2025 Vol. 44, No. 4
Article Contents

ZHONG Shihua, HUANG Yu, LIU Yongle, ZHANG Yong, BAI Guolong, LIU Zhigang, MA Qiang, WANG Lijun, ZHAO Furong, HE Shuyue. 2025. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt. Geological Bulletin of China, 44(4): 574-586. doi: 10.12097/gbc.2024.06.020
Citation: ZHONG Shihua, HUANG Yu, LIU Yongle, ZHANG Yong, BAI Guolong, LIU Zhigang, MA Qiang, WANG Lijun, ZHAO Furong, HE Shuyue. 2025. Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt. Geological Bulletin of China, 44(4): 574-586. doi: 10.12097/gbc.2024.06.020

Silurian-Devonian critical metal mineralization boom of the East Kunlun Orogenic Belt

More Information
  • Objective

    With the deepening of geological surveys and research, substantial evidence has indicated that the East Kunlun Orogenic Belt experienced large−scale mineralization during the Silurian–Devonian periods. However, there has been a long−standing lack of in−depth research on the mineralization processes of these periods. This paper aims to clarify the characteristics of large−scale mineralization during the Silurian–Devonian in East Kunlun and its geodynamic background, with the goal of supporting a new round of strategic actions for mineral exploration breakthroughs.

    Methods

    Based on a systematic collection of the latest mineral exploration results from the East Kunlun Orogenic Belt, this paper conducts a comprehensive analysis of the types and characteristics of mineralization during the Silurian–Devonian periods in this region.

    Results

    The East Kunlun region primarily developed three types of deposits during the Silurian−Devonian periods: magmatic segregation−type copper−nickel deposits related to mafic−ultramafic rocks, such as those found in Xiarihamu and Binggounan; porphyry–skarn deposits related to granitoids, which can be further subdivided into porphyry–skarn copper−iron polymetallic deposits and skarn tungsten−tin deposits, such as those in Kaerqueka, Wulanwuzhuer, and Baiganhu; alkaline rock−carbonatite−type niobium deposits related to alkaline rocks and carbonatites, represented by the Dagele deposit.

    Conclusions

    Comprehensive previous studies indicate that the formation of large−scale metal deposits in East Kunlun during the Silurian−Devonian periods is closely related to the evolution following the closure of the Proto−Tethys Ocean. After the closure of the Proto−Tethys Ocean around 435 Ma, the East Kunlun region entered a continent−continent collision environment. Due to slab break−off and post−collisional extension, large−scale upwelling of the asthenospheric mantle was induced. During the ascent of mantle−derived magmas, varying degrees of crust−mantle interaction with continental crust materials occurred, forming magmas rich in ore−forming elements, which eventually emplaced in the upper crust, resulting in different types of deposits. Future research should further investigate the distribution and mineralization potential of Silurian–Devonian mafic−ultramafic rocks, carbonatites, and granitoids in East Kunlun, providing theoretical guidance for a comprehensive understanding of the metallogenic patterns in the region and achieving breakthroughs in mineral exploration.

  • 加载中
  • [1] Ao C, Sun F Y, Li B L, et al. 2014. Geochemistry, zircon U–Pb dating and geological significance of diorite porphyrite in Xiarihamu deposit, Eastern Kunlun Orogenic Belt, Qinghai[J]. Northwestern Geology, 47(1): 96−106 (in Chinese with English abstract).

    Google Scholar

    [2] Chen J, Wang B, Lu H, et al. 2018. Geochronology and geochemistry of Early Devonian intrusions in the Qimantagh area, Northwest China: evidence for post-collisional slab break-off[J]. International Geology Review, 60(4): 479−495.

    Google Scholar

    [3] Dong Y, He D, Sun S, et al. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth−Science Reviews, 186: 231−261. doi: 10.1016/j.earscirev.2017.12.006

    CrossRef Google Scholar

    [4] Du W, Ling J L, Zhou W, et al. 2014. Geological characteristics and genesis of Xiarihamu nickel deposit in East Kunlun[J]. Mineral Deposits, 33(4): 713−726 (in Chinese with English abstract).

    Google Scholar

    [5] Fan J J, Wang Q, Li J, et al. 2020. Molybdenum and boron isotopic compositions of porphyry Cu mineralization‐related adakitic rocks in central‐eastern China: New insights into their petrogenesis and crust‐mantle interaction[J]. Journal of Geophysical Research: Solid Earth, 125(12): e2020JB020474. doi: 10.1029/2020JB020474

    CrossRef Google Scholar

    [6] Fang J, Chen H, Zhang L, et al. 2015. Ore genesis of the Weibao lead–zinc district, Eastern Kunlun Orogen, China: Constrains from ore geology, fluid inclusion and isotope geochemistry[J]. International Journal of Earth Sciences, 104: 1209-1233.

    Google Scholar

    [7] Feng C, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678.

    Google Scholar

    [8] Gao Y, Hattori K, Bagas L, et al. 2023. Origin of Silurian granite in the Baiganhu field, Eastern Kulun Terrane, NW China: Implications for the tectonic setting of Sn−W mineralization[J]. Ore Geology Reviews: 105749.

    Google Scholar

    [9] Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665 (in Chinese with English abstract).

    Google Scholar

    [10] Guo G H, Zhong S H, Li S Z, et al. 2023. Constructing Discrimination Diagrams for Granite Mineralization Potential by Using Machine Learning and Zircon Trace Elements: Example from the Qimantagh, East Kunlun[J]. Northwestern Geology, 56(6): 57−70 (in Chinese with English abstract).

    Google Scholar

    [11] Guo X Z, Jia Q Z, Li J C, et al. 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286−300.

    Google Scholar

    [12] He S Y, Lin G, Zhong S H, et al. 2023. Geological Characteristics and Related Mineralization of “Qinghai Gold Belt” Formed by Orogeny[J]. Northwestern Geology, 56(6): 1−16 (in Chinese with English abstract).

    Google Scholar

    [13] He S Y, Sun F F, Li Y P, et al. 2017. Geochemical and geochronological significance of the Binggounan garbbro in the Qiman Tage region, Qinghai province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 582−592 (in Chinese with English abstract).

    Google Scholar

    [14] Huang Y, Zhong S, Li S, et al. 2024. Effects of accessory mineral inclusions and signal acquisition time on zircon U−Pb ages and trace element analysis results[J]. Earth Science Frontiers, 32(1): 388-400 (in Chinese with English abstract).

    Google Scholar

    [15] Jia L H, Mao J W, Li B L, et al. 2021. Geochronology and petrogenesis of the Late Silurian Shitoukengde mafic−ultramafic intrusion[J]. NW China: Implications for the tectonic setting and magmatic Ni−Cu mineralization in the East Kunlun Orogenic Belt[J]. International Geology Review, 63(5): 549−570.

    Google Scholar

    [16] Li C S, Zhang Z W, Li W Y, et al. 2015. Geochronology, petrology and Hf−S isotope geochemistry of the newly−discovered Xiarihamu magmatic Ni, Cu, sulfide deposit in the Qinghai−Tibet plateau, western China[J]. Lithos, 216: 224−240.

    Google Scholar

    [17] Li H P, Liu J C, Zhang X Q, et al. 2011. Characteristics of magmatic rocks from the Sijiaoyang Fe−polymetallic ore district in the southern margin of Qaidam, Qinghai Province and their metallogenic significance[J]. Geology and Exploration, 47(6): 1009−1017 (in Chinese with English abstract).

    Google Scholar

    [18] Li H, Jiang S, Li S, et al. 2023. Geological characteristics, ore genetic mechanism and exploration indicators of magmatic nickel−cobalt deposits in the East Kunlun Orogenic Belt[J]. Acta Petrologica Sinica, 39(4): 1041−1060 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.04.07

    CrossRef Google Scholar

    [19] Li J, Wang T, Wang B, et al. 2024. Geochemistry, and Sr−Nd Isotopic Characteristics of the Niobium Rich Peridotite in the Dagele Area, East Kunlun[J]. Geotectonica et Metallogenia, 48(1): 114−124 (in Chinese with English abstract).

    Google Scholar

    [20] Li L, Sun F, Li B, et al. 2022. Metallogenic geological conditions and regularity of magmatic Cu−Ni sulfide deposits in the East Kunlun metallogenic Belt[J]. Journal of Jilin University (Earth Science Edition), 52(5): 1461−1496 (in Chinese with English abstract).

    Google Scholar

    [21] Li S, Zhao S, Liu X, et al. 2018. Closure of the Proto−Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth−Science Reviews, 186: 37−75. doi: 10.1016/j.earscirev.2017.01.011

    CrossRef Google Scholar

    [22] Liu Y, Genser J, Neubauer F, et al. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications[J]. Tectonophysics, 398: 199−224.

    Google Scholar

    [23] Meng F C, Zhang J X, Cui M H. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun Weastern China and its tectionic significance[J]. Gondwana Research, 23(2): 825−836. doi: 10.1016/j.gr.2012.06.007

    CrossRef Google Scholar

    [24] Peng B, Sun F, Li B, et al. 2016. The geochemistry and geochronology of the Xiarihamu II mafic−ultramafic complex, Eastern Kunlun, Qinghai Province, China: Implications for the genesis of magmatic Ni−Cu sulfide deposits[J]. Ore Geology Reviews, 73(1): 13−28.

    Google Scholar

    [25] Qian Y, Li H R, Sun F Y, et al. 2020. Zircon U−Pb dating and sulfide Re−Os isotopes of the Xiarihamu Cu−Ni sulfide deposit in Qinghai Province, NW China[J]. Canadian Journal of Earth Sciences, 57(8): 1−21.

    Google Scholar

    [26] Song X Y, Yi J N, Chen L M, et al. 2016. The Giant Xiarihamu Ni−Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29−55. doi: 10.2113/econgeo.111.1.29

    CrossRef Google Scholar

    [27] Xia R, Wang C, Qing M, et al. 2015. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo−Tethys[J]. Lithos, 234/235: 47−60.

    Google Scholar

    [28] Xiong F H, Ma C Q, Zhang J Y, et al. 2012. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinghai−Tibet Plateau: implications for magma mixing during subduction of Paleo−Tethyan lithosphere[J]. Mineralogy and Petrology, 104: 211−224.

    Google Scholar

    [29] Yan J M, Sun F Y, Qian Y, et al. 2020. Geochemistry, geochronology, and Hf−S−Pb isotopes of the Akechukesai IV mafic−ultramafic complex, western China[J]. Minerals, 95: 275.

    Google Scholar

    [30] Yang L Q, Deng J, Zhang L, et al. 2024. Mantle−rooted fluid pathways and world−class gold mineralization in the giant Jiaodong gold province: Insights from integrated deep seismic reflection and tectonics[J]. Earth−Science Reviews: 104862.

    Google Scholar

    [31] Yu M, Dick J M, Feng C, et al. 2020. The tectonic evolution of the East Kunlun Orogen, northern Tibetan Plateau: A critical review with an integrated geodynamic model[J]. Journal of Asian Earth Sciences, 191: 104168. doi: 10.1016/j.jseaes.2019.104168

    CrossRef Google Scholar

    [32] Zhang J, Lei H, Ma C, et al. 2018. Geochemical and thermodynamical modeling of magmatic sources and processes for the Xiarihamu sulfide deposit in the eastern Kunlun Orogen, western China[J]. Journal of Geochemical Exploration, 190: 345−356. doi: 10.1016/j.gexplo.2018.04.005

    CrossRef Google Scholar

    [33] Zheng Z, Chen Y J, Deng X H, et al. 2018. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean[J]. Lithos, 296: 181-194.

    Google Scholar

    [34] Zhong S, Feng C, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: Constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53: 855−870. doi: 10.1007/s00126-017-0787-8

    CrossRef Google Scholar

    [35] Zhong S, Li S, Feng C, et al. 2021a. Geochronology and geochemistry of mineralized and barren intrusive rocks in the Yemaquan polymetallic skarn deposit, northern Qinghai−Tibet Plateau: A zircon perspective[J]. Ore Geology Reviews, 139: 104560.

    Google Scholar

    [36] Zhong S, Li S, Feng C, et al. 2021b. Porphyry copper and skarn fertility of the northern Qinghai−Tibet Plateau collisional granitoids[J]. Earth−Science Reviews, 214: 103524. doi: 10.1016/j.earscirev.2021.103524

    CrossRef Google Scholar

    [37] Zhou J, Jin C, Suo Y, et al. 2022. The Yanshanian (Mesozoic) metallogenesis in China linked to crust−mantle interaction in the western Pacific margin: An overview from the Zhejiang Province[J]. Gondwana Research, 102: 95−132. doi: 10.1016/j.gr.2020.11.003

    CrossRef Google Scholar

    [38] 奥琮, 孙丰月, 李碧乐, 等. 2014. 青海夏日哈木矿区中泥盆世闪长玢岩锆石U−Pb年代学、地球化学及其地质意义[J]. 西北地质, 47(1): 96−106. doi: 10.3969/j.issn.1009-6248.2014.01.007

    CrossRef Google Scholar

    [39] 杜玮, 凌锦兰, 周伟, 等. 2014. 东昆仑夏日哈木镍矿床地质特征与成因[J]. 矿床地质, 33(4): 713−726. doi: 10.16111/j.0258-7106.2014.04.023

    CrossRef Google Scholar

    [40] 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 28(2): 665−678.

    Google Scholar

    [41] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    Google Scholar

    [42] 郭广慧, 钟世华, 李三忠, 等. 2023. 运用机器学习和锆石微量元素构建花岗岩成矿潜力判别图解: 以东昆仑祁漫塔格为例[J]. 西北地质, 56(6): 57−70.

    Google Scholar

    [43] 国显正, 贾群子, 李金超, 等. 2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报, 25(2): 286−300.

    Google Scholar

    [44] 何书跃, 林贵, 钟世华, 等. 2023. 造山作用孕育“青海金腰带”[J]. 西北地质, 56(6): 1−16.

    Google Scholar

    [45] 何书跃, 孙非非, 李云平, 等. 2017. 青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义[J]. 矿物岩石地球化学通报, 36(4): 582−592.

    Google Scholar

    [46] 黄宇, 钟世华, 李三忠, 等. 2025. 副矿物包裹体和信号采集时间对锆石U−Pb年龄和微量元素分析结果的影响[J/OL]. 地学前缘, 32(1): 388−400.

    Google Scholar

    [47] 李洪普, 刘具仓, 张喜全, 等. 2011. 青海省柴南缘四角羊铁多金属矿区岩浆岩特征及其成矿意义[J]. 地质与勘探, 47(6): 1009−1017.

    Google Scholar

    [48] 李华, 蒋少涌, 李世金, 等. 2023. 东昆仑造山带岩浆型镍钴矿床地质特征、成因机制与找矿标志分析[J]. 岩石学报, 39(4): 1041−1060.

    Google Scholar

    [49] 李积清, 王涛, 王秉璋, 等. 2024. 东昆仑大格勒地区富铌橄榄岩矿物学、地球化学及Sr−Nd同位素特征[J]. 大地构造与成矿学, 48(1): 114−124.

    Google Scholar

    [50] 李良, 孙丰月, 李世金, 等. 2022. 东昆仑成矿带岩浆铜镍硫化物矿床成矿地质条件与成矿规律[J]. 吉林大学学报(地球科学版), 52(5): 1461−1496.

    Google Scholar

    [51] 李世金, 孙丰月, 高永旺, 等. 2012. 小岩体成大矿理论指导与实践——青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J]. 西北地质, 45(4): 185−191.

    Google Scholar

    [52] 李五福, 王强, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石角闪石岩的年代学、地球化学特征及地质意义[J]. 大地构造与成矿学, 48(1): 144−167.

    Google Scholar

    [53] 刘嘉情, 钟世华, 李三忠, 等. 2023. 基于机器学习和全岩成分识别东昆仑祁漫塔格斑岩–矽卡岩矿床成矿岩体和贫矿岩体[J]. 西北地质, 56(6): 41−56.

    Google Scholar

    [54] 刘月高, 张江伟, 冯志兴, 等. 2024. 青藏高原东北缘岩浆型铜镍钴硫化物矿床勘查模型与研究进展[J/OL]. 中国地质: 1−46. http://kns.cnki.net/kcms/detail/11.1167.P.20230511.0845.002.html.

    Google Scholar

    [55] 陆济璞, 李江, 覃小锋, 等. 2005. 东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J]. 沉积与特提斯地质, (4): 46-54.

    Google Scholar

    [56] 马忠元, 张爱奎, 李军, 等. 2023. 东昆仑哈日扎矿床V矿带银多金属矿物赋存状态研究[J]. 青海大学学报, 41(6): 78−87.

    Google Scholar

    [57] 孟繁聪, 崔美慧, 贾丽辉, 等. 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据[J]. 岩石学报, 31(12): 3581−3594.

    Google Scholar

    [58] 孟庆鹏. 2019. 青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文.

    Google Scholar

    [59] 毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471.

    Google Scholar

    [60] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, (3): 403−414.

    Google Scholar

    [61] 南卡俄吾. 2021. 青海东昆仑构造带志留纪–泥盆纪侵入岩浆活动及含矿性研究[D]. 长安大学博士学位论文.

    Google Scholar

    [62] 潘彤, 王福德, 薛万文, 等. 2025. 青海省成矿规律与百年勘查成果及新一轮找矿突破行动建议——《中国矿产地质志·青海卷》研编[J]. 地球学报, (1): 159−171.

    Google Scholar

    [63] 祁生胜, 宋述光, 史连昌, 等. 2014. 东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 30(11): 3345−3356.

    Google Scholar

    [64] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉深部的华力西期花岗闪长岩U−Pb年龄及其意义[J]. 现代地质, 28(6): 1161−1169.

    Google Scholar

    [65] 王秉璋, 李积清, 付长垒, 等. 2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探[J]. 地球科学, 47(4): 1253−1270. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204007

    CrossRef Google Scholar

    [66] 王秉璋, 李五福, 金婷婷, 等. 2024. 东昆仑大格勒稀有金属矿化碳酸岩和橄榄岩斜锆石U−Pb年代学研究和找矿意义[J]. 地球科学, 49(4): 1245−1260.

    Google Scholar

    [67] 王春涛, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒地区碱性杂岩体中辉石岩的年代学、地球化学、Sr−Nd同位素特征及其地质意义[J]. 大地构造与成矿学, 48(1): 125−147.

    Google Scholar

    [68] 王冠, 孙丰月, 李碧乐, 等. 2014. 东昆仑夏日哈木铜镍矿镁铁质—超镁铁质岩体岩相学、锆石U−Pb年代学、地球化学及其构造意义[J]. 地学前缘, 21(6): 381−401.

    Google Scholar

    [69] 王强, 李五福, 王秉璋, 等. 2024. 与碱性岩-碳酸岩杂岩共生的铌-稀土成矿作用——兼论东昆仑大格勒铌-稀土矿床中的碱性岩-碳酸岩杂岩成因[J]. 大地构造与成矿学, 48(1): 1−37.

    Google Scholar

    [70] 王泰山, 李五福, 王秉璋, 等. 2024. 东昆仑大格勒富铌碳酸岩地球化学特征及成因初探[J]. 大地构造与成矿学, 48(1): 97−113.

    Google Scholar

    [71] 王涛, 王秉璋, 袁博武, 等. 2024. 东昆仑大格勒地区碱性岩-碳酸岩型铌矿勘查进展及找矿前景[J]. 大地构造与成矿学, 48(1): 50−60.

    Google Scholar

    [72] 王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 56(6): 71−81.

    Google Scholar

    [73] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674.

    Google Scholar

    [74] 许志琴, 杨经绥, 李文昌, 等. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报, 29(6): 1847−1860.

    Google Scholar

    [75] 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169. doi: 10.3969/j.issn.1671-2552.2016.07.011

    CrossRef Google Scholar

    [76] 闫佳铭. 2017. 青海东昆仑阿克楚克塞铜镍矿床地质特征及成因探讨[D]. 吉林大学硕士学位论文.

    Google Scholar

    [77] 张勇, 刘国燕, 喻忠鸿, 等. 2016. 东昆仑喀雅克登锌多金属矿床成因探讨[J]. 矿产勘查, 7(2): 267−274. doi: 10.3969/j.issn.1674-7801.2016.02.004

    CrossRef Google Scholar

    [78] 张勇, 李泽峰, 刘国燕, 等. 2015. 东昆仑喀雅克登中泥盆世二辉橄榄岩的发现及找矿意义[J]. 矿产勘查, 6(4): 405−412.

    Google Scholar

    [79] 张照伟, 王亚磊, 钱兵, 等. 2017. 东昆仑冰沟南铜镍矿锆石SHRIMP U−Pb 年龄及构造意义[J]. 地质学报, 91(4): 724−735.

    Google Scholar

    [80] 钟世华. 2018. 新疆维宝铜铅锌矿床成因研究[D]. 中国地质科学院博士学位论文.

    Google Scholar

    [81] 钟世华, 丰成友, 李大新, 等. 2017a. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 91(5): 1066−1082.

    Google Scholar

    [82] 钟世华, 丰成友, 任雅琼, 等. 2017b. 新疆维宝矽卡岩铜铅锌矿床维西矿段成矿流体性质和来源[J]. 矿床地质, 36(2): 483−500.

    Google Scholar

    [83] 钟世华, 丰成友, 李大新, 等. 2017c. 新疆维宝多金属矿区辉绿岩脉SIMS年代学和地球化学[J]. 地质学报, 91(4): 762−775.

    Google Scholar

    [84] 周建厚, 丰成友, 李大新, 等. 2015. 东昆仑白干湖钨锡矿床成矿岩体岩石学、年代学和地球化学[J]. 岩石学报, 31(8): 2277−2293.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(118) PDF downloads(40) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint