Citation: | ZHANG Yong, ZHANG Aikui, YUAN Wanming, LIU Guanglian, ZHAN Shouzhi, WANG Zongsheng, ZHANG Daming. 2025. Chronology, geochemistry, petrogenesis and tectonic setting of Chaganhake granitic pegmatite in North Qaidam. Geological Bulletin of China, 44(4): 552-573. doi: 10.12097/gbc.2023.12.004 |
The determination of the formation age, petrogenesis, and tectonic environment of Chaganhake granite pegmatite is of great significance for the study of the evolution of the Paleo−Tethyan and the metallogenesis of rare metals in the northern margin of the Tibetan Plateau.
In this paper, monazite U−Pb dating and zircon U−Pb dating have been carried out for granite pegmatite and its surrounding rocks, and their geochemistry has been studied.
The results show that the monazite U−Pb age of granite pegmatite is 250.4±0.7 Ma(MSWD=0.1, n=27), while the zircon U−Pb age of biotitite syenogranite is 374.3±8.5 Ma(MSWD=0.15, n=8). The granite pegatite is characterized by high Si, alkali, Al and low Ti, with A/CNK value of 1.15 to 1.32 and low rare earth element contents, showing a right−leaning partition pattern with weak enrichment of light rare earth elements (LREE), strong Eu deficit, δEu of 0.07 to 0.18, showing a four−group effect of M−type rare earth elements, significant enrichment of Rb, K, U and P, strong depletion of Ba, Sr and Ti, moderate enrichment of high field strength elements(HFSE) Nb, Ta, Zr, Hf. Biotite synenite granite is rich in Si, K, and poor Ti, with A/CNK value of 1.13 to 1.32 and moderate rare earth element contents, showing a right−leaning partition pattern of strong enrichment of LREE, obvious Eu deficit, δEu of 0.19 to 0.32, strong enrichment of Rb, K, Th, and strong depletion of Sr, P and Ti.
Combined with the regional geological background, it is believed that the Chaganhake granite pegmatite in the western part of the North Qaidam margin is different from the Zongwulong granite pegmatite. The Zongwulong granite pegmatite evolved from the granite formed in the process of accretionary orogeny and collision orogeny of the Paleo−Tethys Ocean continental margin through high differentiation, while the Chaganhake granite pegmatite was formed in the continental interior of the Qaidam block under the Paleo−Tethys Ocean subduction environment of the Early Triassic. It is the product of small proportion partial melting of the Dakendaban rock group during the process of extrusion migmatization within the continent, and has the metallogenic potential of niobium−tantalum deposit.
[1] | Ballouard C, Poujol M, Boulvais P, et al. 2016. Nb − Ta fractionation in peraluminous granites: A marker of the magmatic − hydrothermal transition[J]. Geology, 44(3): 231−234. doi: 10.1130/G37475.1 |
[2] | Batchelor R A , Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1/4): 43−55. |
[3] | Cai P J, Zhang Y, Xu R K, et al. 2019. Zircon U−Pb geochronology, geochemistry, and Sr−Nd isotopes of Shuangkoushan quartz−syenite, Northern Qaidam, China[J]. Geotectonica et Metallogenia, 43(2): 322−338 (in Chinese with English abstract). |
[4] | Černý P. 1991. Rare − element granitic pegmatites. Part I: Anatomy and internal evolution pegmatite deposits[J]. Geoscience Canada, 18(2): 49−67. |
[5] | Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited[J]. The Canadian Mineralogist, 43(6): 2005−2026. doi: 10.2113/gscanmin.43.6.2005 |
[6] | Chen M, Xue C J, Xue W W, et al. 2020. Discovery and geological significance of Xuji diorite in Zongwulong tectonic belt on the northern margin of Qaidam Basin[J]. Acta Petrologica et Mineralogica, 39(5): 552−568 (in Chinese with English abstract). |
[7] | Davidson J P. 1987. Crustal contamination versus subduction zone enrichment: Examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks[J]. Geochimica et Cosmochimica Acta, 51(8): 2185−2198. doi: 10.1016/0016-7037(87)90268-7 |
[8] | Defant M J, Drummond M S. 1990. Derivation of some modern arcmagmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662−665. doi: 10.1038/347662a0 |
[9] | Deng J F, Luo Z H, Su S G. 2004. Petrogenesis, tectonic environment and mineralization[M]. Beijing: Geological Publishing House: 1−375 (in Chinese with English abstract). |
[10] | Dill H G. 2016. The CMS classification scheme (chemical composition − mineral assemblage − structural geology) — linking geology to mineralogy of pegmatitic and aplitic rocks[J]. Journal of Mineral and Geochemistry, 193(3): 231−263. |
[11] | Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust − mantle system[J]. Chemical Geology, 120(3/4): 347−359. |
[12] | Guo A L, Zhang G W, Qiang J, et al. 2009. Indosinian Zongwulong orogenic belt on the northeastern margin of the Qinghai−Tibet plateau[J]. Acta Petrologica Sinica, 25(1): 1−12 (in Chinese with English abstract). |
[13] | Guo C J. 1957. On the relationship between the classification of granite pegmatites and the search for rare − element minerals[J]. Geological Knowledge, (1): 1−5 (in Chinese with English abstract). |
[14] | Guo Z F, Deng J F, Xu Z Q, et al. 1998. Late Palaeozoic−Mesozoic intracontinental orogenic process and intermedate−acidic igneous rocks from the Eastern Kunlun Mountains of northwestern China[J]. Geoscience, 12(3): 51−59 (in Chinese with English abstract). |
[15] | Han B F. 2007. Diverse post−collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers, 14(3): 64−72 (in Chinese with English abstract). |
[16] | Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision − zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67−81. |
[17] | Hofmann A W, Jochum K P, Seufert M et al. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution[J]. Earth and Planetary Science Letters, 79(1−2): 33−45. |
[18] | Hou K J, Li Y H, Tian Y R. 2009. In situ U−Pb zircon dating using laser ablation−multi ion Couting−ICP−MS[J]. Mineral Deposits, 28(4): 481−492 (in Chinese with English abstract). |
[19] | Hou Z Q, Lv Q T, Wang A J, et al. 2003. Continental Collision and Related Metallogeny: A Case Study of Mineralization in Tibetan Orogen[J]. Mineral Deposits, 22(4): 319−333 (in Chinese with English abstract). |
[20] | Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu−(Mo−Au) Deposits Related to Oceanic−Slab Subduction: Examples from Chinese Porphyry Deposits in Continental Settings[J]. Geoscience, 21(2): 332−351 (in Chinese with English abstract). |
[21] | Hu Y M. 2023. Paleozoic − Early Mesozoic continental crust growth, evolution and deep − seated dynamic processes in the eastern segment of the East Kunlun Mountains[D]. Doctor Thesis of China University of Geosciences (Beijing), 1−100 (in Chinese with English abstract). |
[22] | Johannes W, Holtz F. 1996. Petrogenesis and experimental petrology of granitic rocks[M]. Berlin: Springer − Verlag, 1−335. |
[23] | Le Maitre R W. 1989. A classification of igneous rocks and glossary of terms[M]. Oxford, U K: Blackwell Scientific Publications: 1−224. |
[24] | Li S P, Zhan S Z, Jin T T, et al. 2016. Ree geochemical characteristics and provenance analysis of the Shaliuquan niobium tantalum pegmatite ore, Qinghai Province[J]. Chinese Rare Earths, 222(1): 39−46 (in Chinese with English abstract). |
[25] | Li S P, Pan T, Wang B Z, et al. 2021. Characteristics and tectonic significance of beryl−bearing pegmatites in Qiemoge mountain, northern margin of Qaidam basin[J]. Geotectonica et Metallogenia, 182(3): 608−619 (in Chinese with English abstract). |
[26] | Liang X X, Gao R, Liu H. 2023. Age and geochemical characteristics of Late Cretaceous leucogranites pluton and dykes in Xieqiong area, Tibet: constraints on the post−collisional setting of Bangong Co−Nujiang belt[J]. Geological Bulletin of China, 42(1): 92−106 (in Chinese with English abstract). |
[27] | Liu C X, Sun F Y, Qian Y, et al. 2021. Vertical zonation characteristics of Chakabeishan Li−−Be rare−metal pegmatite deposit in northern margin of Qaidam Basin, Qinghai Province[J]. Global Geology, 40(4): 847−859, 880 (in Chinese with English abstract). |
[28] | Liu J H, Wang Q, Xu C B, et al. 2022. Geochronology of the Chakabeishan Li − (Be) rare − element pegmatite, Zongwulong orogenic belt, northwest China: Constraints from columbite − tantalite U − Pb and muscovite − lepidolite 40Ar/39Ar dating[J]. Ore Geology Reviews, 146: 104930. doi: 10.1016/j.oregeorev.2022.104930 |
[29] | Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA − ICP − MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43. |
[30] | Liu Y S, Gao S, Hu Z C, et al. 2010. Continental and oceanic crust recycling − induced melt − peridotite interactions in the Trans − North China orogen: U − Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571. |
[31] | London D. 2005. Granitic Pegmatites: an Assessment of Current Concepts and Directions for the Future[J]. Lithos, 80(1/4): 281−303. |
[32] | Luan S W, Mao Y Y, Fan L M. 1996. Rare − metal mineralization and prospecting in the Keketuohai area[M]. Chengdu: Chengdu University of Science and Technology Press: 63−148 (in Chinese with English abstract). |
[33] | Ludwig K R. 2003. User’s manual for ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[J]. Berkely Geochronology Center, (4): 71. |
[34] | Lv X Q. 2012. Genesis and an evaluation for granite−pegmatite typecolumbotantalite ore−forming potential in the northernmargin of the qaidam basin, qinghai, pr. china[D]. Master's thesis of Chang’an University: 1–62 (in Chinese with English abstract). |
[35] | Lv Z H, Zhang H, Tang Y, et al. 2018. Petrogenesis of syn − orogenic rare metal pegmatites in the Chinese Altai: evidences from geology, mineralogy, zircon U − Pb age and Hf isotope[J]. Ore Geology Reviews, 95(1): 161−181. |
[36] | Lv Z H, Zhang H, Tang Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Alta[J]. Lithos, 380/381: 105865. doi: 10.1016/j.lithos.2020.105865 |
[37] | Martin H, Smithies R H, Rapp R, et al. 2005. An overview of adakite, tonalite − trondhjemite − granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution[J]. Lithos, 79(1/2): 1−24. |
[38] | Melleton J, Gloaguen E, Frei D, et al. 2012. How are the emplacement of rare − element pegmatites, regional metamorphism and magmatism interrelated in the moldanubian domain of the variscan Bohemian Massif, Czech Republic?[J]. Canadian Mineralogist, 50(6): 1751−1773. doi: 10.3749/canmin.50.6.1751 |
[39] | Mo X X, Luo Z H, Deng J F, et al. 2007. Granitoids and Crustal Growth in the East−Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403−414 (in Chinese with English abstract). |
[40] | Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract). |
[41] | Pan T. 2019. Discussion on the minerogenetic series of deposits in Qinghai, China[J]. Journal of Earth Sciences and Environment, 41(3): 297−315 (in Chinese with English abstract). |
[42] | Pan T, Ding Q F, Zhou X, et al. 2021. Columbite−tantalite group mineral U−Pb geochronology of Chaqiabeishan Li − rich granite pegmatites in the Quanji Massif, NW China: Implications for the genesis and emplacement ages of pegmatites[J]. Science, 8: 606951. |
[43] | Pan T, Li S P, Wang T, et al. 2022. Metallogenic characteristics and prospecting potentiaof lithium deposits in the Qinghai Province[J]. Acta Geologica Sinica, 96(5): 1827−1854 (in Chinese with English abstract). |
[44] | Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956 |
[45] | Peng Y, Ma Y S, Liu C L, et al. 2016. Geological characteristics and tectonic significance of the Indonesian granodiorites from the Zongwulong tectonic belt in North Qaidam[J]. Earth Science Frontiers, 118(2): 206−221 (in Chinese with English abstract). |
[46] | Qin K Z, Zhou Q F, Tang D M, et al. 2019. Types, internal structural patterns, mineralization and prospects of rareelement pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract). |
[47] | Richter F M. 1989. Simple models for trace element fractionation duringmelt segregateon[J]. Earth and Planetary Science Letters, 77(3/4): 333−344. |
[48] | Shen M T, Guo W M, Xu M, et al. 2021. Characteristics of typical niobium−tantalum deposits in Brazil and their resource distribution regularity and prospecting directions[J]. Mineral Deposits, 40(3): 603−624 (in Chinese with English abstract). |
[49] | Song S G, Zhang G B, Zhang C, et al. 2013. Dynamic process of oceanic subduction and continental collision: petrological constraints of HP−UHP belts in Qilian−Qaidam, the northern Tibetan Plateau[J]. Chinese Science Bulletin, (23): 2240−2245 (in Chinese with English abstract). |
[50] | Stepanov A S, Hermann J. 2013. Fractionation of Nb and Ta by biotite and phengite: Implications for the “missing Nb paradox”[J]. Geology, 41(3): 303−306. doi: 10.1130/G33781.1 |
[51] | Sun H W, Wang J, Ren J P, et al. 2021. Geological characteristics analysis of granite type and pegmatite type tantalum deposits in southern Africa[J]. Geological Review, 67(1): 265−278 (in Chinese with English abstract). |
[52] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19 |
[53] | Sun W L, Zhao Z D, Mo X X, et al. 2023. Age and composition of columbite − tantalite groupminerals in the spodumene pegmatite from the Chakabeishan deposit, northern Tibetan Plateau and their implications[J]. Minerals, 13(2): 201. doi: 10.3390/min13020201 |
[54] | Tang W L, Fu C, Wang J, et al. 2022. Metallogenic regularity and resources potential of Alto Ligonha Ta−Nb rare element metallogenic belt in Mozambique[J]. Geological Bulletin of China, 41(7): 1269−1281 (in Chinese with English abstract). |
[55] | Wang B Z, Han J, Xie X L, et al. 2020. Discovery of the indosinian (beryl−bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan Plateau: implications for Li−Be mineralization[J]. Geotectonica et Metallogenia, 174(1): 69−79 (in Chinese with English abstract). |
[56] | Wang B Z, Fu C L, Pan T, et al. 2022. Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution[J]. Acta Petrologica Sinica, 38(9): 2723−2742 (in Chinese with English abstract). |
[57] | Wang B Z, Pan T, Wang Q, et al. 2023. Discovery of Indosinian highliractionated granites in the Chagiabeishan area, NE Tibetan Plateau and its prospecting significance[J]. Acta Petrologica Sinica, 39(8): 2402−2428 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.08.10 |
[58] | Wang D H, Li J K, Fu X F. 2015. Dating for the Jiajika pegmatite−type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 36(6): 541−546 (in Chinese with English abstract). |
[59] | Wang H, Li P, Ma H D, et al. 2017. Discovery of the Bailongshan Superlarge Lithium−Rubidium Deposit in Karakorum, Hetian, Xinjiang, and its Prospecting Implication[J]. Geotectonica et Metallogenia, 41(6): 1053−1062 (in Chinese with English abstract). |
[60] | Wang Q, Hou K J. 2015. In situ U−Pb monazite dating by LA−ICP−Ms[J]. Acta Geological Sinica, 89(S1): 41−43 (in Chinese with English abstract). doi: 10.1111/1755-6724.12302_20 |
[61] | Wang R C, Fontan F, Xu S J, et al. 1997. The Association of Columbite, Tantalite and Tapiolite in the Suzhou Granite, China[J]. The Canadian Mineralogist, 35(3): 699−706. |
[62] | Wu C L, Gao Y H, Wu S P, et al. 2008. Zircon SHRIMP U−Pb dating and petrogeochemical characteristics of granites in the western member of the northern Margin of Qaidam Basin[J]. Science in China Series D: Earth Sciences, 38(8): 930−949 (in Chinese with English abstract). |
[63] | Wu C L, Lei M, Wu D, et al. 2016. Zircon SHRIMP dating and genesis of granites in Wulan area of northern Qaidam[J]. Acta Geoscientica Sinica, 37(4): 493−516 (in Chinese with English abstract). |
[64] | Wu F Y, Liu X C, Ji W Q, et al. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745−765 (in Chinese with English abstract). |
[65] | Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217−1238. |
[66] | Wu F Y, Wan B, Zhao L, et al. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6): 1627−1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01 |
[67] | Xu Z Q, Wang R C, Zhao Z B, et al. 2018. On the structural backgrounds of the large−scale "Hard−rock Type" lithium ore belts in China[J]. Acta Geologica Sinica, 92(6): 1091−1106 (in Chinese with English abstract). |
[68] | Yan Z Q, Wang H T, Li Y M, et al. 2018. The potential evaluation of pegmatite−type lithium−beryllium mineral resources in Dahongliutan, west Kunlun[J]. Gansu Geology, 27(3/4): 42−48 (in Chinese with English abstract). |
[69] | Yao Y Z, Li L X, Fu J F, et al. 2023. Geochronological constraints on Early Precambrian granitic pegmatite type Nb−Ta mineralization of the Lijiapuzi deposit in North China craton[J]. Geological Bulletin of China, 42(6): 1047−1049 (in Chinese with English abstract). |
[70] | Yue X Y, Zhou X, Zhang Y, et al. 2018. Discovery of the pegmatite lithium veins with predicted super − large size resources in the Sizemuzu district of the Keeryin, China[J]. China Geology, 1(2): 310−311. doi: 10.31035/cg2018030 |
[71] | Zeng W, Zhou H Y, Sun F Y, et al. 2021. Cassiterite U−Pb age of rare metal pegmatites in Guanpo area, North Qinling, China[J]. Geological Bulletin of China, 319(12): 2179−2182 (in Chinese with English abstract). |
[72] | Zhang A K, Mo X X, Yuan W M, et al. 2016. Petrogensis and tectonic setting of Yemaquan triassic granite from the west of the Eastern Kunlun mountain range, China[J]. Acta Mineralogica Sinica, 36(2): 157−173 (in Chinese with English abstract). |
[73] | Zhang A K, Yuan W M, Liu G L, et al. 2023. Metallogenic regularity and exploration direction of Strategic Metallic Minerals around Qaidam Basin[J/OL]. Earth Science Frontiers, 1−25 (in Chinese with English abstract). |
[74] | Zhang H, Lv Z H, Tang Y. 2019. Metallogeny and prospecting model as well as prospecting direction of pegma−tite−type rare metal ore deposits in Altay orogenic belt, Xinjiang[J]. Mineral Deposits, 38(4): 792−814 (in Chinese with English abstract). |
[75] | Zhang H, Lv Z H, Tang Y. 2021. A review of LCT pegmatite and its lithium ore genesis[J]. Acta Geologica Sinica, 95(10): 2955−2970 (in Chinese with English abstract). |
[76] | Zhang J P, Niu M L, Li C, et al. 2022. Petrogenesis and geological significance of Late Permian−Middle Triassic granites in Wulan area, eastern segment of the northern margin of the Qaidam Basin[J]. Chinese Journal of Geology, 57(4): 1103−1129 (in Chinese with English abstract). |
[77] | Zhang Y, Pan T, Zhang A K, et al. 2023. Spatial Relationship between Eclogite and Copper − Nickel Mineralization in East Kunlun, China[J]. Minerals, 13(3): 330. doi: 10.3390/min13030330 |
[78] | Zhao D J, Chen Y M, Zhang W B, et al. 2021. Geological characteristics, genetic types, and exploration and development status of niobium − tantalum deposits in Africa[J]. Geology and Exploration, 57(6): 1243−1256 (in Chinese with English abstract). |
[79] | Zhao Z H, Yan S. 2023. Some issues relevant to rare metal metallogeny of granitic pegmatites[J]. Geotectonica et Metallogenia, 47(1): 1−41 (in Chinese with English abstract). |
[80] | Zhao Z H, Bao Z W, Qiao Y L. 2010. A peculiar composite M− and W−type REE tetrad effect: Evidence from the Shuiquangou alkaline syenite complex, Hebei Province, China[J]. Chinese Science Bulletin, 55(15): 1474−1488 (in Chinese with English abstract). doi: 10.1360/csb2010-55-15-1474 |
[81] | Zhao Z H, Chen H Y, Han J S. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 61(1): 1−26 (in Chinese with English abstract). |
[82] | Zheng Y, Li W F, Zhang X Y, et al. 2024. Age and protolith characteristics of metamorphic surrounding rock of Chakabeishan pegmatitic lithium−beryllium ore in the northern margin of Qaidam[J]. Geological Bulletin of China, 43(7): 1104−1119 (in Chinese with English abstract). |
[83] | Zou T R, Yang Y Q, Guo Y Q. 1985. Some problems related to pegmatite deposits[J]. Geological Science and Technology Information, 4(4): 100−107 (in Chinese with English abstract). |
[84] | 蔡鹏捷, 张宇, 许荣科, 等. 2019. 柴北缘双口山石英正长岩锆石 U−Pb 定年、地球化学及 Sr−Nd 同位素特征[J]. 大地构造与成矿学, 42(2): 322−338. |
[85] | 曾威, 周红英, 孙丰月, 等. 2021. 北秦岭官坡地区稀有金属伟晶岩锡石 U−Pb 年龄[J]. 地质通报, 39(12): 2179−2182. doi: 10.12097/j.issn.1671-2552.2021.12.020 |
[86] | 陈敏, 薛春纪, 薛万文, 等. 2020. 柴北缘宗务隆构造带蓄集地区闪长岩的发现及其地质意义[J]. 岩石矿物学杂志, 39(5): 552−568. doi: 10.3969/j.issn.1000-6524.2020.05.004 |
[87] | 邓晋福, 罗照华, 苏尚国. 2004. 岩石成因、构造环境与成矿作用 [M]. 北京: 地质出版社: 1−375. |
[88] | 郭安林, 张国伟, 强娟, 等. 2009. 青藏高原东北缘印支期宗务隆造山带 [J]. 岩石学报, 25(1): 1−12. |
[89] | 郭承基. 1957. 论花岗律晶岩的分类与寻找稀有元素矿物的关系[J]. 地质知识, (1): 1−5. |
[90] | 郭正府, 邓晋福, 许志琴, 等. 1998. 青藏东昆仑晚古生代末 — 中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 12(3): 51−59. |
[91] | 韩宝福. 2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘, 14(3): 64−72. doi: 10.3321/j.issn:1005-2321.2007.03.006 |
[92] | 侯可军, 李延河, 田有荣. 2009. LA−MC−ICP−MS 锆石微区原位 U−Pb 定年技术[J]. 矿床地质, 28(4): 481−492. doi: 10.3969/j.issn.0258-7106.2009.04.010 |
[93] | 侯增谦, 吕庆田, 王安建, 等. 2003. 初论陆 − 陆碰撞与成矿作用 —— 以青藏高原造山带为例[J]. 矿床地质, 22(4): 319−333. doi: 10.3969/j.issn.0258-7106.2003.04.001 |
[94] | 侯增谦, 潘小菲, 杨志明, 等. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, 21(2): 332−351. doi: 10.3969/j.issn.1000-8527.2007.02.019 |
[95] | 胡阳鸣. 2023. 东昆仑东段早古生代 — 早中生代陆壳生长和演化及深部动力学过程 [D]. 中国地质大学(北京)博士学位论文: 1−100. |
[96] | 李善平, 湛守智, 金婷婷, 等. 2016. 青海沙柳泉铌钽矿床伟晶岩稀土元素地球化学特征及物源分析[J]. 稀土, 222(1): 39−46. |
[97] | 李善平, 潘彤, 王秉璋, 等. 2021. 柴达木盆地北缘锲墨格山含绿柱石花岗伟晶岩特征及构造意义[J]. 大地构造与成矿学, 182(3): 608−619. |
[98] | 梁肖肖, 高睿, 刘函. 2023. 西藏谢穷地区晚白垩世淡色花岗岩体和岩脉年龄及地球化学特征: 对班公湖−怒江带后碰撞背景的制约[J]. 地质通报, 42(1): 92−106. doi: 10.12097/j.issn.1671-2552.2023.01.009 |
[99] | 刘承先, 孙丰月, 钱烨, 等. 2021. 青海柴北缘地区茶卡北山锂铍稀有金属伟晶岩型矿床垂向分带特征[J]. 世界地质, 40(4): 847−859, 880. doi: 10.3969/j.issn.1004-5589.2021.04.008 |
[100] | 栾世伟, 毛玉元, 范良明. 1996. 可可托海地区稀有金属成矿与找矿 [M]. 成都: 成都科技大学出版社: 63−148. |
[101] | 吕晓强. 2012. 柴北缘生格地区花岗伟晶岩型铌钽矿成因及成矿潜力评价 [D]. 长安大学硕士学位论文: 1−62. |
[102] | 莫宣学, 罗照华, 邓晋福, 等. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403−414. doi: 10.3969/j.issn.1006-7493.2007.03.010 |
[103] | 潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001 |
[104] | 潘彤. 2019. 青海矿床成矿系列探讨[J]. 地球科学与环境学报, 166(3): 297−315. doi: 10.3969/j.issn.1672-6561.2019.03.004 |
[105] | 潘彤, 李善平, 王涛, 等. 2022. 青海锂矿成矿特征及找矿潜力[J]. 地质学报, 96(5): 1827−1854. doi: 10.3969/j.issn.0001-5717.2022.05.020 |
[106] | 彭渊, 马寅生, 刘成林, 等. 2016. 柴北缘宗务隆构造带印支期花岗闪长岩地质特征及其构造意义 [J]. 地学前缘, 118(2): 206−221. |
[107] | 秦克章, 周起凤, 唐冬梅, 等. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景 —— 兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982. |
[108] | 沈莽庭, 郭维民, 徐鸣, 等. 2021. 巴西铌钽矿典型矿床特征及其资源分布规律和找矿方向[J]. 矿床地质, 40(3): 603−624. |
[109] | 宋述光, 张贵宾, 张聪, 等. 2013. 大洋俯冲和大陆碰撞的动力学过程: 北祁连 − 柴北缘高压 − 超高压变质带的岩石学制约[J]. 科学通报, (23): 2240−2245. |
[110] | 孙宏伟, 王杰, 任军平, 等. 2021. 南部非洲花岗岩型与伟晶岩型钽矿床地质特征[J]. 地质论评, 67(1): 265−278. |
[111] | 唐文龙, 付超, 王杰, 等. 2022. 莫桑比克上利戈尼亚钽−铌稀有元素成矿带成矿规律及资源潜力[J]. 地质通报, 41(7): 1269−1281. doi: 10.12097/j.issn.1671-2552.2022.07.013 |
[112] | 王秉璋, 韩 杰, 谢祥镭, 等. 2020. 青藏高原东北缘茶卡北山印支期 (含绿柱石) 锂辉石伟晶岩脉群的发现及 Li−Be 成矿意义[J]. 大地构造与成矿学, 174(1): 69−79. |
[113] | 王秉璋, 付长垒, 潘彤, 等. 2022. 柴北缘赛什腾地区早古生代岩浆活动与构造演化[J]. 岩石学报, 38(9): 2723−2742. doi: 10.18654/1000.0569/2022.09.13 |
[114] | 王秉璋, 潘彤, 王强, 等. 2023. 青藏高原东北缘茶卡北山地区印支期高分异花岗岩的发现及找矿意义[J]. 岩石学报, 39(8): 2402−2428. doi: 10.18654/1000-0569/2023.08.10 |
[115] | 王登红, 李建康, 付小方. 2015. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 36(6): 541−546. |
[116] | 王核, 李沛, 马华东, 等. 2017. 新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J]. 大地构造与成矿学, 41(6): 1053−1062. |
[117] | 王倩, 侯可军. 2015. 独居石 LA−ICP−MS 微区原位 U−Pb 同位素年龄测定[J]. 地质学报, 89(S1): 41−43. |
[118] | 吴才来, 郜源红, 吴锁平, 等. 2008. 柴北缘西段花岗岩锆石 SHRIMP U−Pb 定年及其岩石地球化学特征[J]. 中国科学 (D 辑: 地球科学), 38(8): 930−949. |
[119] | 吴才来, 雷敏, 吴迪, 等. 2016. 柴北缘乌兰地区花岗岩锆石 SHRIMP 定年及其成因[J]. 地球学报, 37(4): 493−516. doi: 10.3975/cagsb.2016.04.11 |
[120] | 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. |
[121] | 吴福元, 刘小驰, 纪伟强, 等. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765. |
[122] | 吴福元, 万博, 赵亮, 等. 2020. 特提斯地球动力学[J]. 岩石学报, 36(6): 1627−1674. doi: 10.18654/1000-0569/2020.06.01 |
[123] | 许志琴, 王汝成, 赵中宝, 等. 2018. 试论中国大陆 “硬岩型” 大型锂矿带的构造背景[J]. 地质学报, 92(6): 1091−1106. doi: 10.3969/j.issn.0001-5717.2018.06.001 |
[124] | 燕洲泉, 王怀涛, 李元茂, 等. 2018. 西昆仑大红柳滩伟晶岩型锂铍矿产资源潜力评价 [J]. 甘肃地质, 27(3/4): 42−48. |
[125] | 姚玉增, 李立兴, 付建飞, 等. 2023. 华北克拉通辽宁李家堡子早前寒武纪花岗伟晶岩型铌钽成矿的年龄证据[J]. 地质通报, 42(6): 1671−2552. |
[126] | 张爱奎, 莫宣学, 袁万明, 等. 2016. 东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景[J]. 矿物学报, 36(2): 157−173. |
[127] | 张爱奎, 袁万明, 刘光莲, 等. 2024. 柴达木盆地周缘战略性金属矿产成矿规律与勘查方向[J]. 地学前缘, (3): 260−283. |
[128] | 张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向[J]. 矿床地质, 38(4): 792−814. |
[129] | 张辉, 吕正航, 唐勇. 2021. LCT 型伟晶岩及其锂矿床成因概述[J]. 地质学报, 95(10): 2955−2970. doi: 10.3969/j.issn.0001-5717.2021.10.003 |
[130] | 张金鹏, 牛漫兰, 李晨, 等. 2022. 柴北缘构造带东段乌兰地区晚二叠世 — 中三叠世花岗岩成因及其地质意义[J]. 地质科学, 57(4): 1103−1129. doi: 10.12017/dzkx.2022.063 |
[131] | 赵东杰, 陈玉明, 张伟波, 等. 2021. 非洲铌钽矿地质特征、矿床类型及勘查开发现状分析[J]. 地质与勘探, 57(6): 1243−1256. doi: 10.12134/j.dzykt.2021.06.005 |
[132] | 赵振华, 包志伟, 乔玉楼. 2010. 一种特殊的 “M” 与 “W” 复合型稀土元素四分组效应: 以水泉沟碱性正长岩为例[J]. 科学通报, 55(15): 1474−1488. |
[133] | 赵振华, 陈华勇, 韩金生. 2022. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用[J]. 中山大学学报 (自然科学版), 61(1): 1−26. |
[134] | 赵振华, 严爽. 2023. 花岗伟晶岩成矿有关的几个问题讨论[J]. 大地构造与成矿学, 47(1): 1−41. |
[135] | 郑英, 李五福, 张小永, 等. 2024. 柴北缘茶卡北山伟晶岩型锂铍矿变质围岩时代及原岩特征[J]. 地质通报, 43(7): 1104−1119. |
[136] | 邹天人, 杨岳清, 郭永泉. 1985. 有关伟晶岩矿床的一些问题[J]. 地质科技情报, 4(4): 100−107. |
Sketch map of geological structure subdivision of the northeastern margin of the Tibetan Plateau (a) and regional geology map of Chaganhake (b)
Distribution diagram of granite pegmatite in Chaganhake mining area
The field (a-c) and microscopic (d-i) photographs of granitic pegmatite and biotitite syenogranite in Chaganhake
SiO2−(Na2O+K2O) diagram (a) and A/CNK-A/NK diagram (b) of the granitic pegmatites and biotite syenogranites in Chaganhake
Chondrite-normalized REE distribution pattern (a) and trace element spider diagram (b) of the granitic pegmatites and biotite syenogranites in Chaganhake
Monazite back-scattered electron (BSE) images (a), age concordia diagram (b) and 206Pb/238U ages (c) of granitic pegmatites
Zircon cathodoluminescence images (a) and concordia diagrams (b,c) of biotite syenogranite
Ce-Ce/Sm diagram (a) and La-La/Sm diagram (b) from the granitic pegmatites and biotite syenogrunites in Chaganhake area
Geochemical diagrams of the granitic pegmatites and granites
Granite-pegmatite in the Paleoproterozoic Dakendaban Group
Y-Nb (a), Yb-Ta (b), Rb/ 30-Hf-3*Ta (c) and R1-R2 (d) diagrams of Chaganhake granite pegmatite
Schematic diagram of the Paleotethys Ocean evolution and granite pegmatite formation in Chaganhake