2025 Vol. 44, No. 4
Article Contents

ZHANG Yong, ZHANG Aikui, YUAN Wanming, LIU Guanglian, ZHAN Shouzhi, WANG Zongsheng, ZHANG Daming. 2025. Chronology, geochemistry, petrogenesis and tectonic setting of Chaganhake granitic pegmatite in North Qaidam. Geological Bulletin of China, 44(4): 552-573. doi: 10.12097/gbc.2023.12.004
Citation: ZHANG Yong, ZHANG Aikui, YUAN Wanming, LIU Guanglian, ZHAN Shouzhi, WANG Zongsheng, ZHANG Daming. 2025. Chronology, geochemistry, petrogenesis and tectonic setting of Chaganhake granitic pegmatite in North Qaidam. Geological Bulletin of China, 44(4): 552-573. doi: 10.12097/gbc.2023.12.004

Chronology, geochemistry, petrogenesis and tectonic setting of Chaganhake granitic pegmatite in North Qaidam

More Information
  • Objective

    The determination of the formation age, petrogenesis, and tectonic environment of Chaganhake granite pegmatite is of great significance for the study of the evolution of the Paleo−Tethyan and the metallogenesis of rare metals in the northern margin of the Tibetan Plateau.

    Methods

    In this paper, monazite U−Pb dating and zircon U−Pb dating have been carried out for granite pegmatite and its surrounding rocks, and their geochemistry has been studied.

    Results

    The results show that the monazite U−Pb age of granite pegmatite is 250.4±0.7 Ma(MSWD=0.1, n=27), while the zircon U−Pb age of biotitite syenogranite is 374.3±8.5 Ma(MSWD=0.15, n=8). The granite pegatite is characterized by high Si, alkali, Al and low Ti, with A/CNK value of 1.15 to 1.32 and low rare earth element contents, showing a right−leaning partition pattern with weak enrichment of light rare earth elements (LREE), strong Eu deficit, δEu of 0.07 to 0.18, showing a four−group effect of M−type rare earth elements, significant enrichment of Rb, K, U and P, strong depletion of Ba, Sr and Ti, moderate enrichment of high field strength elements(HFSE) Nb, Ta, Zr, Hf. Biotite synenite granite is rich in Si, K, and poor Ti, with A/CNK value of 1.13 to 1.32 and moderate rare earth element contents, showing a right−leaning partition pattern of strong enrichment of LREE, obvious Eu deficit, δEu of 0.19 to 0.32, strong enrichment of Rb, K, Th, and strong depletion of Sr, P and Ti.

    Conclusions

    Combined with the regional geological background, it is believed that the Chaganhake granite pegmatite in the western part of the North Qaidam margin is different from the Zongwulong granite pegmatite. The Zongwulong granite pegmatite evolved from the granite formed in the process of accretionary orogeny and collision orogeny of the Paleo−Tethys Ocean continental margin through high differentiation, while the Chaganhake granite pegmatite was formed in the continental interior of the Qaidam block under the Paleo−Tethys Ocean subduction environment of the Early Triassic. It is the product of small proportion partial melting of the Dakendaban rock group during the process of extrusion migmatization within the continent, and has the metallogenic potential of niobium−tantalum deposit.

  • 加载中
  • [1] Ballouard C, Poujol M, Boulvais P, et al. 2016. Nb − Ta fractionation in peraluminous granites: A marker of the magmatic − hydrothermal transition[J]. Geology, 44(3): 231−234. doi: 10.1130/G37475.1

    CrossRef Google Scholar

    [2] Batchelor R A , Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1/4): 43−55.

    Google Scholar

    [3] Cai P J, Zhang Y, Xu R K, et al. 2019. Zircon U−Pb geochronology, geochemistry, and Sr−Nd isotopes of Shuangkoushan quartz−syenite, Northern Qaidam, China[J]. Geotectonica et Metallogenia, 43(2): 322−338 (in Chinese with English abstract).

    Google Scholar

    [4] Černý P. 1991. Rare − element granitic pegmatites. Part I: Anatomy and internal evolution pegmatite deposits[J]. Geoscience Canada, 18(2): 49−67.

    Google Scholar

    [5] Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005−2026. doi: 10.2113/gscanmin.43.6.2005

    CrossRef Google Scholar

    [6] Chen M, Xue C J, Xue W W, et al. 2020. Discovery and geological significance of Xuji diorite in Zongwulong tectonic belt on the northern margin of Qaidam Basin[J]. Acta Petrologica et Mineralogica, 39(5): 552−568 (in Chinese with English abstract).

    Google Scholar

    [7] Davidson J P. 1987. Crustal contamination versus subduction zone enrichment: Examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks[J]. Geochimica et Cosmochimica Acta, 51(8): 2185−2198. doi: 10.1016/0016-7037(87)90268-7

    CrossRef Google Scholar

    [8] Defant M J, Drummond M S. 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662−665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [9] Deng J F, Luo Z H, Su S G. 2004. Petrogenesis, tectonic environment and mineralization[M]. Beijing: Geological Publishing House: 1−375 (in Chinese with English abstract).

    Google Scholar

    [10] Dill H G. 2016. The CMS classification scheme (chemical composition − mineral assemblage − structural geology) — linking geology to mineralogy of pegmatitic and aplitic rocks[J]. Journal of Mineral and Geochemistry, 193(3): 231−263.

    Google Scholar

    [11] Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust − mantle system[J]. Chemical Geology, 120(3/4): 347−359.

    Google Scholar

    [12] Guo A L, Zhang G W, Qiang J, et al. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai−Tibet plateau[J]. Acta Petrologica Sinica, 25(1): 1−12 (in Chinese with English abstract).

    Google Scholar

    [13] Guo C J. 1957. On the relationship between the classification of granite pegmatites and the search for rare − element minerals[J]. Geological Knowledge, (1): 1−5 (in Chinese with English abstract).

    Google Scholar

    [14] Guo Z F, Deng J F, Xu Z Q, et al. 1998. Late Palaeozoic−Mesozoic intracontinental orogenic process and intermedate−acidic igneous rocks from the Eastern Kunlun Mountains of northwestern China[J]. Geoscience, 12(3): 51−59 (in Chinese with English abstract).

    Google Scholar

    [15] Han B F. 2007. Diverse post−collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 14(3): 64−72 (in Chinese with English abstract).

    Google Scholar

    [16] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision − zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67−81.

    Google Scholar

    [17] Hofmann A W, Jochum K P, Seufert M et al. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 79(1−2): 33−45.

    Google Scholar

    [18] Hou K J, Li Y H, Tian Y R. 2009. In situ U−Pb zircon dating using laser ablation−multi ion Couting−ICP−MS[J]. Mineral Deposits, 28(4): 481−492 (in Chinese with English abstract).

    Google Scholar

    [19] Hou Z Q, Lv Q T, Wang A J, et al. 2003. Continental Collision and Related Metallogeny: A Case Study of Mineralization in Tibetan Orogen[J]. Mineral Deposits, 22(4): 319−333 (in Chinese with English abstract).

    Google Scholar

    [20] Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu−(Mo−Au) Deposits Related to Oceanic−Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings[J]. Geoscience, 21(2): 332−351 (in Chinese with English abstract).

    Google Scholar

    [21] Hu Y M. 2023. Paleozoic − Early Mesozoic continental crust growth, evolution and deep − seated dynamic processes in the eastern segment of the East Kunlun Mountains[D]. Doctor Thesis of China University of Geosciences (Beijing), 1−100 (in Chinese with English abstract).

    Google Scholar

    [22] Johannes W, Holtz F. 1996. Petrogenesis and experimental petrology of granitic rocks[M]. Berlin: Springer − Verlag, 1−335.

    Google Scholar

    [23] Le Maitre R W. 1989. A classification of igneous rocks and glossary of terms[M]. Oxford, U K: Blackwell Scientific Publications: 1−224.

    Google Scholar

    [24] Li S P, Zhan S Z, Jin T T, et al. 2016. Ree geochemical characteristics and provenance analysis of the Shaliuquan niobium tantalum pegmatite ore, Qinghai Province[J]. Chinese Rare Earths, 222(1): 39−46 (in Chinese with English abstract).

    Google Scholar

    [25] Li S P, Pan T, Wang B Z, et al. 2021. Characteristics and tectonic significance of beryl−bearing pegmatites in Qiemoge mountain, northern margin of Qaidam basin[J]. Geotectonica et Metallogenia, 182(3): 608−619 (in Chinese with English abstract).

    Google Scholar

    [26] Liang X X, Gao R, Liu H. 2023. Age and geochemical characteristics of Late Cretaceous leucogranites pluton and dykes in Xieqiong area, Tibet: constraints on the post−collisional setting of Bangong Co−Nujiang belt[J]. Geological Bulletin of China, 42(1): 92−106 (in Chinese with English abstract).

    Google Scholar

    [27] Liu C X, Sun F Y, Qian Y, et al. 2021. Vertical zonation characteristics of Chakabeishan Li−−Be rare−metal pegmatite deposit in northern margin of Qaidam Basin, Qinghai Province[J]. Global Geology, 40(4): 847−859, 880 (in Chinese with English abstract).

    Google Scholar

    [28] Liu J H, Wang Q, Xu C B, et al. 2022. Geochronology of the Chakabeishan Li − (Be) rare − element pegmatite, Zongwulong orogenic belt, northwest China: Constraints from columbite − tantalite U − Pb and muscovite − lepidolite 40Ar/39Ar dating[J]. Ore Geology Reviews, 146: 104930. doi: 10.1016/j.oregeorev.2022.104930

    CrossRef Google Scholar

    [29] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA − ICP − MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    Google Scholar

    [30] Liu Y S, Gao S, Hu Z C, et al. 2010. Continental and oceanic crust recycling − induced melt − peridotite interactions in the Trans − North China orogen: U − Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.

    Google Scholar

    [31] London D. 2005. Granitic Pegmatites: an Assessment of Current Concepts and Directions for the Future[J]. Lithos, 80(1/4): 281−303.

    Google Scholar

    [32] Luan S W, Mao Y Y, Fan L M. 1996. Rare − metal mineralization and prospecting in the Keketuohai area[M]. Chengdu: Chengdu University of Science and Technology Press: 63−148 (in Chinese with English abstract).

    Google Scholar

    [33] Ludwig K R. 2003. User’s manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[J]. Berkely Geochronology Center, (4): 71.

    Google Scholar

    [34] Lv X Q. 2012. Genesis and an evaluation for granite−pegmatite typecolumbotantalite ore−forming potential in the northernmargin of the qaidam basin, qinghai, pr. china[D]. Master's thesis of Chang’an University: 1–62 (in Chinese with English abstract).

    Google Scholar

    [35] Lv Z H, Zhang H, Tang Y, et al. 2018. Petrogenesis of syn − orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U − Pb age and Hf isotope[J]. Ore Geology Reviews, 95(1): 161−181.

    Google Scholar

    [36] Lv Z H, Zhang H, Tang Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Alta[J]. Lithos, 380/381: 105865. doi: 10.1016/j.lithos.2020.105865

    CrossRef Google Scholar

    [37] Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite − trondhjemite − granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1/2): 1−24.

    Google Scholar

    [38] Melleton J, Gloaguen E, Frei D, et al. 2012. How are the emplacement of rare − element pegmatites, regional metamorphism and magmatism interrelated in the moldanubian domain of the variscan Bohemian Massif, Czech Republic?[J]. Canadian Mineralogist, 50(6): 1751−1773. doi: 10.3749/canmin.50.6.1751

    CrossRef Google Scholar

    [39] Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and Crustal Growth in the East−Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414 (in Chinese with English abstract).

    Google Scholar

    [40] Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).

    Google Scholar

    [41] Pan T. 2019. Discussion on the minerogenetic series of deposits in Qinghai, China[J]. Journal of Earth Sciences and Environment, 41(3): 297−315 (in Chinese with English abstract).

    Google Scholar

    [42] Pan T, Ding Q F, Zhou X, et al. 2021. Columbite−tantalite group mineral U−Pb geochronology of Chaqiabeishan Li − rich granite pegmatites in the Quanji Massif, NW China: Implications for the genesis and emplacement ages of pegmatites[J]. Science, 8: 606951.

    Google Scholar

    [43] Pan T, Li S P, Wang T, et al. 2022. Metallogenic characteristics and prospecting potentiaof lithium deposits in the Qinghai Province[J]. Acta Geologica Sinica, 96(5): 1827−1854 (in Chinese with English abstract).

    Google Scholar

    [44] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [45] Peng Y, Ma Y S, Liu C L, et al. 2016. Geological characteristics and tectonic significance of the Indonesian granodiorites from the Zongwulong tectonic belt in North Qaidam[J]. Earth Science Frontiers, 118(2): 206−221 (in Chinese with English abstract).

    Google Scholar

    [46] Qin K Z, Zhou Q F, Tang D M, et al. 2019. Types, internal structural patterns, mineralization and prospects of rareelement pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract).

    Google Scholar

    [47] Richter F M. 1989. Simple models for trace element fractionation duringmelt segregateon[J]. Earth and Planetary Science Letters, 77(3/4): 333−344.

    Google Scholar

    [48] Shen M T, Guo W M, Xu M, et al. 2021. Characteristics of typical niobium−tantalum deposits in Brazil and their resource distribution regularity and prospecting directions[J]. Mineral Deposits, 40(3): 603−624 (in Chinese with English abstract).

    Google Scholar

    [49] Song S G, Zhang G B, Zhang C, et al. 2013. Dynamic process of oceanic subduction and continental collision: petrological constraints of HP−UHP belts in Qilian−Qaidam, the northern Tibetan Plateau[J]. Chinese Science Bulletin, (23): 2240−2245 (in Chinese with English abstract).

    Google Scholar

    [50] Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”[J]. Geology, 41(3): 303−306. doi: 10.1130/G33781.1

    CrossRef Google Scholar

    [51] Sun H W, Wang J, Ren J P, et al. 2021. Geological characteristics analysis of granite type and pegmatite type tantalum deposits in southern Africa[J]. Geological Review, 67(1): 265−278 (in Chinese with English abstract).

    Google Scholar

    [52] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [53] Sun W L, Zhao Z D, Mo X X, et al. 2023. Age and composition of columbite − tantalite groupminerals in the spodumene pegmatite from the Chakabeishan deposit, northern Tibetan Plateau and their implications[J]. Minerals, 13(2): 201. doi: 10.3390/min13020201

    CrossRef Google Scholar

    [54] Tang W L, Fu C, Wang J, et al. 2022. Metallogenic regularity and resources potential of Alto Ligonha Ta−Nb rare element metallogenic belt in Mozambique[J]. Geological Bulletin of China, 41(7): 1269−1281 (in Chinese with English abstract).

    Google Scholar

    [55] Wang B Z, Han J, Xie X L, et al. 2020. Discovery of the indosinian (beryl−bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan Plateau: implications for Li−Be mineralization[J]. Geotectonica et Metallogenia, 174(1): 69−79 (in Chinese with English abstract).

    Google Scholar

    [56] Wang B Z, Fu C L, Pan T, et al. 2022. Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution[J]. Acta Petrologica Sinica, 38(9): 2723−2742 (in Chinese with English abstract).

    Google Scholar

    [57] Wang B Z, Pan T, Wang Q, et al. 2023. Discovery of Indosinian highliractionated granites in the Chagiabeishan area, NE Tibetan Plateau and its prospecting significance[J]. Acta Petrologica Sinica, 39(8): 2402−2428 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.08.10

    CrossRef Google Scholar

    [58] Wang D H, Li J K, Fu X F. 2015. Dating for the Jiajika pegmatite−type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 36(6): 541−546 (in Chinese with English abstract).

    Google Scholar

    [59] Wang H, Li P, Ma H D, et al. 2017. Discovery of the Bailongshan Superlarge Lithium−Rubidium Deposit in Karakorum, Hetian, Xinjiang, and its Prospecting Implication[J]. Geotectonica et Metallogenia, 41(6): 1053−1062 (in Chinese with English abstract).

    Google Scholar

    [60] Wang Q, Hou K J. 2015. In situ U−Pb monazite dating by LA−ICP−Ms[J]. Acta Geological Sinica, 89(S1): 41−43 (in Chinese with English abstract). doi: 10.1111/1755-6724.12302_20

    CrossRef Google Scholar

    [61] Wang R C, Fontan F, Xu S J, et al. 1997. The Association of Columbite, Tantalite and Tapiolite in the Suzhou Granite, China[J]. The Canadian Mineralogist, 35(3): 699−706.

    Google Scholar

    [62] Wu C L, Gao Y H, Wu S P, et al. 2008. Zircon SHRIMP U−Pb dating and petrogeochemical characteristics of granites in the western member of the northern Margin of Qaidam Basin[J]. Science in China Series D: Earth Sciences, 38(8): 930−949 (in Chinese with English abstract).

    Google Scholar

    [63] Wu C L, Lei M, Wu D, et al. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam[J]. Acta Geoscientica Sinica, 37(4): 493−516 (in Chinese with English abstract).

    Google Scholar

    [64] Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745−765 (in Chinese with English abstract).

    Google Scholar

    [65] Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217−1238.

    Google Scholar

    [66] Wu F Y, Wan B, Zhao L, et al. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627−1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [67] Xu Z Q, Wang R C, Zhao Z B, et al. 2018. On the structural backgrounds of the large−scale "Hard−rock Type" lithium ore belts in China[J]. Acta Geologica Sinica, 92(6): 1091−1106 (in Chinese with English abstract).

    Google Scholar

    [68] Yan Z Q, Wang H T, Li Y M, et al. 2018. The potential evaluation of pegmatite−type lithium−beryllium mineral resources in Dahongliutan, west Kunlun[J]. Gansu Geology, 27(3/4): 42−48 (in Chinese with English abstract).

    Google Scholar

    [69] Yao Y Z, Li L X, Fu J F, et al. 2023. Geochronological constraints on Early Precambrian granitic pegmatite type Nb−Ta mineralization of the Lijiapuzi deposit in North China craton[J]. Geological Bulletin of China, 42(6): 1047−1049 (in Chinese with English abstract).

    Google Scholar

    [70] Yue X Y, Zhou X, Zhang Y, et al. 2018. Discovery of the pegmatite lithium veins with predicted super − large size resources in the Sizemuzu district of the Keeryin, China[J]. China Geology, 1(2): 310−311. doi: 10.31035/cg2018030

    CrossRef Google Scholar

    [71] Zeng W, Zhou H Y, Sun F Y, et al. 2021. Cassiterite U−Pb age of rare metal pegmatites in Guanpo area, North Qinling, China[J]. Geological Bulletin of China, 319(12): 2179−2182 (in Chinese with English abstract).

    Google Scholar

    [72] Zhang A K, Mo X X, Yuan W M, et al. 2016. Petrogensis and tectonic setting of Yemaquan triassic granite from the west of the Eastern Kunlun mountain range, China[J]. Acta Mineralogica Sinica, 36(2): 157−173 (in Chinese with English abstract).

    Google Scholar

    [73] Zhang A K, Yuan W M, Liu G L, et al. 2023. Metallogenic regularity and exploration direction of Strategic Metallic Minerals around Qaidam Basin[J/OL]. Earth Science Frontiers, 1−25 (in Chinese with English abstract).

    Google Scholar

    [74] Zhang H, Lv Z H, Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegma−tite−type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792−814 (in Chinese with English abstract).

    Google Scholar

    [75] Zhang H, Lv Z H, Tang Y. 2021. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 95(10): 2955−2970 (in Chinese with English abstract).

    Google Scholar

    [76] Zhang J P, Niu M L, Li C, et al. 2022. Petrogenesis and geological significance of Late Permian−Middle Triassic granites in Wulan area, eastern segment of the northern margin of the Qaidam Basin[J]. Chinese Journal of Geology, 57(4): 1103−1129 (in Chinese with English abstract).

    Google Scholar

    [77] Zhang Y, Pan T, Zhang A K, et al. 2023. Spatial Relationship between Eclogite and Copper − Nickel Mineralization in East Kunlun, China[J]. Minerals, 13(3): 330. doi: 10.3390/min13030330

    CrossRef Google Scholar

    [78] Zhao D J, Chen Y M, Zhang W B, et al. 2021. Geological characteristics, genetic types, and exploration and development status of niobium − tantalum deposits in Africa[J]. Geology and Exploration, 57(6): 1243−1256 (in Chinese with English abstract).

    Google Scholar

    [79] Zhao Z H, Yan S. 2023. Some issues relevant to rare metal metallogeny of granitic pegmatites[J]. Geotectonica et Metallogenia, 47(1): 1−41 (in Chinese with English abstract).

    Google Scholar

    [80] Zhao Z H, Bao Z W, Qiao Y L. 2010. A peculiar composite M− and W−type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China[J]. Chinese Science Bulletin, 55(15): 1474−1488 (in Chinese with English abstract). doi: 10.1360/csb2010-55-15-1474

    CrossRef Google Scholar

    [81] Zhao Z H, Chen H Y, Han J S. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(1): 1−26 (in Chinese with English abstract).

    Google Scholar

    [82] Zheng Y, Li W F, Zhang X Y, et al. 2024. Age and protolith characteristics of metamorphic surrounding rock of Chakabeishan pegmatitic lithium−beryllium ore in the northern margin of Qaidam[J]. Geological Bulletin of China, 43(7): 1104−1119 (in Chinese with English abstract).

    Google Scholar

    [83] Zou T R, Yang Y Q, Guo Y Q. 1985. Some problems related to pegmatite deposits[J]. Geological Science and Technology Information, 4(4): 100−107 (in Chinese with English abstract).

    Google Scholar

    [84] 蔡鹏捷, 张宇, 许荣科, 等. 2019. 柴北缘双口山石英正长岩锆石 U−Pb 定年、地球化学及 Sr−Nd 同位素特征[J]. 大地构造与成矿学, 42(2): 322−338.

    Google Scholar

    [85] 曾威, 周红英, 孙丰月, 等. 2021. 北秦岭官坡地区稀有金属伟晶岩锡石 U−Pb 年龄[J]. 地质通报, 39(12): 2179−2182. doi: 10.12097/j.issn.1671-2552.2021.12.020

    CrossRef Google Scholar

    [86] 陈敏, 薛春纪, 薛万文, 等. 2020. 柴北缘宗务隆构造带蓄集地区闪长岩的发现及其地质意义[J]. 岩石矿物学杂志, 39(5): 552−568. doi: 10.3969/j.issn.1000-6524.2020.05.004

    CrossRef Google Scholar

    [87] 邓晋福, 罗照华, 苏尚国. 2004. 岩石成因、构造环境与成矿作用 [M]. 北京: 地质出版社: 1−375.

    Google Scholar

    [88] 郭安林, 张国伟, 强娟, 等. 2009. 青藏高原东北缘印支期宗务隆造山带 [J]. 岩石学报, 25(1): 1−12.

    Google Scholar

    [89] 郭承基. 1957. 论花岗律晶岩的分类与寻找稀有元素矿物的关系[J]. 地质知识, (1): 1−5.

    Google Scholar

    [90] 郭正府, 邓晋福, 许志琴, 等. 1998. 青藏东昆仑晚古生代末 — 中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 12(3): 51−59.

    Google Scholar

    [91] 韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 14(3): 64−72. doi: 10.3321/j.issn:1005-2321.2007.03.006

    CrossRef Google Scholar

    [92] 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS 锆石微区原位 U−Pb 定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [93] 侯增谦, 吕庆田, 王安建, 等. 2003. 初论陆 − 陆碰撞与成矿作用 —— 以青藏高原造山带为例[J]. 矿床地质, 22(4): 319−333. doi: 10.3969/j.issn.0258-7106.2003.04.001

    CrossRef Google Scholar

    [94] 侯增谦, 潘小菲, 杨志明, 等. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, 21(2): 332−351. doi: 10.3969/j.issn.1000-8527.2007.02.019

    CrossRef Google Scholar

    [95] 胡阳鸣. 2023. 东昆仑东段早古生代 — 早中生代陆壳生长和演化及深部动力学过程 [D]. 中国地质大学(北京)博士学位论文: 1−100.

    Google Scholar

    [96] 李善平, 湛守智, 金婷婷, 等. 2016. 青海沙柳泉铌钽矿床伟晶岩稀土元素地球化学特征及物源分析[J]. 稀土, 222(1): 39−46.

    Google Scholar

    [97] 李善平, 潘彤, 王秉璋, 等. 2021. 柴达木盆地北缘锲墨格山含绿柱石花岗伟晶岩特征及构造意义[J]. 大地构造与成矿学, 182(3): 608−619.

    Google Scholar

    [98] 梁肖肖, 高睿, 刘函. 2023. 西藏谢穷地区晚白垩世淡色花岗岩体和岩脉年龄及地球化学特征: 对班公湖−怒江带后碰撞背景的制约[J]. 地质通报, 42(1): 92−106. doi: 10.12097/j.issn.1671-2552.2023.01.009

    CrossRef Google Scholar

    [99] 刘承先, 孙丰月, 钱烨, 等. 2021. 青海柴北缘地区茶卡北山锂铍稀有金属伟晶岩型矿床垂向分带特征[J]. 世界地质, 40(4): 847−859, 880. doi: 10.3969/j.issn.1004-5589.2021.04.008

    CrossRef Google Scholar

    [100] 栾世伟, 毛玉元, 范良明. 1996. 可可托海地区稀有金属成矿与找矿 [M]. 成都: 成都科技大学出版社: 63−148.

    Google Scholar

    [101] 吕晓强. 2012. 柴北缘生格地区花岗伟晶岩型铌钽矿成因及成矿潜力评价 [D]. 长安大学硕士学位论文: 1−62.

    Google Scholar

    [102] 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010

    CrossRef Google Scholar

    [103] 潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001

    CrossRef Google Scholar

    [104] 潘彤. 2019. 青海矿床成矿系列探讨[J]. 地球科学与环境学报, 166(3): 297−315. doi: 10.3969/j.issn.1672-6561.2019.03.004

    CrossRef Google Scholar

    [105] 潘彤, 李善平, 王涛, 等. 2022. 青海锂矿成矿特征及找矿潜力[J]. 地质学报, 96(5): 1827−1854. doi: 10.3969/j.issn.0001-5717.2022.05.020

    CrossRef Google Scholar

    [106] 彭渊, 马寅生, 刘成林, 等. 2016. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义 [J]. 地学前缘, 118(2): 206−221.

    Google Scholar

    [107] 秦克章, 周起凤, 唐冬梅, 等. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景 —— 兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982.

    Google Scholar

    [108] 沈莽庭, 郭维民, 徐鸣, 等. 2021. 巴西铌钽矿典型矿床特征及其资源分布规律和找矿方向[J]. 矿床地质, 40(3): 603−624.

    Google Scholar

    [109] 宋述光, 张贵宾, 张聪, 等. 2013. 大洋俯冲和大陆碰撞的动力学过程: 北祁连 − 柴北缘高压 − 超高压变质带的岩石学制约[J]. 科学通报, (23): 2240−2245.

    Google Scholar

    [110] 孙宏伟, 王杰, 任军平, 等. 2021. 南部非洲花岗岩型与伟晶岩型钽矿床地质特征[J]. 地质论评, 67(1): 265−278.

    Google Scholar

    [111] 唐文龙, 付超, 王杰, 等. 2022. 莫桑比克上利戈尼亚钽−铌稀有元素成矿带成矿规律及资源潜力[J]. 地质通报, 41(7): 1269−1281. doi: 10.12097/j.issn.1671-2552.2022.07.013

    CrossRef Google Scholar

    [112] 王秉璋, 韩 杰, 谢祥镭, 等. 2020. 青藏高原东北缘茶卡北山印支期 (含绿柱石) 锂辉石伟晶岩脉群的发现及 Li−Be 成矿意义[J]. 大地构造与成矿学, 174(1): 69−79.

    Google Scholar

    [113] 王秉璋, 付长垒, 潘彤, 等. 2022. 柴北缘赛什腾地区早古生代岩浆活动与构造演化[J]. 岩石学报, 38(9): 2723−2742. doi: 10.18654/1000.0569/2022.09.13

    CrossRef Google Scholar

    [114] 王秉璋, 潘彤, 王强, 等. 2023. 青藏高原东北缘茶卡北山地区印支期高分异花岗岩的发现及找矿意义[J]. 岩石学报, 39(8): 2402−2428. doi: 10.18654/1000-0569/2023.08.10

    CrossRef Google Scholar

    [115] 王登红, 李建康, 付小方. 2015. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 36(6): 541−546.

    Google Scholar

    [116] 王核, 李沛, 马华东, 等. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053−1062.

    Google Scholar

    [117] 王倩, 侯可军. 2015. 独居石 LA−ICP−MS 微区原位 U−Pb 同位素年龄测定[J]. 地质学报, 89(S1): 41−43.

    Google Scholar

    [118] 吴才来, 郜源红, 吴锁平, 等. 2008. 柴北缘西段花岗岩锆石 SHRIMP U−Pb 定年及其岩石地球化学特征[J]. 中国科学 (D 辑: 地球科学), 38(8): 930−949.

    Google Scholar

    [119] 吴才来, 雷敏, 吴迪, 等. 2016. 柴北缘乌兰地区花岗岩锆石 SHRIMP 定年及其成因[J]. 地球学报, 37(4): 493−516. doi: 10.3975/cagsb.2016.04.11

    CrossRef Google Scholar

    [120] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238.

    Google Scholar

    [121] 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.

    Google Scholar

    [122] 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01

    CrossRef Google Scholar

    [123] 许志琴, 王汝成, 赵中宝, 等. 2018. 试论中国大陆 “硬岩型” 大型锂矿带的构造背景[J]. 地质学报, 92(6): 1091−1106. doi: 10.3969/j.issn.0001-5717.2018.06.001

    CrossRef Google Scholar

    [124] 燕洲泉, 王怀涛, 李元茂, 等. 2018. 西昆仑大红柳滩伟晶岩型锂铍矿产资源潜力评价 [J]. 甘肃地质, 27(3/4): 42−48.

    Google Scholar

    [125] 姚玉增, 李立兴, 付建飞, 等. 2023. 华北克拉通辽宁李家堡子早前寒武纪花岗伟晶岩型铌钽成矿的年龄证据[J]. 地质通报, 42(6): 1671−2552.

    Google Scholar

    [126] 张爱奎, 莫宣学, 袁万明, 等. 2016. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 36(2): 157−173.

    Google Scholar

    [127] 张爱奎, 袁万明, 刘光莲, 等. 2024. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, (3): 260−283.

    Google Scholar

    [128] 张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792−814.

    Google Scholar

    [129] 张辉, 吕正航, 唐勇. 2021. LCT 型伟晶岩及其锂矿床成因概述[J]. 地质学报, 95(10): 2955−2970. doi: 10.3969/j.issn.0001-5717.2021.10.003

    CrossRef Google Scholar

    [130] 张金鹏, 牛漫兰, 李晨, 等. 2022. 柴北缘构造带东段乌兰地区晚二叠世 — 中三叠世花岗岩成因及其地质意义[J]. 地质科学, 57(4): 1103−1129. doi: 10.12017/dzkx.2022.063

    CrossRef Google Scholar

    [131] 赵东杰, 陈玉明, 张伟波, 等. 2021. 非洲铌钽矿地质特征、矿床类型及勘查开发现状分析[J]. 地质与勘探, 57(6): 1243−1256. doi: 10.12134/j.dzykt.2021.06.005

    CrossRef Google Scholar

    [132] 赵振华, 包志伟, 乔玉楼. 2010. 一种特殊的 “M” 与 “W” 复合型稀土元素四分组效应: 以水泉沟碱性正长岩为例[J]. 科学通报, 55(15): 1474−1488.

    Google Scholar

    [133] 赵振华, 陈华勇, 韩金生. 2022. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报 (自然科学版), 61(1): 1−26.

    Google Scholar

    [134] 赵振华, 严爽. 2023. 花岗伟晶岩成矿有关的几个问题讨论[J]. 大地构造与成矿学, 47(1): 1−41.

    Google Scholar

    [135] 郑英, 李五福, 张小永, 等. 2024. 柴北缘茶卡北山伟晶岩型锂铍矿变质围岩时代及原岩特征[J]. 地质通报, 43(7): 1104−1119.

    Google Scholar

    [136] 邹天人, 杨岳清, 郭永泉. 1985. 有关伟晶岩矿床的一些问题[J]. 地质科技情报, 4(4): 100−107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(111) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint