2025 Vol. 44, No. 4
Article Contents

YANG Xinyu, WANG Xinyu, WANG Shulai, WANG Huan, WU Jinrong. 2025. Study on the age of ore-forming rock mass and mineralogical characteristics of skarn rocks in the Niukutou Pb-Zn deposit, Qinghai Province. Geological Bulletin of China, 44(4): 587-600. doi: 10.12097/gbc.2024.05.041
Citation: YANG Xinyu, WANG Xinyu, WANG Shulai, WANG Huan, WU Jinrong. 2025. Study on the age of ore-forming rock mass and mineralogical characteristics of skarn rocks in the Niukutou Pb-Zn deposit, Qinghai Province. Geological Bulletin of China, 44(4): 587-600. doi: 10.12097/gbc.2024.05.041

Study on the age of ore-forming rock mass and mineralogical characteristics of skarn rocks in the Niukutou Pb-Zn deposit, Qinghai Province

More Information
  • Objective

    The Qimantag metallogenic belt is an important porphyry−skarn polymetallic metallogenic belt in China, and the Niukutou deposit is a large−scale Pb−Zn polymetallic deposit discovered in this metallogenic belt in recent years. However, there is a lack of research on the relationship between the age of the ore−forming rock mass, skarn formation, and Pb−Zn mineralization. Additionally, the relationship between the physicochemical conditions for skarn formation and mineralization in this deposit has not been thoroughly explored, which restricts our understanding of the metallogeny. [Methoods] Through the zircon LA−ICP−MS dating and electron probe technology analysis methods, this paper provide detailed information on the mineralization age, skarn zoning, and mineral composition characteristics.

    Results

    The results indicate that the monzogranite closely related to skarn was formed at 389.9 ± 2.2 Ma, indicating that the Niukutou mineralization occurred in the Middle Devonian. The skarn rocks of the Niukutou deposit exhibit obvious alteration zones, and overall belong to the calcium−magnesium series skarn rock formation. Near the ore−forming rock mass, there is a set of andradite and hedenbergite mineral assemblages, while far away from the ore−forming rock mass, there is a set of grossularite and Mn−hedenbergite mineral assemblages. The main skarn minerals in the retrograde metamorphic stage are ilvaite, tremolite, actinolite, etc. The MnO content is low near the ore−forming rock mass, and gradually increases away from the ore−forming rock mass. This suggests that the chemical composition of the skarn minerals in the retrograde metamorphic stage has a certain inheritance from the skarn minerals in the prograde metamorphic stage. The ore−forming hydrothermal fluid migrates from the proximal to distal end of the ore−forming rock mass (southwest to northeast), during which temperature, $f_{{\mathrm{O}}_2} $, and pH gradually decrease. Mineralization changes from the high−temperature metal mineralization assemblage near the ore−forming rock mass to the Pb−Zn mineralization assemblage distal from the ore−forming rock mass.

    Conclusions

    Based on previous research, this article believes that the calcium−magnesium skarn formation related to Middle−Late Devonian magmatic rocks in the Qimantag may be a prospecting indicator for skarn Pb−Zn deposits in this region. The temperature, $f_{{\mathrm{O}}_2} $, and pH gradually decrease during the migration of ore−forming hydrothermal fluids from the proximal to distal end (southwest to northeast) of the ore−forming rock mass. This change in physical and chemical conditions is the reason for the enrichment of manganese rich skarn minerals and Pb−Zn mineralization in the distal end of the ore−forming rock mass.

  • 加载中
  • [1] Dong Y P, Hui B, Sun S S, et al. 2022. Multiple orogeny and geodynamics from Proto−Tethys to Paleo−Tethys of the Central China Orogenic Belt[J]. Acta Geologica Sinica, 96(10): 3426−3448 (in Chinese with English abstract).

    Google Scholar

    [2] Feng C Y, Wang X P, Shu X F, et al. 2011. Isotopic chronology of the Hutouya skarn lead−zinc polymetailic ore district in Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 41(6): 1806−1817 ( in Chinese with English abstract).

    Google Scholar

    [3] Feng C Y, Wang S, Li G C, et al. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 28(2): 665−678 (in Chinese with English abstract).

    Google Scholar

    [4] Gao H X. 2021. Study on metallogenesis of endogenetic metal deposits in the Qimantag aera, East Kunlun, Qinghai Province [D]. Doctor Thesis of Jilin University: 1−261(in Chinese with English abstract).

    Google Scholar

    [5] Gao Y B. 2013. The intermediate−acid intrusive magmasim and mineralization in Qimantag, East Kunlun Moutains [D]. Doctor Thesis of Chang’an University: 1−201(in Chinese with English abstract).

    Google Scholar

    [6] Gao Y B, Li W Y, Qian B, et al. 2014. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 30(6): 1647−1665(in Chinese with English abstract).

    Google Scholar

    [7] Geng J. 2023. Study on magmatic rocks and mineralization of the second stage in Niukutou Mining area, Qinghai Province [D]. Master Thesis of China University of Geoscience: 1−79(in Chinese with English abstract).

    Google Scholar

    [8] Jia J T. 2013. The study on characteristics of iron polymetallic deposit in Niukutou Qimantage distict Qinghai [D]. Master Thesis of China University of Geosciences: 1−39 (in Chinese with English abstract).

    Google Scholar

    [9] Jiang B B, Zhu X Y, Wang X Y, et al. 2021. Metallogenic fluid characteristics of Niukutou lead zinc deposit in Qimantage area, Qinghai Province[J]. Mineral Exploration, 12(4): 944−952.

    Google Scholar

    [10] Jiang C W. 2013. Mineralization characteristics of skarn type iron polymetallic&metallogenic model research in Sijiaoyang−Niukutou district in Qinghai province [D]. Master Thesis of China University of Geosciences: 1−35 (in Chinese with English abstract).

    Google Scholar

    [11] Li J D, Wang X Y, Zhu X Y, et al. 2019. The preliminary discussion of the Hercynian metallogenic period in Qimantag area−with the example of Niukutou lead and zinc deposit[J]. Mineral Exploration, 10(8): 1775−1783 (in Chinese with English abstract).

    Google Scholar

    [12] Liu P, Lu Z C, Dong S Y, et al. 2020. Fluid inclusion characteristics and metallogenic mechanism of Hutouya skarn Pb−Zn polymetallic deposit, Qimantag, Qinghai Province[J]. Mineral Deposits, 9(5): 825−844 (in Chinese with English abstract).

    Google Scholar

    [13] Liu W, Yang X K, Jiang W, et al. 2021. Analysis of the tectonic stress field in Hutouya copper polymetallic ore field, Qimantage of East Kunlun[J]. Northwestern Geology, 54(4): 100−112(in Chinese with English abstract).

    Google Scholar

    [14] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [15] Luo P, Wu J R, Zhang K, et al. 2023. The ore mineral typomorphic characteristics of minerals and its genetic significance in Niukutou deposit[J]. Mineral Exploration, 14(6): 880−888 (in Chinese with English abstract).

    Google Scholar

    [16] Mao J W, Zhou Z H, Feng C Y, et al. 2012. A preliminary study of the Triassic large−scale mineralization in China and its geodynamic setting[J]. Geology in China, 39(6): 1437−1471 (in Chinese with English abstract).

    Google Scholar

    [17] Meinert L D, Dipple G M, Nicolescu S. 2005. World skarn deposits [J]. Economic Geology, 100TH Anniversary Volume: 299−336.

    Google Scholar

    [18] Slama J, Kosler J, Condon D J. 2008. Plesovice zircon−A new natural reference material for U−Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1−35. doi: 10.1016/j.chemgeo.2007.11.005

    CrossRef Google Scholar

    [19] Song Z B, Zhang Y L, Jia Q Z, et al. 2014. U−Pb age of Yemaquan deep variscan granodiorite in Qimantage area, Eastern Kunlun and its significance[J]. Geoscience, 28(6): 1161−1169 (in Chinese with English abstract).

    Google Scholar

    [20] Song Z B, Zhang Y L, Jia Q Z, et al. 2016. LA−ICPMSzircon U−Pb age of the Yemaquan granodiorite in the Qimantag area, Qinghai Province and its geological implications[J]. Geological Bulletin of China, 35(12): 2006−2013 (in Chinese with English abstract).

    Google Scholar

    [21] Wang X Y, Wang S L, Zhang H Q, et al. 2023. Geochemical characteristics of the mineral assemblages from the Niukutou Pb−Zn skarn deposit, East Kunlun Mountains, and their metallogenic implications[J]. Minerals, 18: 1−25.

    Google Scholar

    [22] Wang X Y, Wang S L, Wu J R, et al. 2023. Study on mineralization age and source ore forming of Niukutou Pb−Zn deposit, Qinghai Province: Evidence from geochronology of ore−forming rock bodies and Re−Os geochemistry of pyrite[J]. Northwstern Geology, 56(6): 71−77(in Chinese with English abstract).

    Google Scholar

    [23] Wang X Y, Zhu X Y, Li J D, et al. 2021. Two stage magmatisms and their skarn−type mineralization in the Niukutou ore district, Qinghai Provice[J]. Acta Petrologica Sinica, 37(5): 1567−1586 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.05.14

    CrossRef Google Scholar

    [24] Wang X Y, Zhu X Y, Li J D, et al. 2020. Genesis and geological significance of manganilvaite in the Niukutou deposit, Qinghai Province[J]. Acta Geologica Sinica, 94(8): 2279−2290 (in Chinese with English abstract).

    Google Scholar

    [25] Xu G D. 2010. Geology and geochemistry of typical deposits in Qimantage polymetallic mineralization belt, Qinghai Province [D]. Doctor Thesis of Kunming University of Science and Technology: 1−159 ( in Chinese with English abstract).

    Google Scholar

    [26] Yao L. 2015. Petrogenesis of the Triassic granitoids and skarn mineralzation in the Qimantag area, Qinghai Province, and their geodynamic setting [D]. Doctor Thesis of China University of Geosciences Degree: 1−175 ( in Chinese with English abstract).

    Google Scholar

    [27] Yao L, Lu Z C, Zhao C S, et al. 2016. Geochronological study of granit-oids from the Niukutou and B section of the Kaerqueka deposits, Qimantag area, Qinghai Province: Implications for Devonian magmatism and mineralization[J]. Geological Bulletin of China, 35(7): 1158−1169.

    Google Scholar

    [28] Yu M, Feng C Y, Mao J W, et al. 2017. The Qiman Tagh Orogen as a window to the crustal evolution in northern Tibetan Plateau[J]. Earth Science Review, 167: 103−123.

    Google Scholar

    [29] Zhao Y M, Feng C Y, Li D X, et al. 2013. Metallogenic setting and mineralization−alteration characteristicsof major skarn Fe−polymetallic deposits in Qimantag area, western Qinghai Province[J]. Mineral Deposits, 32(1): 1−19 (in Chinese with English abstract).

    Google Scholar

    [30] Zhao Y M, Lin W W, Bi C S, et al. 1990. Skarn deposits in China[M]. Beijing: Geological Publishing House: 1−354 (in Chinese with English abstract).

    Google Scholar

    [31] Zhao Z Y. 2019. Study on skarn mineralogy and mineralization of the Niukutou Deposit, Qinghai Province[D]. Master Thesis of China University of Geoscience (Beijing) (in Chinese with English abstract).

    Google Scholar

    [32] Zhong S H, Feng C Y, Li D X, et al. 2017a. Mineralogical characterisitcs of the Weixi ore block in the Weibao skarn−type copper−lead−zinc deposit, Xinjiang[J]. Acta Geologica Sinica, 91(5): 1066−1082 (in Chinese with English abstract).

    Google Scholar

    [33] Zhong S H, Feng C Y, Ren Y Q, et al. 2017b. Characteristics and sources of ore−forming fluid from Weixi ore block of Weibao skarn Cu−Pb−Zn deposit, Xinjiang[J]. Mineral Deposits, 36: 483−500 (in Chinese with English abstract).

    Google Scholar

    [34] Zhong S H, Feng C Y, Seltmann R, et al. 2018. Geochemical contrasts between Late Triassic ore−bearing and barren intrusions in the Weibao Cu−Pb−Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite)[J]. Mineralium Deposita, 53(6): 855−870. doi: 10.1007/s00126-017-0787-8

    CrossRef Google Scholar

    [35] 董云鹏, 惠博, 孙圣思, 等. 2022. 中国中央造山系原-古特提斯多阶段复合造山过程[J]. 地质学报, 96(10): 3426−3448. doi: 10.3969/j.issn.0001-5717.2022.10.010

    CrossRef Google Scholar

    [36] 丰成友, 赵一鸣, 李大新, 等. 2011. 青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征[J]. 地质学报, 85(7): 1108−1115.

    Google Scholar

    [37] 丰成友, 王松, 李国臣, 等. 2012. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 8(2): 665−678.

    Google Scholar

    [38] 高宏昶. 2021. 青海东昆仑祁漫塔格地区内生金属矿床成矿作用研究[D]. 吉林大学博士学位论文: 1−261.

    Google Scholar

    [39] 高永宝. 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 长安大学博士学位论文: 1−201.

    Google Scholar

    [40] 高永宝, 李文渊, 钱兵, 等. 2014. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 30(6): 1647−1665.

    Google Scholar

    [41] 耿健. 2023. 青海牛苦头矿区两期岩浆岩与成矿研究[D]. 中国地质大学(北京)硕士学位论文: 1−79.

    Google Scholar

    [42] 贾建团. 2013. 青海祁漫塔格地区牛苦头铁多金属矿床地质特征研究[J]. 中国地质大学(北京)硕士学位论文: 1−39.

    Google Scholar

    [43] 蒋斌斌, 祝新友, 王新雨, 等. 2021. 青海省祁漫塔格地区牛苦头铅锌矿成矿流体特征[J]. 矿产勘查, 12(4): 944−952.

    Google Scholar

    [44] 蒋成伍. 2013. 青海格尔木市四角羊-牛苦头地区矽卡岩型铁多金属矿矿化特征及成矿模式研究[J]. 中国地质大学(北京)硕士学位论文: 1−35.

    Google Scholar

    [45] 李加多, 王新雨, 祝新友, 等. 2019. 青海祁漫塔格海西期成矿初探——以牛苦头M1铅锌矿床为例[J]. 矿产勘查, 10(8): 1775−1783. doi: 10.3969/j.issn.1674-7801.2019.08.003

    CrossRef Google Scholar

    [46] 刘鹏, 吕志成, 董树义, 等. 2020. 青海祁漫塔格虎头崖铅锌多金属矿床流体包裹体特征及成矿机制研究[J]. 矿床地质, 39(5): 825−844.

    Google Scholar

    [47] 刘渭, 杨兴科, 江万, 等. 2021. 东昆仑祁漫塔格虎头崖铜多金属矿田构造应力场分析[J]. 西北地质, 54(4): 100−112.

    Google Scholar

    [48] 罗攀, 吴锦荣, 张坤, 等. 2023. 牛苦头矿床矿石矿物标型特征及成因[J]. 矿产勘查, 14(6): 880−888.

    Google Scholar

    [49] 毛景文, 周振华, 丰成友, 等. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 39(6): 1437−1471. doi: 10.3969/j.issn.1000-3657.2012.06.001

    CrossRef Google Scholar

    [50] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉地区深部的华力西期花岗闪长岩U−Pb年龄及意义[J]. 现代地质, 28(6): 1161−1169. doi: 10.3969/j.issn.1000-8527.2014.06.006

    CrossRef Google Scholar

    [51] 宋忠宝, 张雨莲, 贾群子, 等. 2016. 青海祁漫塔格地区野马泉花岗闪长岩LA−ICP−MS 锆石U−Pb年龄及其地质意义[J]. 地质通报, 35(12): 2006−2013.

    Google Scholar

    [52] 王新雨, 祝新友, 李加多, 等. 2021. 青海牛苦头矿区两期岩浆岩及其矽卡岩型成矿作用[J]. 岩石学报, 37(5): 1567−1586.

    Google Scholar

    [53] 王新雨, 祝新友, 李加多, 等. 2020. 青海牛苦头矿区锰质黑柱石成因及其地质意义[J]. 地质学报, 94(8): 2279−2290. doi: 10.3969/j.issn.0001-5717.2020.08.008

    CrossRef Google Scholar

    [54] 王新雨, 王书来, 吴锦荣, 等. 2023. 青海省牛苦头铅锌矿床成矿时代研究——来自成矿岩体年代学和黄铁矿Re−Os地球化学证据[J]. 西北地质, 56(6): 71−81.

    Google Scholar

    [55] 徐国端. 2010. 青海祁漫塔格多金属成矿带典型矿床地质地球化学研究[D]. 昆明理工大学博士学位论文: 1−159.

    Google Scholar

    [56] 姚磊. 2015. 青海祁漫塔格地区三叠纪成岩成矿作用及地球动力学背景[D]. 中国地质大学(北京)博士学位论文: 1−171.

    Google Scholar

    [57] 姚磊, 吕志成, 赵财胜, 等. 2016. 青海祁漫塔格地区牛苦头矿床和卡而却卡矿床B区花岗质岩石LA−ICP−MS锆石U−Pb年龄——对泥盆纪成岩成矿作用的指示[J]. 地质通报, 35(7): 1158−1169.

    Google Scholar

    [58] 于淼, 丰成友, 保广英, 等. 2013. 青海尕林格铁矿床矽卡岩矿物学及蚀变分带[J]. 矿床地质, 32(1): 55−76.

    Google Scholar

    [59] 赵一鸣, 丰成友, 李大新, 等. 2013. 青海西部祁漫塔格地区主要矽卡岩铁多金属矿床成矿地质背景和矿化蚀变特征[J]. 矿床地质, 32(1): 1−19. doi: 10.3969/j.issn.0258-7106.2013.01.001

    CrossRef Google Scholar

    [60] 赵一鸣, 林文蔚, 毕承思, 等. 1990. 中国矽卡岩矿床[M]. 北京: 地质出版社: 1−354.

    Google Scholar

    [61] 赵子烨. 2019. 青海牛苦头矽卡岩矿物学及成矿作用研究[D]. 中国地质大学(北京)硕士学位论文: 1−63.

    Google Scholar

    [62] 钟世华, 丰成友, 李大新, 等. 2017a. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 91(5): 1066−1082.

    Google Scholar

    [63] 钟世华, 丰成友, 任雅琼, 等. 2017b. 新疆维宝矽卡岩铜铅锌矿床维西矿段成矿流体性质和来源[J]. 矿床地质, 36(2): 483−500.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(100) PDF downloads(38) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint