2025 Vol. 46, No. 2
Article Contents

LI Guangwei, CAI Dongxu, LI Xinwei, YANG Yifan, LI Xiaoya, HE Zhijun. 2025. Low-temperature thermochronology methodology and applications (Part 1). East China Geology, 46(2): 127-148. doi: 10.16788/j.hddz.32-1865/P.2024.12.007
Citation: LI Guangwei, CAI Dongxu, LI Xinwei, YANG Yifan, LI Xiaoya, HE Zhijun. 2025. Low-temperature thermochronology methodology and applications (Part 1). East China Geology, 46(2): 127-148. doi: 10.16788/j.hddz.32-1865/P.2024.12.007

Low-temperature thermochronology methodology and applications (Part 1)

  • Low-temperature thermochronology methods refer to radiometric dating techniques with partial annealing/retention zones (closure temperatures) below 300 ℃. These methods can quantitatively determine the temperature history experienced by minerals/rocks in the upper crust during geological process, reconstruct the thermal evolution of geological bodies, hence have been widely applied in the fields of basic geology, ore geology, oil and gas basins, geomorphology, and planetary science. The main methods include fission track and (U-Th)/He dating techniques.This paper briefly reviews the development process, principles, experimental techniques, and basic data composition of the two dating methods, and discusses the factors affecting the accuracy of these dating methods as well as the research progress of the new low-temperature thermochronology methods. Low-temperature thermochronology data usually need to be combined with geological constraints and interpreted by numerical modeling, and in the final part of the article, we briefly describe the commonly used numerical simulation tools in thermochronology. The application of these methods can deepen our understanding on geological processes and geomorphic evolution.

  • 加载中
  • [1] BENDER M L. 1973. Helium-uranium dating of corals[J]. Geochimica et Cosmochimica Acta,37(5):1229-1247. doi: 10.1016/0016-7037(73)90058-6

    CrossRef Google Scholar

    [2] BOYCE J W, HODGES K V, OLSZEWSKI W J, JERCINOVIC M J, CARPENTER B D, REINERS P W. 2006. Laser microprobe (U-Th)/He geochronology[J]. Geochimica et Cosmochimica Acta,70(12):3031-3039. doi: 10.1016/j.gca.2006.03.019

    CrossRef Google Scholar

    [3] BRAUN J, GEMIGNANI L, VAN DER BEEK P. 2018. Extracting information on the spatial variability in erosion rate stored in detrital cooling age distributions in river sands[J]. Earth Surface Dynamics,6(1):257-270. doi: 10.5194/esurf-6-257-2018

    CrossRef Google Scholar

    [4] BRAUN J, VAN DER BEEK P, VALLA P, ROBERT X, HERMAN F, GLOTZBACH C, PEDERSEN V, PERRY C, SIMON-LABRIC T, PRIGENT C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE[J]. Tectonophysics,524-525:1-28. doi: 10.1016/j.tecto.2011.12.035

    CrossRef Google Scholar

    [5] BRENNAN C J, STOCKLI D F, PATTERSON D B. 2020. Zircon 4He/3He fractional loss step-heating and characterization of parent nuclide distribution[J]. Chemical Geology,549:119692. doi: 10.1016/j.chemgeo.2020.119692

    CrossRef Google Scholar

    [6] BROWN R W, BEUCHER R, ROPER S, PERSANO C, STUART F, FITZGERALD P. 2013. Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U-Th)/He thermochronometer[J]. Geochimica et Cosmochimica Acta,122:478-497. doi: 10.1016/j.gca.2013.05.041

    CrossRef Google Scholar

    [7] BURTNER R L, NIGRINI A, DONELICK R A. 1994. Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt[J]. AAPG bulletin,78(10):1613-1636.

    Google Scholar

    [8] CAI D X, WANG X Y, LI G W, JIAO R H, KOHN B, ZHU W B, DE GRAVE J, LU H Y. 2023. Fault systems impede incision of the Yarlung river into the Xizang plateau[J]. Communications Earth & Environment,4(1):200.

    Google Scholar

    [9] CARLSON W D, DONELICK R A, KETCHAM R A. 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results[J]. American Mineralogist,84(9):1213-1223. doi: 10.2138/am-1999-0901

    CrossRef Google Scholar

    [10] CHEN Y L, DING R X, SUN Z, LU S C. 2024. Advancements in(U-Th)/He thermochronology of new minerals[J]. Advances in Earth Science,39(4):357-373 (in Chinese with English abstract).

    Google Scholar

    [11] CHEW D M, DONELICK R A. 2012. Combined apatite fission track and U-Pb dating by LA-ICPMS[C]//EGU General Assembly Conference Abstracts. Washington: EGU, 2012: 1192.

    Google Scholar

    [12] CHEW D M, SPIKINGS R A. 2015. Geochronology and thermochronology using apatite: time and temperature, lower crust to surface[J]. Elements,11(3):189-194. doi: 10.2113/gselements.11.3.189

    CrossRef Google Scholar

    [13] COGNÉ N, GALLAGHER K. 2021. Some comments on the effect of uranium zonation on fission track dating by LA-ICP-MS[J]. Chemical Geology,573:120226. doi: 10.1016/j.chemgeo.2021.120226

    CrossRef Google Scholar

    [14] COX R, KOSLER J, SYLVESTER P, HODYCH J. 2000. Apatite fission-track (FT) dating by LAM-ICO-MS analysis[C]//Goldschmidt Conference. Oxford: Cambridge University Press, 322.

    Google Scholar

    [15] DANIŠÍK M, PFAFF K, EVANS N J, MANOLOUKOS C, STAUDE S, MCDONALD B J, MARKL G. 2010. Tectonothermal history of the Schwarzwald Ore District (Germany): an apatite triple dating approach[J]. Chemical Geology,278(1-2):58-69. doi: 10.1016/j.chemgeo.2010.08.022

    CrossRef Google Scholar

    [16] DODSON M H. 1973. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,40(3):259-274. doi: 10.1007/BF00373790

    CrossRef Google Scholar

    [17] DONELICK R A, KETCHAM R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects[J]. American Mineralogist,84(9):1224-1234. doi: 10.2138/am-1999-0902

    CrossRef Google Scholar

    [18] DONELICK R A, MILLER D S. 1991. Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: A model and experimental observations[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements,18(3):301-307. doi: 10.1016/1359-0189(91)90022-A

    CrossRef Google Scholar

    [19] DONELICK R A, O’SULLIVAN P B, KETCHAM R A. 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry,58(1):49-94. doi: 10.2138/rmg.2005.58.3

    CrossRef Google Scholar

    [20] EVANS N J, BYRNE J P, KEEGAN J T, DOTTER L E. 2005. Determination of uranium and thorium in zircon, apatite, and fluorite: Application to laser (U-Th)/He thermochronology[J]. Journal of Analytical Chemistry,60(12):1159-1165. doi: 10.1007/s10809-005-0260-1

    CrossRef Google Scholar

    [21] EVANS N J, MCINNES B I A, MCDONALD B, DANIŠÍK M, BECKER T, VERMEESCH P, SHELLEY M, MARILLO-SIALER E, PATTERSON D B. 2015. An in situ technique for (U-Th-Sm)/He and U-Pb double dating[J]. Journal of Analytical Atomic Spectrometry,30(7):1636-1645. doi: 10.1039/C5JA00085H

    CrossRef Google Scholar

    [22] FANALE F P, SCHAEFFER O A. 1965. Helium-uranium ratios for Pleistocene and tertiary fossil aragonites[J]. Science,149(3681):312-317. doi: 10.1126/science.149.3681.312

    CrossRef Google Scholar

    [23] FARLEY K A. 2000. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research: Solid Earth,105(B2):2903-2914. doi: 10.1029/1999JB900348

    CrossRef Google Scholar

    [24] FARLEY K A, FLOWERS R M. 2012. (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon[J]. Earth and Planetary Science Letters,359-360:131-140. doi: 10.1016/j.jpgl.2012.10.010

    CrossRef Google Scholar

    [25] FARLEY K A, SHUSTER D L, KETCHAM R A. 2011. U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system[J]. Geochimica et Cosmochimica Acta,75(16):4515-4530. doi: 10.1016/j.gca.2011.05.020

    CrossRef Google Scholar

    [26] FARLEY K A, STOCKLI D F. 2002. (U-Th)/He dating of phosphates: apatite, monazite, and xenotime[J]. Reviews in Mineralogy and Geochemistry,48(1):559-577. doi: 10.2138/rmg.2002.48.15

    CrossRef Google Scholar

    [27] FARLEY K A, WOLF R A, SILVER L T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica et Cosmochimica Acta,60(21):4223-4229. doi: 10.1016/S0016-7037(96)00193-7

    CrossRef Google Scholar

    [28] FEDO C M, SIRCOMBE K N, RAINBIRD R H. 2003. Detrital zircon analysis of the sedimentary record[J]. Reviews in Mineralogy and Geochemistry,53(1):277-303. doi: 10.2113/0530277

    CrossRef Google Scholar

    [29] FERREIRA M P, MACEDO R, COSTA V, REYNOLDS J H, RILEY JR J E, ROWE M W. 1975. Rare-gas dating, II. Attempted uranium-helium dating of young volcanic rocks from the Madeira Archipelago[J]. Earth and Planetary Science Letters,25(2):142-150. doi: 10.1016/0012-821X(75)90190-9

    CrossRef Google Scholar

    [30] FLEROV G N, PETRJAK K A. 1940. Spontaneous fission of uranium[J]. Physical Review, 58(1): 89.

    Google Scholar

    [31] FLOWERS R M, FARLEY K A. 2012. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon[J]. Science,338(6114):1616-1619. doi: 10.1126/science.1229390

    CrossRef Google Scholar

    [32] FLOWERS R M, KETCHAM R A, ENKELMANN E, GAUTHERON C, REINERS P W, METCALF J R, DANIŠÍK M, STOCKLI D F, BROWN R W. 2023a. (U-Th)/He chronology: Part 2. Considerations for evaluating, integrating, and interpreting conventional individual aliquot data[J]. GSA Bulletin,135(1-2):137-161. doi: 10.1130/B36268.1

    CrossRef Google Scholar

    [33] FLOWERS R M, WERNICKE B P, FARLEY K A. 2008. Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry[J]. Geological Society of America Bulletin,120(5-6):571-587. doi: 10.1130/B26231.1

    CrossRef Google Scholar

    [34] FLOWERS R M, ZEITLER P K, DANIŠÍK M, REINERS P W, GAUTHERON C, KETCHAM R A, METCALF J R, STOCKLI D F, ENKELMANN E, BROWN R W. 2023b. (U-Th)/He chronology: Part 1. Data, uncertainty, and reporting[J]. Bulletin of the Geological Society of America,135(1-2):104-136. doi: 10.1130/B36266.1

    CrossRef Google Scholar

    [35] FOX M, HERMAN F, WILLETT S D, MAY D A. 2013. A linear inversion method to infer exhumation rates in space and time from thermochronometric data[J]. Earth Surface Dynamics Discussions,2(1):207-259.

    Google Scholar

    [36] GALBRAITH R F. 2005. Statistics for fission track analysis[M]. Boca Raton: Chapman & Hall/CRC, 1-219.

    Google Scholar

    [37] GALLAGHER K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research: Solid Earth,117(B2):B02408.

    Google Scholar

    [38] GALLAGHER K, PARRA M. 2020. A new approach to thermal history modelling with detrital low temperature thermochronological data[J]. Earth and Planetary Science Letters,529:115872. doi: 10.1016/j.jpgl.2019.115872

    CrossRef Google Scholar

    [39] GAUTHERON C, BARBARAND J, KETCHAM R A, TASSAN-GOT L, VAN DER BEEK P, PAGEL M, PINNA-JAMME R, COUFFIGNAL F, FIALIN M. 2013. Chemical influence on α-recoil damage annealing in apatite: implications for (U-Th)/He dating[J]. Chemical Geology,351:257-267. doi: 10.1016/j.chemgeo.2013.05.027

    CrossRef Google Scholar

    [40] GLEADOW A J W, BELTON D X, KOHN B P, BROWN R W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite[J]. Reviews in Mineralogy and Geochemistry,48(1):579-630. doi: 10.2138/rmg.2002.48.16

    CrossRef Google Scholar

    [41] GLEADOW A J W, GLEADOW S J, BELTON D X, KOHN B P, KROCHMAL M S, BROWN R W. 2009. Coincidence mapping a key strategy for automated counting in fission track dating[M]//LISKER F, VENTURA B, GLASMACHER U A. Thermochronological methods: from palaeotemperature constraints to landscape evolution models. London: Geological Society of London, 25-36.

    Google Scholar

    [42] GLEADOW A, HARRISON M, KOHN B, LUGO-ZAZUETA R, PHILLIPS D. 2015. The fish canyon tuff: a new look at an old low-temperature thermochronology standard[J]. Earth and Planetary Science Letters,424:95-108. doi: 10.1016/j.jpgl.2015.05.003

    CrossRef Google Scholar

    [43] GLEADOW A, KOHN B, SEILER C. 2019. The future of fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 77-92.

    Google Scholar

    [44] GUENTHNER W R, REINERS P W, KETCHAM R A, NASDALA L, GIESTER G. 2013. Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science,313(3):145-198. doi: 10.2475/03.2013.01

    CrossRef Google Scholar

    [45] HASEBE N, BARBARAND J, JARVIS K, CARTER A, HURFORD A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS[J]. Chemical Geology,207(3-4):135-145. doi: 10.1016/j.chemgeo.2004.01.007

    CrossRef Google Scholar

    [46] HASEBE N, TAMURA A, ARAI S. 2013. Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating[J]. Island Arc,22(3):280-291. doi: 10.1111/iar.12040

    CrossRef Google Scholar

    [47] HOLDEN N E, HOFFMAN D C. 2000. Spontaneous fission half-lives for ground-state nuclide (Technical report)[J]. Pure and Applied Chemistry,72(8):1525-1562. doi: 10.1351/pac200072081525

    CrossRef Google Scholar

    [48] HORNE A M, VAN SOEST M C, HODGES K V. 2019. U/Pb and (U-Th-Sm)/He “double” dating of detrital apatite by laser ablation: a critical evaluation[J]. Chemical Geology,506:40-50. doi: 10.1016/j.chemgeo.2018.12.004

    CrossRef Google Scholar

    [49] HOUSE M A, WERNICKE B P, FARLEY K A. 2001. Paleo-geomorphology of the Sierra Nevada, California, from (U-TH)/He ages in apatite[J]. American Journal of Science,301(2):77-102. doi: 10.2475/ajs.301.2.77

    CrossRef Google Scholar

    [50] HUANG X W, MENG Y M, QI L, ZHOU M F, GAO J F, TAN H M R, XIE H, TAN M, YANG Z S, GAO Y H, ZHANG X. 2024. Magnetite: research methods and applications to ore deposit research[J]. East China Geology,45(1):1-15 (in Chinese with English abstract).

    Google Scholar

    [51] HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117 (in Chinese with English abstract).

    Google Scholar

    [52] HURFORD A J. 2019. An historical perspective on fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 3-23.

    Google Scholar

    [53] HURLEY P M. 1954. The helium age method and the distribution and migration of helium in rocks[M]. New York: Wiley, Nuclear Geology, 301-329.

    Google Scholar

    [54] JIAO R H, CAI S Z, BRAUN J. 2024. Solving crustal heat transfer for thermochronology using physics-informed neural networks[J]. Geochronology,6(2):227-245. doi: 10.5194/gchron-6-227-2024

    CrossRef Google Scholar

    [55] JONES S, GLEADOW A, KOHN B, REDDY S M. 2019. Etching of fission tracks in monazite: An experimental study[J]. Terra Nova,31(3):179-188. doi: 10.1111/ter.12382

    CrossRef Google Scholar

    [56] KETCHAM R A. 2019. Fission-track annealing: from geologic observations to thermal history modeling[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Cham: Springer, 49-75.

    Google Scholar

    [57] KETCHAM R A, CARTER A, HURFORD A J. 2015. Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite[J]. American Mineralogist,100(7):1452-1468. doi: 10.2138/am-2015-5167

    CrossRef Google Scholar

    [58] KETCHAM R A, DONELICK R A, CARLSON W D. 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales[J]. American Mineralogist,84(9):1235-1255. doi: 10.2138/am-1999-0903

    CrossRef Google Scholar

    [59] KETCHAM R A, GAUTHERON C, TASSAN-GOT L. 2011. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: refinement of the baseline case[J]. Geochimica et Cosmochimica Acta,75(24):7779-7791. doi: 10.1016/j.gca.2011.10.011

    CrossRef Google Scholar

    [60] KOHN B, CHUNG L, GLEADOW A. 2019. Fission-track analysis: field collection, sample preparation and data acquisition[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 25-48.

    Google Scholar

    [61] KOHN B P, GLEADOW A J W, BROWN R W, GALLAGHER K, O'SULLIVAN P B, FOSTER D A. 2002. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes[J]. Australian Journal of Earth Sciences,49(4):697-717. doi: 10.1046/j.1440-0952.2002.00942.x

    CrossRef Google Scholar

    [62] KOHN B P, KETCHAM R A, VERMEESCH P, BOONE S C, HASEBE N, CHEW D, BERNET M, CHUNG L, DANIŠÍK M, GLEADOW A J W. 2024. Interpreting and reporting fission-track chronological data[J]. GSA Bulletin,136(9-10):3891-3920. doi: 10.1130/B37245.1

    CrossRef Google Scholar

    [63] LI G W. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications[J]. Acta Geologica Sinica,95(1):214-226 (in Chinese with English abstract).

    Google Scholar

    [64] LI G W, KOHN B, SANDIFORD M, XU Z Q. 2017. India-Asia convergence: Insights from burial and exhumation of the Xigaze fore-arc basin, south Xizang[J]. Journal of Geophysical Research: Solid Earth,122(5):3430-3449. doi: 10.1002/2017JB014080

    CrossRef Google Scholar

    [65] LI G W, KOHN B, SANDIFORD M, XU Z Q, WEI L J. 2015. Constraining the age of Liuqu Conglomerate, southern Xizang: implications for evolution of the India–Asia collision zone[J]. Earth and Planetary Science Letters,426:259-266. doi: 10.1016/j.jpgl.2015.06.010

    CrossRef Google Scholar

    [66] LI R Y, XU Z Y, SU C, YANG R. 2022. Automatic identification of semi-tracks on apatite and mica using a deep learning method[J]. Computers & Geosciences,162:105081.

    Google Scholar

    [67] LI C P, ZHENG D W, ZHOU R J, YU J X, WANG Y Z, PANG J Z, WANG Y, HAO Y Q, LI Y J. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: expansion of the northeastern Xizang Plateau[J]. Geophysical Research Letters,48(3):e2020GL091281. doi: 10.1029/2020GL091281

    CrossRef Google Scholar

    [68] MALUSÀ M G, FITZGERALD P G. 2019. Fission-track thermochronology and its application to geology[M]. Cham: Springer, 1-393.

    Google Scholar

    [69] MBONGO DJIMBI D, GAUTHERON C, ROQUES J, TASSAN-GOT L, GERIN C, SIMONI E. 2015. Impact of apatite chemical composition on (U-Th)/He thermochronometry: An atomistic point of view[J]. Geochimica et Cosmochimica Acta,167:162-176. doi: 10.1016/j.gca.2015.06.017

    CrossRef Google Scholar

    [70] PRICE P B, WALKER R M. 1962. Observation of fossil particle tracks in natural micas[J]. Nature,196(4856):732-734. doi: 10.1038/196732a0

    CrossRef Google Scholar

    [71] PRICE P B, WALKER R M. 1963. Fossil tracks of charged particles in mica and the age of minerals[J]. Journal of Geophysical Research,68(16):4847-4862. doi: 10.1029/JZ068i016p04847

    CrossRef Google Scholar

    [72] RAHN M K, BRANDON M T, BATT G E, GARVER J I. 2004. A zero-damage model for fission-track annealing in zircon[J]. American Mineralogist,89(4):473-484. doi: 10.2138/am-2004-0401

    CrossRef Google Scholar

    [73] REINERS P W, CAMPBELL I H, NICOLESCU S, ALLEN C M, HOURIGAN J K, GARVER J I, MATTINSON J M, COWAN D S. 2005. (U-Th)/(He-Pb) double dating of detrital zircons[J]. American Journal of Science,305(4):259-311. doi: 10.2475/ajs.305.4.259

    CrossRef Google Scholar

    [74] REINERS P W, CARLSON R W, RENNE P R, COOPER K M, GRANGER D E, MCLEAN N M, SCHOENE B. 2018. Geochronology and thermochronology[M]. Hoboken: John Wiley & Sons Ltd. , 1-491.

    Google Scholar

    [75] REINERS P W, EHLERS T A. 2005. Low-temperature thermochronology: techniques, interpretations, and applications[M]. Chantilly: Mineralogical Society of America, 1-622.

    Google Scholar

    [76] REINERS P W, FARLEY K A. 1999. Helium diffusion and (U-Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta,63(22):3845-3859. doi: 10.1016/S0016-7037(99)00170-2

    CrossRef Google Scholar

    [77] REINERS P W, FARLEY K A. 2001. Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming[J]. Earth and Planetary Science Letters,188(3-4):413-420. doi: 10.1016/S0012-821X(01)00341-7

    CrossRef Google Scholar

    [78] REINERS P W, FARLEY K A, HICKES H J. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics,349(1-4):297-308. doi: 10.1016/S0040-1951(02)00058-6

    CrossRef Google Scholar

    [79] REN Z T, LI S C, XIAO P, YANG X P, WANG H T. 2023. Artificial intelligent identification of apatite fission tracks based on machine learning[J]. Machine Learning: Science and Technology,4(4):045039. doi: 10.1088/2632-2153/ad0e17

    CrossRef Google Scholar

    [80] RUTHERFORD E. 1906. Radioactive transformations[M]. Vol. 3. New York: C. Scribner’s Sons, 5, 1-34.

    Google Scholar

    [81] SAMBRIDGE M. 1999a. Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space[J]. Geophysical Journal International,138(2):479-494. doi: 10.1046/j.1365-246X.1999.00876.x

    CrossRef Google Scholar

    [82] SAMBRIDGE M. 1999b. Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble[J]. Geophysical Journal International,138(3):727-746. doi: 10.1046/j.1365-246x.1999.00900.x

    CrossRef Google Scholar

    [83] SCHILDGEN T F, EHLERS T A, WHIPP JR D M, VAN SOEST M C, WHIPPLE K X, HODGES K V. 2009. Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach[J]. Journal of Geophysical Research: Earth Surface,114(F4):F04014.

    Google Scholar

    [84] SCHILDGEN T F, VAN DER BEEK P A, SINCLAIR H D, THIEDE R C. 2018. Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology[J]. Nature,559(7712):89-93. doi: 10.1038/s41586-018-0260-6

    CrossRef Google Scholar

    [85] SCHNEIDER D A, ISSLER D R. 2019. Application of low-temperature thermochronology to hydrocarbon exploration[M]//MALUSÀ M G, FITZGERALD P G. Fission-Track Thermochronology and Its Application to Geology. Cham: Springer, 315-333

    Google Scholar

    [86] SEILER C, BOONE S C, KOHN B P, GLEADOW A J W. 2023. A grain-by-grain comparison of apatite fission-track analysis by LA-ICP-MS and the external detector method[J]. Chemical Geology,635:121623. doi: 10.1016/j.chemgeo.2023.121623

    CrossRef Google Scholar

    [87] SHUSTER D L, FARLEY K A. 2005. 4He/3He thermochronometry: theory, practice, and potential complications[J]. Reviews in Mineralogy & Geochemistry,58(1):181-203.

    Google Scholar

    [88] SILK E C H, BARNES R S. 1959. Examination of fission fragment tracks with an electron microscope[J]. Philosophical Magazine,4(44):970-972. doi: 10.1080/14786435908238273

    CrossRef Google Scholar

    [89] SVOJTKA M, KOŠLER J. 2002. Fission-track dating of zircon by laser ablation ICPMS[J]. Geochimica et Cosmochimica Acta, 66(15A): A756.

    Google Scholar

    [90] TAGAMI T, O’SULLIVAN P B. 2005. Fundamentals of fission-track thermochronology[J]. Reviews in Mineralogy and Geochemistry,58(1):19-47. doi: 10.2138/rmg.2005.58.2

    CrossRef Google Scholar

    [91] TIAN Y T, PAN L L, ZHANG G H, YAO X B. 2024. An efficient approach for inverting rock exhumation from thermochronologic age–elevation relationship[J]. Earth Surface Dynamics,12(2):477-492. doi: 10.5194/esurf-12-477-2024

    CrossRef Google Scholar

    [92] TRIPATHY-LANG A, FOX M, SHUSTER D L. 2015. Zircon 4He/3He thermochronometry[J]. Geochimica et Cosmochimica Acta,166:1-14. doi: 10.1016/j.gca.2015.05.027

    CrossRef Google Scholar

    [93] VAN DER BEEK P, SCHILDGEN T F. 2023. Short communication: age2exhume – a MATLAB/Python script to calculate steady-state vertical exhumation rates from thermochronometric ages and application to the Himalaya[J]. Geochronology,5(1):35-49. doi: 10.5194/gchron-5-35-2023

    CrossRef Google Scholar

    [94] VERMEESCH P. 2009. RadialPlotter: a Java application for fission track, luminescence and other radial plots[J]. Radiation Measurements,44(4):409-410. doi: 10.1016/j.radmeas.2009.05.003

    CrossRef Google Scholar

    [95] VERMEESCH P. 2010. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data[J]. Chemical Geology,271(3-4):108-111. doi: 10.1016/j.chemgeo.2010.01.002

    CrossRef Google Scholar

    [96] VERMEESCH P. 2012. On the visualisation of detrital age distributions[J]. Chemical Geology,312-313:190-194. doi: 10.1016/j.chemgeo.2012.04.021

    CrossRef Google Scholar

    [97] VERMEESCH P, TIAN Y T. 2014. Thermal history modelling: HeFTy vs. QTQt[J]. Earth-Science Reviews,139:279-290. doi: 10.1016/j.earscirev.2014.09.010

    CrossRef Google Scholar

    [98] WAGNER G A, STORZER D. 1972. Fission track length reductions in minerals and the thermal history of rocks[J]. Transactions of the American Nuclear Society,15(1):127-128.

    Google Scholar

    [99] WAGNER G A, VAN DEN HAUTE P. 1992. Fission-track dating method[M]//WAGNER G A, HAUTE P. Fission-track dating. Dordrecht: Springer, 59-94.

    Google Scholar

    [100] WOLF R A, FARLEY K A, SILVER L T. 1996. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta,60(21):4231-4240. doi: 10.1016/S0016-7037(96)00192-5

    CrossRef Google Scholar

    [101] WU L, WANG F, SHAN J N, ZHANG W B, SHI W B, FENG H L. 2016. (U-Th)/He dating of international standard Durango apatite[J]. Acta Petrologica Sinica,32(6):1891-1900 (in Chinese with English abstract).

    Google Scholar

    [102] XIANG D F, ZHANG Z Y, XIAO W J, ZHU W B, ZHENG D W, LI G W, ZHENG B H, SONG D F, HAN C M, PANG J Z. 2019. Episodic Meso-Cenozoic denudation of Chinese Tianshan: evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar Basin margin, NW China[J]. Journal of Asian Earth Sciences,175:199-212. doi: 10.1016/j.jseaes.2018.07.042

    CrossRef Google Scholar

    [103] YOUNG D A. 1958. Etching of radiation damage in lithium fluoride[J]. Nature,182(4632):375-377. doi: 10.1038/182375a0

    CrossRef Google Scholar

    [104] ZEITLER P K. 2020. U-Th/He dating[M]//RINK W J, THOMPSON J. Encyclopedia of Scientific Dating Methods. Dordrecht: Springer, 1-14.

    Google Scholar

    [105] ZEITLER P K, HERCZEG A L, MCDOUGALL I, HONDA M. 1987. U-Th-He dating of apatite: a potential thermochronometer[J]. Geochimica et Cosmochimica Acta,51(10):2865-2868. doi: 10.1016/0016-7037(87)90164-5

    CrossRef Google Scholar

    [106] ZHENG D W, WU Y, PANG J Z, LI Y J, WANG Y Z, MA Y, YU J X, WANG Y. 2016, Fundamentals, dating and application of U-Th/He thermochronology[J]. Quaternary Sciences, 36(5): 1027-1036 (in Chinese with English abstract).

    Google Scholar

    [107] ZHOU Z Y. 2014. Low temperature thermochronology: principles & applications[M]. Beijing: Science Press, 1-230 (in Chinese).

    Google Scholar

    [108] ZIEGLER J F. 2008. SRIM: The stopping range of ions in matter[R]. Annapolis: United States Naval Academy.

    Google Scholar

    [109] 陈玉柳, 丁汝鑫, 孙转, 卢胜城. 2024. 新矿物(U-Th)/He年代学的研究进展[J]. 地球科学进展,39(4):357-373.

    Google Scholar

    [110] 黄小文, 孟郁苗, 漆亮, 周美夫, 高剑峰, 谭侯铭睿, 谢欢, 谭茂, 杨志爽, 高英辉, 张鑫. 2024. 磁铁矿: 研究方法与矿床学应用[J]. 华东地质,45(1):1-15.

    Google Scholar

    [111] 黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117.

    Google Scholar

    [112] 李广伟. 2021. 构造地貌与低温热年代学若干问题探讨[J]. 地质学报,95(1):214-226.

    Google Scholar

    [113] 吴林, 王非, 单竞男, 张炜斌, 师文贝, 冯慧乐. 2016. 国际标样Durango磷灰石(U-Th)/He年龄测定[J]. 岩石学报,32(6):1891-1900.

    Google Scholar

    [114] 郑德文, 武颖, 庞建章, 李又娟, 王一舟, 马严, 俞晶星, 王英. 2016. U⁃Th/He热年代学原理、测试及应用[J]. 第四纪研究,36(5):1027-1036. doi: 10.11928/j.issn.1001-7410.2016.05.02

    CrossRef Google Scholar

    [115] 周祖翼. 2014. 低温年代学: 原理与应用[M]. 北京: 科学出版社, 1-230.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(276) PDF downloads(128) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint