporting fission-track chronological data[J]. GSA Bulletin,136(9-10):3891-3920. doi: 10.1130/B37245.1 |
[63] | LI G W. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications[J]. Acta Geologica Sinica,95(1):214-226 (in Chinese with English abstract). |
[64] | LI G W, KOHN B, SANDIFORD M, XU Z Q. 2017. India-Asia convergence: Insights from burial and exhumation of the Xigaze fore-arc basin, south Xizang[J]. Journal of Geophysical Research: Solid Earth,122(5):3430-3449. doi: 10.1002/2017JB014080 |
[65] | LI G W, KOHN B, SANDIFORD M, XU Z Q, WEI L J. 2015. Constraining the age of Liuqu Conglomerate, southern Xizang: implications for evolution of the India–Asia collision zone[J]. Earth and Planetary Science Letters,426:259-266. doi: 10.1016/j.jpgl.2015.06.010 |
[66] | LI R Y, XU Z Y, SU C, YANG R. 2022. Automatic identification of semi-tracks on apatite and mica using a deep learning method[J]. Computers & Geosciences,162:105081. |
[67] | LI C P, ZHENG D W, ZHOU R J, YU J X, WANG Y Z, PANG J Z, WANG Y, HAO Y Q, LI Y J. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: expansion of the northeastern Xizang Plateau[J]. Geophysical Research Letters,48(3):e2020GL091281. doi: 10.1029/2020GL091281 |
[68] | MALUSÀ M G, FITZGERALD P G. 2019. Fission-track thermochronology and its application to geology[M]. Cham: Springer, 1-393. |
[69] | MBONGO DJIMBI D, GAUTHERON C, ROQUES J, TASSAN-GOT L, GERIN C, SIMONI E. 2015. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view[J]. Geochimica et Cosmochimica Acta,167:162-176. doi: 10.1016/j.gca.2015.06.017 |
[70] | PRICE P B, WALKER R M. 1962. Observation of fossil particle tracks in natural micas[J]. Nature,196(4856):732-734. doi: 10.1038/196732a0 |
[71] | PRICE P B, WALKER R M. 1963. Fossil tracks of charged particles in mica and the age of minerals[J]. Journal of Geophysical Research,68(16):4847-4862. doi: 10.1029/JZ068i016p04847 |
[72] | RAHN M K, BRANDON M T, BATT G E, GARVER J I. 2004. A zero-damage model for fission-track annealing in zircon[J]. American Mineralogist,89(4):473-484. doi: 10.2138/am-2004-0401 |
[73] | REINERS P W, CAMPBELL I H, NICOLESCU S, ALLEN C M, HOURIGAN J K, GARVER J I, MATTINSON J M, COWAN D S. 2005. (U-Th)/(He-Pb) double dating of detrital zircons[J]. American Journal of Science,305(4):259-311. doi: 10.2475/ajs.305.4.259 |
[74] | REINERS P W, CARLSON R W, RENNE P R, COOPER K M, GRANGER D E, MCLEAN N M, SCHOENE B. 2018. Geochronology and thermochronology[M]. Hoboken: John Wiley & Sons Ltd. , 1-491. |
[75] | REINERS P W, EHLERS T A. 2005. Low-temperature thermochronology: techniques, interpretations, and applications[M]. Chantilly: Mineralogical Society of America, 1-622. |
[76] | REINERS P W, FARLEY K A. 1999. Helium diffusion and (U-Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta,63(22):3845-3859. doi: 10.1016/S0016-7037(99)00170-2 |
[77] | REINERS P W, FARLEY K A. 2001. Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming[J]. Earth and Planetary Science Letters,188(3-4):413-420. doi: 10.1016/S0012-821X(01)00341-7 |
[78] | REINERS P W, FARLEY K A, HICKES H J. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics,349(1-4):297-308. doi: 10.1016/S0040-1951(02)00058-6 |
[79] | REN Z T, LI S C, XIAO P, YANG X P, WANG H T. 2023. Artificial intelligent identification of apatite fission tracks based on machine learning[J]. Machine Learning: Science and Technology,4(4):045039. doi: 10.1088/2632-2153/ad0e17 |
[80] | RUTHERFORD E. 1906. Radioactive transformations[M]. Vol. 3. New York: C. Scribner’s Sons, 5, 1-34. |
[81] | SAMBRIDGE M. 1999a. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space[J]. Geophysical Journal International,138(2):479-494. doi: 10.1046/j.1365-246X.1999.00876.x |
[82] | SAMBRIDGE M. 1999b. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble[J]. Geophysical Journal International,138(3):727-746. doi: 10.1046/j.1365-246x.1999.00900.x |
[83] | SCHILDGEN T F, EHLERS T A, WHIPP JR D M, VAN SOEST M C, WHIPPLE K X, HODGES K V. 2009. Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach[J]. Journal of Geophysical Research: Earth Surface,114(F4):F04014. |
[84] | SCHILDGEN T F, VAN DER BEEK P A, SINCLAIR H D, THIEDE R C. 2018. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology[J]. Nature,559(7712):89-93. doi: 10.1038/s41586-018-0260-6 |
[85] | SCHNEIDER D A, ISSLER D R. 2019. Application of low-temperature thermochronology to hydrocarbon exploration[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 315-333 |
[86] | SEILER C, BOONE S C, KOHN B P, GLEADOW A J W. 2023. A grain-by-grain comparison of apatite fission-track analysis by LA-ICP-MS and the external detector method[J]. Chemical Geology,635:121623. doi: 10.1016/j.chemgeo.2023.121623 |
[87] | SHUSTER D L, FARLEY K A. 2005. 4He/3He thermochronometry: theory, practice, and potential complications[J]. Reviews in Mineralogy & Geochemistry,58(1):181-203. |
[88] | SILK E C H, BARNES R S. 1959. Examination of fission fragment tracks with an electron microscope[J]. Philosophical Magazine,4(44):970-972. doi: 10.1080/14786435908238273 |
[89] | SVOJTKA M, KOŠLER J. 2002. Fission-track dating of zircon by laser ablation ICPMS[J]. Geochimica et Cosmochimica Acta, 66(15A): A756. |
[90] | TAGAMI T, O’SULLIVAN P B. 2005. Fundamentals of fission-track thermochronology[J]. Reviews in Mineralogy and Geochemistry,58(1):19-47. doi: 10.2138/rmg.2005.58.2 |
[91] | TIAN Y T, PAN L L, ZHANG G H, YAO X B. 2024. An efficient approach for inverting rock exhumation from thermochronologic age–elevation relationship[J]. Earth Surface Dynamics,12(2):477-492. doi: 10.5194/esurf-12-477-2024 |
[92] | TRIPATHY-LANG A, FOX M, SHUSTER D L. 2015. Zircon 4He/3He thermochronometry[J]. Geochimica et Cosmochimica Acta,166:1-14. doi: 10.1016/j.gca.2015.05.027 |
[93] | VAN DER BEEK P, SCHILDGEN T F. 2023. Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya[J]. Geochronology,5(1):35-49. doi: 10.5194/gchron-5-35-2023 |
[94] | VERMEESCH P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements,44(4):409-410. doi: 10.1016/j.radmeas.2009.05.003 |
[95] | VERMEESCH P. 2010. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data[J]. Chemical Geology,271(3-4):108-111. doi: 10.1016/j.chemgeo.2010.01.002 |
[96] | VERMEESCH P. 2012. On the visualisation of detrital age distributions[J]. Chemical Geology,312-313:190-194. doi: 10.1016/j.chemgeo.2012.04.021 |
[97] | VERMEESCH P, TIAN Y T. 2014. Thermal history modelling: HeFTy vs. QTQt[J]. Earth-Science Reviews,139:279-290. doi: 10.1016/j.earscirev.2014.09.010 |
[98] | WAGNER G A, STORZER D. 1972. Fission track length reductions in minerals and the thermal history of rocks[J]. Transactions of the American Nuclear Society,15(1):127-128. |
[99] | WAGNER G A, VAN DEN HAUTE P. 1992. Fission-track dating method[M]//WAGNER G A, HAUTE P. Fission-track dating. Dordrecht: Springer, 59-94. |
[100] | WOLF R A, FARLEY K A, SILVER L T. 1996. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta,60(21):4231-4240. doi: 10.1016/S0016-7037(96)00192-5 |
[101] | WU L, WANG F, SHAN J N, ZHANG W B, SHI W B, FENG H L. 2016. (U-Th)/He dating of international standard Durango apatite[J]. Acta Petrologica Sinica,32(6):1891-1900 (in Chinese with English abstract). |
[102] | XIANG D F, ZHANG Z Y, XIAO W J, ZHU W B, ZHENG D W, LI G W, ZHENG B H, SONG D F, HAN C M, PANG J Z. 2019. Episodic Meso-Cenozoic denudation of Chinese Tianshan: evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar Basin margin, NW China[J]. Journal of Asian Earth Sciences,175:199-212. doi: 10.1016/j.jseaes.2018.07.042 |
[103] | YOUNG D A. 1958. Etching of radiation damage in lithium fluoride[J]. Nature,182(4632):375-377. doi: 10.1038/182375a0 |
[104] | ZEITLER P K. 2020. U-Th/He dating[M]//RINK W J, THOMPSON J. Encyclopedia of Scientific Dating Methods. Dordrecht: Springer, 1-14. |
[105] | ZEITLER P K, HERCZEG A L, MCDOUGALL I, HONDA M. 1987. U-Th-He dating of apatite: a potential thermochronometer[J]. Geochimica et Cosmochimica Acta,51(10):2865-2868. doi: 10.1016/0016-7037(87)90164-5 |
[106] | ZHENG D W, WU Y, PANG J Z, LI Y J, WANG Y Z, MA Y, YU J X, WANG Y. 2016, Fundamentals, dating and application of U-Th/He thermochronology[J]. Quaternary Sciences, 36(5): 1027-1036 (in Chinese with English abstract). |
[107] | ZHOU Z Y. 2014. Low temperature thermochronology: principles & applications[M]. Beijing: Science Press, 1-230 (in Chinese). |
[108] | ZIEGLER J F. 2008. SRIM: The stopping range of ions in matter[R]. Annapolis: United States Naval Academy. |
[109] | 陈玉柳, 丁汝鑫, 孙转, 卢胜城. 2024. 新矿物(U-Th)/He年代学的研究进展[J]. 地球科学进展,39(4):357-373. |
[110] | 黄小文, 孟郁苗, 漆亮, 周美夫, 高剑峰, 谭侯铭睿, 谢欢, 谭茂, 杨志爽, 高英辉, 张鑫. 2024. 磁铁矿: 研究方法与矿床学应用[J]. 华东地质,45(1):1-15. |
[111] | 黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117. |
[112] | 李广伟. 2021. 构造地貌与低温热年代学若干问题探讨[J]. 地质学报,95(1):214-226. |
[113] | 吴林, 王非, 单竞男, 张炜斌, 师文贝, 冯慧乐. 2016. 国际标样Durango磷灰石(U-Th)/He年龄测定[J]. 岩石学报,32(6):1891-1900. |
[114] | 郑德文, 武颖, 庞建章, 李又娟, 王一舟, 马严, 俞晶星, 王英. 2016. U⁃Th/He热年代学原理、测试及应用[J]. 第四纪研究,36(5):1027-1036. doi: 10.11928/j.issn.1001-7410.2016.05.02 |
[115] | 周祖翼. 2014. 低温年代学: 原理与应用[M]. 北京: 科学出版社, 1-230. |
Common low-temperature thermochronology methods and their closed temperature systems (Chew and Spikings, 2015; Jones et al., 2019; Malusà and Fitzgerald, 2019; Reiners et al., 2018)
Schematic formation model of fission tracks (238U or 235U) (a), (b) and apatite fission track microscopic photos under transmitted light(showing the semi and confined tracks) (c)
Schematic diagram of the experimental procedures for EDM and LA-ICP-MS fission track methods (modified from Kohn et al., 2024)
A comparison of ages obtained by EDM and LA-ICP-MS fission track methods (data sourced from Seiler et al. ,2023)
Plot of AFT age against chlorine concentration for apatite grains in samples from the Stillwater Complex, Montana, USA(a) (data sourced from Kohn et al., 2002) and plot of chlorine concentration against Dpar value for apatite grains (b)(data sourced from Donelick et al., 2005)
Polar plots showing annealing anisotropy of confined horizontal AFT lengths (modified from Donelick et al., 1999)
Radial plot of fission track age data (a) (Vermeesch, 2009) and histogram of apatite fission track length distribution (b)
Schematic diagrams of α particle ejection effect (a) and α particle implantation effect (b)
Apatite and zircon (U-Th)/He closure temperatures under different cooling rates (a) and single-grain apatite (U-Th)/He age vs grain-size (b) (Rsv: Radius of a sphere with equal surface area to volume ratio) (data sourced from Flowers et al., 2023b)
Single-grain (U-Th)/He ages of apatite with different [eU] contents (a) (data sourced from Flowers et al., 2023b) and zircon (U-Th)/He closure temperatures with different α doses (b) (Guenthner et al., 2013)
Thermal history inversion results based on low-temperature thermochronological data using HeFTy (a) and QTQt (b) softwares (data sourced from Li et al., 2017, samples collected from the Cretaceous forearc basin in Xigaze, South Xizang)
Inversion modelling of tectonic geomorphological evolution based on low-temperature thermochronology data using Pecube (data sourced from Cai et al., 2023)