Citation: | ZHONG Shihua, HUANG Yu, LIU Yongle, ZHANG Yong, BAI Guolong, LIU Zhigang, MA Qiang, WANG Lijun, ZHAO Furong, HE Shuyue. 2025. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt. Geological Bulletin of China, 44(4): 574-586. doi: 10.12097/gbc.2024.06.020 |
With the deepening of geological surveys and research, substantial evidence has indicated that the East Kunlun Orogenic Belt experienced large−scale mineralization during the Silurian–Devonian periods. However, there has been a long−standing lack of in−depth research on the mineralization processes of these periods. This paper aims to clarify the characteristics of large−scale mineralization during the Silurian–Devonian in East Kunlun and its geodynamic background, with the goal of supporting a new round of strategic actions for mineral exploration breakthroughs.
Based on a systematic collection of the latest mineral exploration results from the East Kunlun Orogenic Belt, this paper conducts a comprehensive analysis of the types and characteristics of mineralization during the Silurian–Devonian periods in this region.
The East Kunlun region primarily developed three types of deposits during the Silurian−Devonian periods: magmatic segregation−type copper−nickel deposits related to mafic−ultramafic rocks, such as those found in Xiarihamu and Binggounan; porphyry–skarn deposits related to granitoids, which can be further subdivided into porphyry–skarn copper−iron polymetallic deposits and skarn tungsten−tin deposits, such as those in Kaerqueka, Wulanwuzhuer, and Baiganhu; alkaline rock−carbonatite−type niobium deposits related to alkaline rocks and carbonatites, represented by the Dagele deposit.
Comprehensive previous studies indicate that the formation of large−scale metal deposits in East Kunlun during the Silurian−Devonian periods is closely related to the evolution following the closure of the Proto−Tethys Ocean. After the closure of the Proto−Tethys Ocean around 435 Ma, the East Kunlun region entered a continent−continent collision environment. Due to slab break−off and post−collisional extension, large−scale upwelling of the asthenospheric mantle was induced. During the ascent of mantle−derived magmas, varying degrees of crust−mantle interaction with continental crust materials occurred, forming magmas rich in ore−forming elements, which eventually emplaced in the upper crust, resulting in different types of deposits. Future research should further investigate the distribution and mineralization potential of Silurian–Devonian mafic−ultramafic rocks, carbonatites, and granitoids in East Kunlun, providing theoretical guidance for a comprehensive understanding of the metallogenic patterns in the region and achieving breakthroughs in mineral exploration.
[1] | Ao C, Sun F Y, Li B L, et al. 2014. Geochemistry, zircon U–Pb dating and geological significance of diorite porphyrite in Xiarihamu deposit, Eastern Kunlun Orogenic Belt, Qinghai[J]. Northwestern Geology, 47(1): 96−106 (in Chinese with English abstract). |
[2] | Chen J, Wang B, Lu H, et al. 2018. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 60(4): 479−495. |
[3] | Dong Y, He D, Sun S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006 |
[4] | Du W, Ling J L, Zhou W, et al. 2014. Geological characteristics and genesis of Xiarihamu nickel deposit in East Kunlun[J]. Mineral Deposits, 33(4): 713−726 (in Chinese with English abstract). |
[5] | Fan J J, Wang Q, Li J, et al. 2020. Molybdenum and boron isotopic compositions of porphyry Cu mineralization‐related adakitic rocks in central‐eastern China: New insights into their petrogenesis and crust‐mantle interaction[J]. Journal of Geophysical Research: Solid Earth, 125(12): e2020JB020474. doi: 10.1029/2020JB020474 |
[6] | Fang J, Chen H, Zhang L, et al. 2015. Ore genesis of the Weibao lead–zinc district, Eastern Kunlun Orogen, China: Constrains from ore geology, fluid inclusion and isotope geochemistry[J]. International Journal of Earth Sciences, 104: 1209-1233. |
[7] | Feng C, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678. |
[8] | Gao Y, Hattori K, Bagas L, et al. 2023. Origin of Silurian granite in the Baiganhu field, Eastern Kulun Terrane, NW China: Implications for the tectonic setting of Sn−W mineralization[J]. Ore Geology Reviews: 105749. |
[9] | Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665 (in Chinese with English abstract). |
[10] | Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing Discrimination Diagrams for Granite Mineralization Potential by Using Machine Learning and Zircon Trace Elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract). |
[11] | Guo X Z, Jia Q Z, Li J C, et al. 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286−300. |
[12] | He S Y, Lin G, Zhong S H, et al. 2023. Geological Characteristics and Related Mineralization of “Qinghai Gold Belt” Formed by Orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract). |
[13] | He S Y, Sun F F, Li Y P, et al. 2017. Geochemical and geochronological significance of the Binggounan garbbro in the Qiman Tage region, Qinghai province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 582−592 (in Chinese with English abstract). |
[14] | Huang Y, Zhong S, Li S, et al. 2024. Effects of accessory mineral inclusions and signal acquisition time on zircon U−Pb ages and trace element analysis results[J]. Earth Science Frontiers, 32(1): 388-400 (in Chinese with English abstract). |
[15] | Jia L H, Mao J W, Li B L, et al. 2021. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic−ultramafic intrusion[J]. NW China: Implications for the tectonic setting and magmatic Ni−Cu mineralization in the East Kunlun Orogenic Belt[J]. International Geology Review, 63(5): 549−570. |
[16] | Li C S, Zhang Z W, Li W Y, et al. 2015. Geochronology, petrology and Hf−S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni, Cu, sulfide deposit in the Qinghai−Tibet plateau, western China[J]. Lithos, 216: 224−240. |
[17] | Li H P, Liu J C, Zhang X Q, et al. 2011. Characteristics of magmatic rocks from the Sijiaoyang Fe−polymetallic ore district in the southern margin of Qaidam, Qinghai Province and their metallogenic significance[J]. Geology and Exploration, 47(6): 1009−1017 (in Chinese with English abstract). |
[18] | Li H, Jiang S, Li S, et al. 2023. Geological characteristics, ore genetic mechanism and exploration indicators of magmatic nickel−cobalt deposits in the East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 39(4): 1041−1060 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.04.07 |
[19] | Li J, Wang T, Wang B, et al. 2024. Geochemistry, and Sr−Nd Isotopic Characteristics of the Niobium Rich Peridotite in the Dagele Area, East Kunlun[J]. Geotectonica et Metallogenia, 48(1): 114−124 (in Chinese with English abstract). |
[20] | Li L, Sun F, Li B, et al. 2022. Metallogenic geological conditions and regularity of magmatic Cu−Ni sulfide deposits in the East Kunlun metallogenic Belt[J]. Journal of Jilin University (Earth Science Edition), 52(5): 1461−1496 (in Chinese with English abstract). |
[21] | Li S, Zhao S, Liu X, et al. 2018. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011 |
[22] | Liu Y, Genser J, Neubauer F, et al. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 398: 199−224. |
[23] | Meng F C, Zhang J X, Cui M H. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun Weastern China and its tectionic significance[J]. Gondwana Research, 23(2): 825−836. doi: 10.1016/j.gr.2012.06.007 |
[24] | Peng B, Sun F, Li B, et al. 2016. The geochemistry and geochronology of the Xiarihamu II mafic−ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni−Cu sulfide deposits[J]. Ore Geology Reviews, 73(1): 13−28. |
[25] | Qian Y, Li H R, Sun F Y, et al. 2020. Zircon U−Pb dating and sulfide Re−Os isotopes of the Xiarihamu Cu−Ni sulfide deposit in Qinghai Province, NW China[J]. Canadian Journal of Earth Sciences, 57(8): 1−21. |
[26] | Song X Y, Yi J N, Chen L M, et al. 2016. The Giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29 |
[27] | Xia R, Wang C, Qing M, et al. 2015. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo−Tethys[J]. Lithos, 234/235: 47−60. |
[28] | Xiong F H, Ma C Q, Zhang J Y, et al. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai−Tibet Plateau: implications for magma mixing during subduction of Paleo−Tethyan lithosphere[J]. Mineralogy and Petrology, 104: 211−224. |
[29] | Yan J M, Sun F Y, Qian Y, et al. 2020. Geochemistry, geochronology, and Hf−S−Pb isotopes of the Akechukesai IV mafic−ultramafic complex, western China[J]. Minerals, 95: 275. |
[30] | Yang L Q, Deng J, Zhang L, et al. 2024. Mantle−rooted fluid pathways and world−class gold mineralization in the giant Jiaodong gold province: Insights from integrated deep seismic reflection and tectonics[J]. Earth−Science Reviews: 104862. |
[31] | Yu M, Dick J M, Feng C, et al. 2020. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 191: 104168. doi: 10.1016/j.jseaes.2019.104168 |
[32] | Zhang J, Lei H, Ma C, et al. 2018. Geochemical and thermodynamical modeling of magmatic sources and processes for the Xiarihamu sulfide deposit in the eastern Kunlun Orogen, western China[J]. Journal of Geochemical Exploration, 190: 345−356. doi: 10.1016/j.gexplo.2018.04.005 |
[33] | Zheng Z, Chen Y J, Deng X H, et al. 2018. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean[J]. Lithos, 296: 181-194. |
[34] | Zhong S, Feng C, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: Constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53: 855−870. doi: 10.1007/s00126-017-0787-8 |
[35] | Zhong S, Li S, Feng C, et al. 2021a. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai−Tibet Plateau: A zircon perspective[J]. Ore Geology Reviews, 139: 104560. |
[36] | Zhong S, Li S, Feng C, et al. 2021b. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth−Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524 |
[37] | Zhou J, Jin C, Suo Y, et al. 2022. The Yanshanian (Mesozoic) metallogenesis in China linked to crust−mantle interaction in the western Pacific margin: An overview from the Zhejiang Province[J]. Gondwana Research, 102: 95−132. doi: 10.1016/j.gr.2020.11.003 |
[38] | 奥琮, 孙丰月, 李碧乐, 等. 2014. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U−Pb年代学、地球化学及其地质意义[J]. 西北地质, 47(1): 96−106. doi: 10.3969/j.issn.1009-6248.2014.01.007 |
[39] | 杜玮, 凌锦兰, 周伟, 等. 2014. 东昆仑夏日哈木镍矿床地质特征与成因[J]. 矿床地质, 33(4): 713−726. doi: 10.16111/j.0258-7106.2014.04.023 |
[40] | 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 665−678. |
[41] | 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665. |
[42] | 郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70. |
[43] | 国显正, 贾群子, 李金超, 等. 2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报, 25(2): 286−300. |
[44] | 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16. |
[45] | 何书跃, 孙非非, 李云平, 等. 2017. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义[J]. 矿物岩石地球化学通报, 36(4): 582−592. |
[46] | 黄宇, 钟世华, 李三忠, 等. 2025. 副矿物包裹体和信号采集时间对锆石U−Pb年龄和微量元素分析结果的影响[J/OL]. 地学前缘, 32(1): 388−400. |
[47] | 李洪普, 刘具仓, 张喜全, 等. 2011. 青海省柴南缘四角羊铁多金属矿区岩浆岩特征及其成矿意义[J]. 地质与勘探, 47(6): 1009−1017. |
[48] | 李华, 蒋少涌, 李世金, 等. 2023. 东昆仑造山带岩浆型镍钴矿床地质特征、成因机制与找矿标志分析[J]. 岩石学报, 39(4): 1041−1060. |
[49] | 李积清, 王涛, 王秉璋, 等. 2024. 东昆仑大格勒地区富铌橄榄岩矿物学、地球化学及Sr−Nd同位素特征[J]. 大地构造与成矿学, 48(1): 114−124. |
[50] | 李良, 孙丰月, 李世金, 等. 2022. 东昆仑成矿带岩浆铜镍硫化物矿床成矿地质条件与成矿规律[J]. 吉林大学学报(地球科学版), 52(5): 1461−1496. |
[51] | 李世金, 孙丰月, 高永旺, 等. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185−191. |
[52] | 李五福, 王强, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石角闪石岩的年代学、地球化学特征及地质意义[J]. 大地构造与成矿学, 48(1): 144−167. |
[53] | 刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56. |
[54] | 刘月高, 张江伟, 冯志兴, 等. 2024. 青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展[J/OL]. 中国地质: 1−46. http://kns.cnki.net/kcms/detail/11.1167.P.20230511.0845.002.html. |
[55] | 陆济璞, 李江, 覃小锋, 等. 2005. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, (4): 46-54. |
[56] | 马忠元, 张爱奎, 李军, 等. 2023. 东昆仑哈日扎矿床V矿带银多金属矿物赋存状态研究[J]. 青海大学学报, 41(6): 78−87. |
[57] | 孟繁聪, 崔美慧, 贾丽辉, 等. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据[J]. 岩石学报, 31(12): 3581−3594. |
[58] | 孟庆鹏. 2019. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文. |
[59] | 毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471. |
[60] | 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, (3): 403−414. |
[61] | 南卡俄吾. 2021. 青海东昆仑构造带志留纪–泥盆纪侵入岩浆活动及含矿性研究[D]. 长安大学博士学位论文. |
[62] | 潘彤, 王福德, 薛万文, 等. 2025. 青海省成矿规律与百年勘查成果及新一轮找矿突破行动建议——《中国矿产地质志·青海卷》研编[J]. 地球学报, (1): 159−171. |
[63] | 祁生胜, 宋述光, 史连昌, 等. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 30(11): 3345−3356. |
[64] | 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J]. 现代地质, 28(6): 1161−1169. |
[65] | 王秉璋, 李积清, 付长垒, 等. 2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探[J]. 地球科学, 47(4): 1253−1270. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204007 |
[66] | 王秉璋, 李五福, 金婷婷, 等. 2024. 东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U−Pb年代学研究和找矿意义[J]. 地球科学, 49(4): 1245−1260. |
[67] | 王春涛, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石岩的年代学、地球化学、Sr−Nd同位素特征及其地质意义[J]. 大地构造与成矿学, 48(1): 125−147. |
[68] | 王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质—超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401. |
[69] | 王强, 李五福, 王秉璋, 等. 2024. 与碱性岩-碳酸岩杂岩共生的铌-稀土成矿作用——兼论东昆仑大格勒铌-稀土矿床中的碱性岩-碳酸岩杂岩成因[J]. 大地构造与成矿学, 48(1): 1−37. |
[70] | 王泰山, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒富铌碳酸岩地球化学特征及成因初探[J]. 大地构造与成矿学, 48(1): 97−113. |
[71] | 王涛, 王秉璋, 袁博武, 等. 2024. 东昆仑大格勒地区碱性岩-碳酸岩型铌矿勘查进展及找矿前景[J]. 大地构造与成矿学, 48(1): 50−60. |
[72] | 王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 56(6): 71−81. |
[73] | 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. |
[74] | 许志琴, 杨经绥, 李文昌, 等. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847−1860. |
[75] | 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011 |
[76] | 闫佳铭. 2017. 青海东昆仑阿克楚克塞铜镍矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文. |
[77] | 张勇, 刘国燕, 喻忠鸿, 等. 2016. 东昆仑喀雅克登锌多金属矿床成因探讨[J]. 矿产勘查, 7(2): 267−274. doi: 10.3969/j.issn.1674-7801.2016.02.004 |
[78] | 张勇, 李泽峰, 刘国燕, 等. 2015. 东昆仑喀雅克登中泥盆世二辉橄榄岩的发现及找矿意义[J]. 矿产勘查, 6(4): 405−412. |
[79] | 张照伟, 王亚磊, 钱兵, 等. 2017. 东昆仑冰沟南铜镍矿锆石SHRIMP U−Pb 年龄及构造意义[J]. 地质学报, 91(4): 724−735. |
[80] | 钟世华. 2018. 新疆维宝铜铅锌矿床成因研究[D]. 中国地质科学院博士学位论文. |
[81] | 钟世华, 丰成友, 李大新, 等. 2017a. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 91(5): 1066−1082. |
[82] | 钟世华, 丰成友, 任雅琼, 等. 2017b. 新疆维宝矽卡岩铜铅锌矿床维西矿段成矿流体性质和来源[J]. 矿床地质, 36(2): 483−500. |
[83] | 钟世华, 丰成友, 李大新, 等. 2017c. 新疆维宝多金属矿区辉绿岩脉SIMS年代学和地球化学[J]. 地质学报, 91(4): 762−775. |
[84] | 周建厚, 丰成友, 李大新, 等. 2015. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 31(8): 2277−2293. |
Tectonic framework of the East Kunlun Orogenic Belt and adjacent region
Distribution of East Kunlun intrusive rocks and major mineral deposits located in the Qinghai Province, the East Kunlun Orogenic Belt
Bugge gravity anomaly map of the East Kunlun located in the Qinghai Province, the East Kunlun Orogenic Belt
Aeromagnetic anomaly map of the East Kunlun located in the Qinghai Province
Moho isophote map of the East Kunlun located in the Qinghai Province
Whole-rock Sr-Nd isotopic diagram for Siliurian—Devonian intrusions from the East Kunlun area