2025 Vol. 44, No. 2~3
Article Contents

CHEN Hongcan, XIE Chaoming, ZHANG Jiajun, BAI Xitai, DUAN Menglong. 2025. Zircon U−Pb age, petrogenesis and the revelation to the Proto-Tethyan ocean of the Late Cambrian-Early Ordovician rhyolite from Zhakang area in the Lhasa terrane. Geological Bulletin of China, 44(2~3): 441-458. doi: 10.12097/gbc.2024.01.010
Citation: CHEN Hongcan, XIE Chaoming, ZHANG Jiajun, BAI Xitai, DUAN Menglong. 2025. Zircon U−Pb age, petrogenesis and the revelation to the Proto-Tethyan ocean of the Late Cambrian-Early Ordovician rhyolite from Zhakang area in the Lhasa terrane. Geological Bulletin of China, 44(2~3): 441-458. doi: 10.12097/gbc.2024.01.010

Zircon U−Pb age, petrogenesis and the revelation to the Proto-Tethyan ocean of the Late Cambrian-Early Ordovician rhyolite from Zhakang area in the Lhasa terrane

More Information
  • Objective

    The Early Paleozoic magmatisms in the southern Qinghai−Tibet Plateau are important for researching the nature of the continental margin of the northern margin of the Gondwana continent and the subduction process of the Proto−Tethys Ocean. Based on the reaserch of the Late Cambrian−Early Ordovician rhyolite found in the Zhakang area in the northern part of Xainza County, Lhasa block, this paper discusses the petrogenesis and geological significance of the rhyolite, so as to further constrain the time limit of the Zhakang unconformity in the Xainza area, and provide a basis for understanding the geological evolution process of the northern margin of the Gondwana continent in the Early Paleozoic.

    Methods

    In this study, we report the zircon U−Pb age, rock geochemistry and zircon Hf isotope analysis of rhyolites in Zhakang area, northern Xainza County, Lhasa Block, Qinghai−Tibet Plateau.

    Results

    The results show that the weighted average age of zircon 206Pb/238U of rhyolite is 485±5 Ma. The rock geochemistry shows high silicon, rich alkali, rich aluminum, low phosphorus and low magnesium. The content of SiO2 is 75.10%~77.39%, the content of Al2O3 is 10.74%~12.90%, the content of K2O+Na2O is 6.65%~7.99%, the content of P2O5 is 0.03%~0.11%, the content of MgO is 0.27%~0.35% and the A/CNK is 1.20~1.61, which is greater than 1.1. It belongs to a set of strongly peraluminous shoshonite series. The character in rare earth elements of the rhyolite is enrichment of light rare earth elements and relatively flat right−inclined curve of heavy rare earth elements. The fractionation of light and heavy rare earth elements is obvious, accompanied by obvious negative Eu anomalies (δEu=0.44~0.48). The Zhakang rhyolite has high Rb (368.43×10−6~489.42×10−6) content, low Zr/Hf (31.97~37.35) and Nb/Ta (12.17~15.32) values, indicating that strong crystallization differentiation occurred during its formation. In the SiO2−Zr diagram and ACF diagram, the samples fell into the S−type granite area, showing the characteristics of highly differentiated S−type granite. The εHf (t) value of zircon varies from −2.0 to −5.5, with an average of −3.7, which is negative, indicating the rhyolite might be the product of partial melting of the crust. The two−stage model age of Hf isotope is 1581~1752 Ma, indicating that the source area may be Mesoproterozoic crustal material.

    Conclusions

    This study believes that the Late Cambrian−Early Ordovician rhyolite in the Zhakang area may be formed under the tectonic background of the subduction of the proto−Tethys oceanic crust to the northern margin of the Gondwana continent.

  • 加载中
  • [1] Allégre C J, Courtillot V, Tapponnier P, et al. 1984. Structure and evolution of the Himalaya–Tibet orogenic belt[J]. Nature, 307(5946): 17−22. doi: 10.1038/307017a0

    CrossRef Google Scholar

    [2] Cawood P A, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly[J]. Earth−Science Reviews, 82(3): 217−256.

    Google Scholar

    [3] Cawood P A, Johnson M R W, Nemchin A A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 255(1): 70−84.

    Google Scholar

    [4] Chen F K, Li X H, Wang X L, et al. 2007. Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China[J]. International Journal of Earth Sciences, 96(6): 1179−1194. doi: 10.1007/s00531-006-0146-y

    CrossRef Google Scholar

    [5] Chen J L, Zhao W X, Xu J F, et al. 2012. Geochemistry of Miocene trachytes in Bugasi, Lhasa block, Tibetan Plateau: Mixing products between mantle−and crust−derived melts?[J]. Gondwana Research, 21: 112−122. doi: 10.1016/j.gr.2011.06.008

    CrossRef Google Scholar

    [6] Chen S Y, Yang J S, Li Y, et al. 2009. Ultramafic blocks in Sumdo region, Lhasa block, Eastern Tibet plateau: An ophiolite unit[J]. Journal of Earth Science, 20(2): 332−347. doi: 10.1007/s12583-009-0028-x

    CrossRef Google Scholar

    [7] Cheng L R, Zhang Y C Zhang Y J. 2005. Discovery of the early Ordovician strata in Xianza county, Tibet and its significance[J]. Journal of Stratigraphy, (1): 38−41(in Chinese with English abstract).

    Google Scholar

    [8] Civetta L, D’Antonio M, Orsi G, et al. 1998. The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel: petrogenesis and characteristics of the mantle source region[J]. Journal of Petrology, 39(8): 1453−1491. doi: 10.1093/petroj/39.8.1453

    CrossRef Google Scholar

    [9] Clemens J. 2003. S−type granitic magmas—petrogenetic issues, models and evidence[J]. Earth−Science Reviews, 61(1/2): 1−18.

    Google Scholar

    [10] Collins A S, Pisarevsky S A. 2005. Amalgamating eastern Gondwana: The evolution of the Circum−Indian Orogens[J]. Earth−Science Reviews, 71(3): 229−270.

    Google Scholar

    [11] Collins W J, Richards S W. 2008. Geodynamic significance of S−type granites in circum−Pacific orogens[J]. Geology, 36(7): 559−562. doi: 10.1130/G24658A.1

    CrossRef Google Scholar

    [12] Collins W J. 1982. Nature and Origin of a Type Granites with Particular Reference to Southeastern Australia[J]. Contribution to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [13] Dan W, Murphy J B, Tang G J, et al. 2022. Cambrian−Ordovician magmatic flare−up in NE Gondwana: A silicic large igneous province?[J]. GSA Bulletin, 135(5/6): 1618−1632.

    Google Scholar

    [14] Ding H X, Zhang Z M, Dong X, et al. 2015. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean−type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 27(4): 1616−1629.

    Google Scholar

    [15] Ding H X. 2015. The Petrogensis and tectonic significance of the early Paleozoic and late Mesozoic volcanics from the Lhasa terrane, south Tibet[D]. A Dissertation for Docter Degree Submitted to Chinese Academy of Geological Science: 1−131 (in Chinese with English abstract).

    Google Scholar

    [16] Dong X, Zhang Z M, Wang J L, et al. 2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U−Pb geochronology[J]. Acta Petrologica Sinica, 25(7): 1678−1694(in Chinese with English abstract).

    Google Scholar

    [17] Dong Y C. 2021. The metamorphism of Sumdo High/Ultra High pressure in Tibet and its tectonic significance[D]. PhD Dissertation of Jilin University: 1−137(in Chinese with English abstract).

    Google Scholar

    [18] Duan M L, Xie C M, Wang B, et al. 2022. Ocean Island Rock Assembly and Its Tectonic Significance in Tangga−Sumdo Area, Tibet[J]. Earth Science, 47(8): 2968−2984(in Chinese with English abstract).

    Google Scholar

    [19] Fan J J, Li C Wang M, et al. 2018. Material composition, age and significance of the Dong Co Melange in the Bangong Co−Nujiang suture zone[J]. Geological Bulletin of China, 37(8): 1417−1427(in Chinese with English abstract).

    Google Scholar

    [20] Gehrels G E, DeCelles P G, Martin A, et al. 2003. Initiation of the Himalayan orogen as an early Paleozoic thin−skinned thrust belt[J]. GSA Today, 13(9): 4−9.

    Google Scholar

    [21] Gehrels G E, DeCelles P G, Ojha T P, et al. 2006. Geologic and U−Th−Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya[J]. Geological Society of America Bulletin, 118(1/2): 185−198.

    Google Scholar

    [22] Gehrels G, Kapp P, DeCelles P, et al. 2011. Detrital zircon geochronology of pre‐Tertiary strata in the Tibetan−Himalayan orogen[J]. Tectonics, 30(5): 2011TC002868.

    Google Scholar

    [23] Gorton M P, Schandl E S. 2000. From continents to island arcs: a geochemical index of tectonic setting for arc−related and within−plate felsic to intermediate volcanic rocks[J]. The Canadian Mineralogist, 38: 1065−1073. doi: 10.2113/gscanmin.38.5.1065

    CrossRef Google Scholar

    [24] Griffina W L, Belousova E A, Shee S R, et al. 2004. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf−isotope evidence from detrital zircons[J]. Precambrian Research, 131(3/4): 231−282.

    Google Scholar

    [25] Grimes C B, John B E, Kelemen P B, et al. 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance[J]. Geology, 35: 643−646.

    Google Scholar

    [26] Guynn J, Kapp P, Gehrels G E, et al. 2012. U–Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Sciences, 43(1): 23−50. doi: 10.1016/j.jseaes.2011.09.003

    CrossRef Google Scholar

    [27] Harris N B W, Inger S. 1992. Trace element modelling of pelite−derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46−56. doi: 10.1007/BF00310881

    CrossRef Google Scholar

    [28] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision−zone magmatism[J]. Geological Society, London, Special Publications, 19: 67−81.

    Google Scholar

    [29] Hassanzadeh J, Stockli D F, Horton B K, et al. 2008. U−Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement[J]. Tectonophysics, 451(1): 71−96.

    Google Scholar

    [30] Hastie A R, Kerr A C, Pearce J A, et al. 2007. Classification of alteredvolcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram[J]. Journal of Petrology, 48: 2341−2357. doi: 10.1093/petrology/egm062

    CrossRef Google Scholar

    [31] Hu P Y, Li C, Wang M, et al. 2013. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean−type magmatic arc along the Gondwana proto−Tethyan margin[J]. Journal of Asian Earth Sciences, 77: 91−107. doi: 10.1016/j.jseaes.2013.08.015

    CrossRef Google Scholar

    [32] Hu P Y, Zhai Q G, Cawood P A, et al. 2021. Cambrian magmatic flare−up, central Tibet: Magma mixing in proto−Tethyan arc along north Gondwanan margin[J]. GSA Bulletin, 133(9/10): 2171−2188. doi: 10.1130/B35859.1

    CrossRef Google Scholar

    [33] Hu P Y, Zhai Q G, Jahn B M, et al. 2015. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto−Tethyan margin[J]. Lithos, 220/223: 318−338. doi: 10.1016/j.lithos.2014.12.020

    CrossRef Google Scholar

    [34] Hu P Y, Zhai Q G, Tang Y, et al. 2021b. Geochemistry, zircon U−Pb age, Lu−Hf isotopes and tectonic setting of the Early Paleozoic gneissic granites from the Nyainrong microcontinent, Tibet Plateau[J]. Geological Bulletin of China, 40(8): 1203−1214(in Chinese with English abstract).

    Google Scholar

    [35] Hu P Y, Zhai Q G, Zhao G C, et al. 2019. Late Cryogenian magmatic activity in the North Lhasa terrane, Tibet: Implication of slab break−off process[J]. Gondwana Research, 71: 129−149. doi: 10.1016/j.gr.2019.02.005

    CrossRef Google Scholar

    [36] Hu P Y, Zhai Q G, Zhao G C, et al. 2021a. Andean−type orogeny along the northern Gondwana margin: Evidences of zircon U−Pb ages and geochemistry data of the Ordovician granites from the Amdo area, northern Tibet[J]. Acta Petrologica Sinica, 37(2): 530−544(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.02.12

    CrossRef Google Scholar

    [37] Hu Z C, Liu Y S, Gao S, et al. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP−MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391−1399. doi: 10.1039/c2ja30078h

    CrossRef Google Scholar

    [38] Ji W H, Chen S J, Zhao Z M, et al. 2009. Discovery of the Cambiran volcanic rocks in the Xainza area Gangdese orogenic belt, Tibet, China and its significance[J]. Geological Bulletin of China, 28(9): 1350−1354(in Chinese with English abstract).

    Google Scholar

    [39] Jung S, Pfander J A. 2007. Source composition and melting temperatures of orogenic granitoids from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry[J]. European Journal of Minralogy, 19(6): 859−870.

    Google Scholar

    [40] Kemp A I S, Hawkesworth C J, Foster G L, et al. 2006. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf−O Isotopes in Zircon[J]. Science, 315(5814): 980−983.

    Google Scholar

    [41] Kemp A I S, Hawkesworth C J, Paterson B A, et al. 2008. Exploring the plutonic−volcanic link: A zircon U−Pb, Lu−Hf and O isotope study of paired volcanic and granitic units from southeastern Australia[J]. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 97(4): 337−355. doi: 10.1017/S0263593300001498

    CrossRef Google Scholar

    [42] Lee C T , Morton D M. 2015. High silica granites: Terminal porosity and crystal setting in shallow magma chambers[J]. Earth & Planetary Science Letters, 409(409): 23−31.

    Google Scholar

    [43] Lei C C, Ma J, Bo H J, et al. 2024. The zircon U−Pb geochronology, geochemistry and tectonic environment of the Weibozhan intermediate−felsic rocks in the northern margin of the Alxa block[J]. Geological Bulletin of China, DOI:10.12097/j.issn.2022.03.026.

    Google Scholar

    [44] Li C, Wu Y W, Wang M, et al. 2010. Significant progress on Pan African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau discovery of Pan−African orogenic unconformity and Cambrian System in the Gangdise area, Tibet, China[J]. Geological Bulletin of China, 29(12): 1733−1736(in Chinese with English abstract).

    Google Scholar

    [45] Li C, Xie Y W, Sha S L, et al. 2008. SHRIMP U− Pb zircon dating of the Pan−African granite in Baxoi County, eastern Tibet, China[J]. Geological Bulletin of China, 27(1): 64−68(in Chinese with English abstract).

    Google Scholar

    [46] Li C. 2008. A review on 20 years' study of the Longmu Co−Shuanghu−Lancang River Suture Zone in Qinghai−Xizang (Tibet) Plateau[J]. Geological Review, 54(1): 105−119(in Chinese with English abstract).

    Google Scholar

    [47] Li G J, Wang Q F, Huang Y H, et al. 2016. Petrogenesis of middle Ordovician peraluminous granites in the Baoshan block: Implications for the early Paleozoic tectonic evolution along East Gondwana[J]. Lithos, 245: 76−92. doi: 10.1016/j.lithos.2015.10.012

    CrossRef Google Scholar

    [48] Li W F, Pan T, Wang B Z, et al. 2022. Ordovician magmatic arc in the Nanshan area, Qinghai Province: Evidence from zircon U−Pb chronology, element geochemistry and Hf isotope compositions of the diorites in the Chakaibeishan area[J]. Geotectonica et Metallogenia, 46(4): 788−802(in Chinese with English abstract).

    Google Scholar

    [49] Lin S L, Cong F, Gao Y J, et al. 2012. LA −ICP −MS zircon U −Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province[J]. Geological Bulletin of China, 31(2/3): 258−263(in Chinese with English abstract).

    Google Scholar

    [50] Linnen R L, Keppler H. 2002. Melt composition control of Zr/Hf fractionation in magmatic processes[J]. Geochimica et Cosmochimica Acta, 66(18): 3293−3301. doi: 10.1016/S0016-7037(02)00924-9

    CrossRef Google Scholar

    [51] Liu C Z, Chung S L, Wu F Y, et al. 2016. Tethyan suturing in Southeast Asia: Zircon U−Pb and Hf−O isotopic constraints from Myanmar ophiolites[J]. Geology, 44(4): 311−314. doi: 10.1130/G37342.1

    CrossRef Google Scholar

    [52] Liu D, Zhao Z D, Zhu D C, et al. 2011. The petrogenesis of postcollisional potassic−ultrapotassic rocks in Xungba basin, western Lhasa terrane: Constraints from zircon U−Pb geochronology and geochemistry[J]. Acta Petrologica Sinica, 27(7): 2045−2059(in Chinese with English abstract).

    Google Scholar

    [53] Liu Q S, Ye P S, Wu Z H. 2012. SHRIMP zircon U−Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J]. Geological Bulletin of China, 31(2/3): 250−257(in Chinese with English abstract).

    Google Scholar

    [54] Liu S, Hu R Z, Gao S, et al. 2009. U–Pb zircon, geochemical and Sr–Nd–Hf isotopic constraints on the age and origin of Early Palaeozoic I−type granite from the Tengchong–Baoshan Block, Western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 36(2): 168−182.

    Google Scholar

    [55] Liu Y M, Li C, Wang M, et al. 2014. Geochemical characteristics of Wanghuling Formation rhyolite in the Qiangtang Basin and their geological significance[J]. Geological Bulletin of China, 33(11): 1759−1767(in Chinese with English abstract).

    Google Scholar

    [56] Liu Y M, Li C, Xie C M, et al. 2016. Cambrian granitic gneiss within the central Qiangtang terrane, Tibetan Plateau: implications for the early Palaeozoic tectonic evolution of the Gondwanan margin[J]. International Geology Review, 58(9): 1043−1063. doi: 10.1080/00206814.2016.1141329

    CrossRef Google Scholar

    [57] Liu Y M, Li S Z, Santosh M, et al. 2019. The generation and reworking of continental crust during early Paleozoic in Gondwanan affinity terranes from the Tibet Plateau[J]. Earth−Science Reviews, 190: 486−497. doi: 10.1016/j.earscirev.2019.01.019

    CrossRef Google Scholar

    [58] Liu Y M, Li S Z, Santosh M, et al. 2020. The passive margin of northern Gondwana during Early Paleozoic: Evidence from the central Tibet Plateau[J]. Gondwana Research, 78: 126−140. doi: 10.1016/j.gr.2019.08.015

    CrossRef Google Scholar

    [59] Liu Y M, Xie C M, Li C, et al. 2019. Breakup of the northern margin of Gondwana through lithospheric delamination: Evidence from the Tibetan Plateau[J]. GSA Bulletin, 131(3/4): 675−697. doi: 10.1130/B31958.1

    CrossRef Google Scholar

    [60] Liu Y S, Gao S, Hu Z C, et al. 2010. Continental and oceanic crust recycling−induced melt–peridotite interactions in the Trans−North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [61] Liu Z Q. 2006. Permo−Carboniferous clastic sediments of the Yongzhu area, Xainza, Tibet and their possible sedimentary environments[D]. A Dissertation for Master Degree Submitted to Chinese Academy of Geological Science: 1−62(in Chinese with English abstract).

    Google Scholar

    [62] Luo A B. 2022. Timing and process of the extinction of the Bangong−Nujiang Ocean: Insights from Early Cretaceous sedimentary and volcanic rocks[D]. A Dissertation for Docter Degree Submitted to Jilin University: 1−232(in Chinese with English abstract).

    Google Scholar

    [63] Lustrino M, Melluso L, Morra V. 2000. The role of lower continental crust and lithospheric mantle in the genesis of Plio–Pleistocene volcanic rocks from Sardinia (Italy)[J]. Earth and Planetary Science Letters, 180(3/4): 259−270. doi: 10.1016/S0012-821X(00)00185-0

    CrossRef Google Scholar

    [64] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    CrossRef Google Scholar

    [65] Meert J G. 2003. A synopsis of events related to the assembly of eastern Gondwana[J]. Tectonophysics, 362(1): 1−40.

    Google Scholar

    [66] Miller C, Thöni M, Frank W, et al. 2001. The early Palaeozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement[J]. Geological Magazine, 138(3): 237−251.

    Google Scholar

    [67] Murphy J B, van Staal C R, Collins W J. 2011. A comparison of the evolution of arc complexes in Paleozoic interior and peripheral orogens: Speculations on geodynamic correlations[J]. Gondwana Research, 19(3): 812−827. doi: 10.1016/j.gr.2010.11.019

    CrossRef Google Scholar

    [68] Pan G T, Wang L Q, Li R S, et al. 2012. Tectonic evolution of the Qinghai−Tibet Plateau[J]. Journal of Asian Earth Sciences, 53: 3−14. doi: 10.1016/j.jseaes.2011.12.018

    CrossRef Google Scholar

    [69] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Petrol, 25: 956−983.

    Google Scholar

    [70] Pearce J A. 1983. Trole of sub−continental lithosphere in magma genesisat destructive plate margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths. Nantwich Shiva: Academic Press: 230−249.

    Google Scholar

    [71] Peccerillo A, Taylor S R. 1976. Geochemistry of eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63−81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [72] Quigley M C, Liangjun Y, Gregory C, et al. 2008. U–Pb SHRIMP zircon geochronology and T–t–d history of the Kampa Dome, southern Tibet[J]. Tectonophysics, 446(1): 97−113.

    Google Scholar

    [73] Ramezani J. 2003. The Saghand Region, Central Iran: U−Pb geochronology, petrogenesis and implications for Gondwana Tectonics[J]. American Journal of Science, 303(7): 622−665. doi: 10.2475/ajs.303.7.622

    CrossRef Google Scholar

    [74] Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust−mantle recycling[J]. Journal of Petrology, 36(4): 891−931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    [75] Ronga F, Lustrino M, Marzoli A, et al. 2010. Petrogenesis of a basalt−comendite−pantellerite rock suite: the Boseti Volcanic Complex (Main Ethiopian Rift)[J]. Mineralogy and Petrology, 98(1/4): 227−243. doi: 10.1007/s00710-009-0064-3

    CrossRef Google Scholar

    [76] Shi C, Li R S, He S P, et al. 2010. LA−ICP−MS zircon U−Pb dating for gneissic garnet−bearing biotite granodiorite in the Yadong area, southern Tibet, China and its geological significance[J]. Geological Bulletin of China, 29(12): 1745−1753(in Chinese with English abstract).

    Google Scholar

    [77] Song S G, Ji J Q, Wei C J, et al. 2007. Early Paleozoic granite in Nujiang River of northwest Yunnan in southwestern China and its tectonic implications[J]. Chinese Science Bulletin, 52(17): 2402−2406. doi: 10.1007/s11434-007-0301-2

    CrossRef Google Scholar

    [78] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313−345.

    Google Scholar

    [79] Sylver P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45: 29−44. doi: 10.1016/S0024-4937(98)00024-3

    CrossRef Google Scholar

    [80] Tischendorf G, Paelchen W. 1985. Zur Klassifikation von Granitoiden/Classification of Granitoids[J]. Zeitschrift fuer Geologische Wissenschaften, 13(5): 615−627.

    Google Scholar

    [81] Ustaömer P A, Ustaömer T, Collins A S, et al. 2009. Cadomian (Ediacaran–Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: Magmatism along the developing northern margin of Gondwana[J]. Tectonophysics, 473(1): 99−112.

    Google Scholar

    [82] Vervoort J D, Blichert−Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochemica et Cosmochemica Acta, 63: 533−566. doi: 10.1016/S0016-7037(98)00274-9

    CrossRef Google Scholar

    [83] Wang B D, Wang L Q, Wang, D B, et al. 2018. Tectonic Evolution of the Changning−Menglian Proto−Paleo Tethys Ocean in the Sanjiang Area, Southwestern China[J]. Earth Science, 43(8): 2527−2550(in Chinese with English abstract).

    Google Scholar

    [84] Wang H T, Zhai Q G, Hu P Y, et al. 2020a. Early Paleozoic granitic rocks of the South Qiangtang Terrane, northern Tibetan Plateau: Implications for subduction of the Proto− (Paleo−) Tethys Ocean[J]. Journal of Asian Earth Sciences, 204: 104579. doi: 10.1016/j.jseaes.2020.104579

    CrossRef Google Scholar

    [85] Wang H T, Zhai Q G, Hu P Y, et al. 2020b. Late Cambrian to Early Silurian Granitic Rocks of the Gemuri Area, Central Qiangtang, North Tibet: New Constraints on the Tectonic Evolution of the Northern Margin of Gondwana[J]. Acta Geologica Sinica, 94(4): 1007−1019. doi: 10.1111/1755-6724.14556

    CrossRef Google Scholar

    [86] Wang Q, Zhao Z H, Xiong X L. 2000. The Ascertainment of Late−Yanshanian A−type Granite in Tongbai−Dabie Orogenic Belt[J]. Acta Petrologica Mineralogica, 19(4): 297−306(in Chinese with English abstract).

    Google Scholar

    [87] Wang X X, Zhang J J, Yang X Y, et al. 2011. Zircon SHRIMP U−Pb ages, Hf isotopic features and their geological significance of the Greater Himalayan crystalline complex augen gneiss in Gyirong area, south Tibet[J]. Earth Science Frontiers, 18(2): 127−139(in Chinese with English abstract).

    Google Scholar

    [88] Watson E B, Harrison T M. 1983. Zircon saturation revisited−temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295−304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [89] Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [90] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and pretrogenesis[J]. Contrib Mineral Petrol, 95(4): 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [91] Wilson M. 1989. Igneous Petrology: A Global Tectonic Approach[M]. London: Unwin Hyman: 1−466.

    Google Scholar

    [92] Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magmaseries and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325–343.

    Google Scholar

    [93] Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217−1238(in Chinese with English abstract).

    Google Scholar

    [94] Wu F Y, Liu C Z, Zhang L L, et al. 2014. Yarlung Zangbo ophiolite: A critical updated view[J]. Acta Petrologica Sinica, 30(2): 293−325(in Chinese with English abstract).

    Google Scholar

    [95] Wu H, Zhai Q G, Hu P Y, et al. 2021. Early Cretaceous volcanic rocks in northern Baingoin, Tibet: Magmatic record of the closure of the Bangong−Nujiang Ocean[J]. Geology in China, 48(5): 1623−1638(in Chinese with English abstract).

    Google Scholar

    [96] Xie C M, Duan M L, Yu Y P, et al. 2019. Genesis and geological significance of Early Jurassic metamorphic gabbro in the Sumdo area, Tibet[J]. Acta Petrologica Sinica, 35(10): 3065−3082(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.07

    CrossRef Google Scholar

    [97] Xie C M, Li C, Su L, et al. 2010. LA−ICP−MS U−Pb dating of zircon from granite−gneiss in the Amdo area, northern Tibet, China[J]. Geological Bulletin of China, 29(12): 1737−1744(in Chinese with English abstract).

    Google Scholar

    [98] Xie C M, Li C, Su L, et al. 2013. Pan−African and early Paleozoic tectonothermal events in the Nyainrong microcontinent: Constraints from geochronology and geochemistry[J]. Science China Earth Sciences, 56(12): 2066−2079. doi: 10.1007/s11430-013-4724-0

    CrossRef Google Scholar

    [99] Xie C M, Li C, Wang M, et al. 2014. Tectonic affinity of the Nyainrong microcontinent: Constraints from zircon U−Pb age and Hf isotopes compositions[J]. Geological Bulletin of China, 33(11): 1778−1792(in Chinese with English abstract).

    Google Scholar

    [100] Xie C M, Li C, Zhai Q G, et al. 2021. The Early Paleozoic magmatism in Qiangtang, northern Tibet and its geological significance[J]. Sedimentary Geology and Tethyan Geology, 41(2): 340−350(in Chinese with English abstract).

    Google Scholar

    [101] Xu R H, Schärer U, Allègre C J. 1985. Magmatism and metamorphism in the Lhasa Block (Tibet): A geochronological study[J]. The Journal of Geology, 93(1): 41−57.

    Google Scholar

    [102] Xu W T, Zhang X H, Zhang B B, et al. 2022. Genesis of highly fractionated S−type granites: Evidence from zircon U−Pb age, Hf isotopes and geochemistry of Fuquanshan pluton, Northeastern Jiangxi Province[J]. Geological Bulletin of China, 41(4): 577−589(in Chinese with English abstract).

    Google Scholar

    [103] Xu Z Q, Dilek Y, Cao H, et al. 2015. Paleo−Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320−337. doi: 10.1016/j.jseaes.2015.01.021

    CrossRef Google Scholar

    [104] Xu Z Q, Yang J S, Liang F H, et al. 2005. Pan−African and Early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U−Pb zircon ages[J]. Acta Petrologica Sinica, 21(1): 1−12(in Chinese with English abstract).

    Google Scholar

    [105] Yang J S, Xu Z Q, Li Z L, et al. 2009. Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo−Tethys?[J]. Journal of Asian Earth Sciences, 34(1): 76−89. doi: 10.1016/j.jseaes.2008.04.001

    CrossRef Google Scholar

    [106] Yang X J, Jia X C, Xiong C L, et al. 2012. LA−ICP−MS zircon U−Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 31(2/3): 264−276(in Chinese with English abstract).

    Google Scholar

    [107] Yun X R, Cai Z H, He B Z, et al. 2019. Early Paleozoic and Mesozoic orogenic records in Amdo region, Tibet: Zircon U−Pb geochronology and Hf isotopic compositions from the Amdo micro−continent and South Qiangtang terrane[J]. Acta Petrologica Sinica, 35(6): 1673−1692(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.06.04

    CrossRef Google Scholar

    [108] Zhang B C. 2021. Petrogenesis and Geological significance of Eocene rhyolites in the Wuma area, Tibet[D]. Master Dissertation of Jilin University: 1−51(in Chinese with English abstract).

    Google Scholar

    [109] Zhang H L, Yang W G, Zhu L D, et al. 2019. Zircon U−Pb age, geochemical characteristics and geological significance of highly differentiated S−type granites in the south Lhasa block[J]. Mineral Petrol, 39(1): 52−62(in Chinese with English abstract).

    Google Scholar

    [110] Zhang L L, Zhu D C, Zhao Z D, et al. 2011. Petrogenesis of magmatism in the Baerda region of Northern Gangdess Tibet: Constraints from geochemistry, geochronology and Sr-Nd-Hf isotopes[J]. Acta Petrologica Sinica, 26(6): 1871−1888 (in Chinese with English abstract).

    Google Scholar

    [111] Zhang T Y. 2018. Early Paleozoic tectonic movement on the Tibetan Plateau and its adjacent areas: A case study of Cambrian−Ordovician unconformity[D]. Master Dissertation of Jilin University: 1−133(in Chinese with English abstract).

    Google Scholar

    [112] Zhang Y X, Xie C M, Yu Y P, et al. 2018. The Early Jurassic subduction of Neo−Tethyan oceanic slab: Constraints from zircon U−Pb age and Hf isotopic compositions of Sumdo high−Mg diorite[J]. Geological Bulletin of China, 37(8): 1387−1399(in Chinese with English abstract).

    Google Scholar

    [113] Zhang Z M, Dong X, Liu F, et al. 2012. Tectonic evolution of the Amdo Terrane, Central Tibet: Petrochemistry and zircon U−Pb geochronology[J]. The Journal of Geology, 120(4): 431−451. doi: 10.1086/665799

    CrossRef Google Scholar

    [114] Zhang Z M, Dong X, Santosh M, et al. 2014. Metamorphism and tectonic evolution of the Lhasa terrane, Central Tibet[J]. Gondwana Research, 25(1): 170−189. doi: 10.1016/j.gr.2012.08.024

    CrossRef Google Scholar

    [115] Zhang Z M, Wang J L, Shen K, et al. 2008. Paleozoic circum−Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet[J]. Acta Petrologica Sinica, 24(7): 1627−1637(in Chinese with English abstract).

    Google Scholar

    [116] Zhi Q, Ren R, Duan F H, et al. 2023. Genetic mechanism of Late Carboniferous intermediate-acid volcanic rocks in southern West Junggar and its constraints on the closure of the Junggar Ocean[J]. Earth Science Frontiers, 31(3): 1-21 (in Chinese with English abstract).

    Google Scholar

    [117] Zhu D C, Li S M, Cawood P A, et al. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 245: 7−17. doi: 10.1016/j.lithos.2015.06.023

    CrossRef Google Scholar

    [118] Zhu D C, Mo X X, Niu Y L, et al. 2009. Zircon U–Pb dating and in−situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography[J]. Tectonophysics, 469(1): 48−60.

    Google Scholar

    [119] Zhu D C, Zhao Z D, Niu Y L, et al. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301(1): 241−255.

    Google Scholar

    [120] Zhu D C, Zhao Z D, Niu Y L, et al. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean−type magmatic arc in the Australian proto−Tethyan margin[J]. Chemical Geology, 328: 290−308. doi: 10.1016/j.chemgeo.2011.12.024

    CrossRef Google Scholar

    [121] Zhu D C, Zhao Z D, Niu Y L, et al. 2013. The origin and pre−Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23(4): 1429−1454. doi: 10.1016/j.gr.2012.02.002

    CrossRef Google Scholar

    [122] 程立人, 张以春, 张予杰. 2005. 藏北申扎地区早奥陶世地层的发现及意义[J]. 地层学杂志, (1): 38−41. doi: 10.3969/j.issn.0253-4959.2005.01.007

    CrossRef Google Scholar

    [123] 丁慧霞. 2015. 青藏高原拉萨地体北部早古生代与晚中生代火山岩的成因及构造意义[D]. 中国地质科学院博士学位论文: 1−131.

    Google Scholar

    [124] 段梦龙, 解超明, 王斌, 等. 2022. 西藏唐加地区石炭纪洋岛型岩石组合及其构造意义[J]. 地球科学, 47(8): 2968−2984. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208022

    CrossRef Google Scholar

    [125] 董昕, 张泽明, 王金丽, 等. 2009. 青藏高原拉萨地体南部林芝岩群的物质来源与形成年代: 岩石学与锆石U−Pb年代学[J]. 岩石学报, 25(7): 1678−1694.

    Google Scholar

    [126] 董宇超. 2021. 西藏松多高压/超高压变质作用及其构造意义[D]. 吉林大学博士学位论文: 1−137.

    Google Scholar

    [127] 范建军, 李才, 王明, 等. 2018. 班公湖-怒江缝合带洞错混杂岩物质组成、时代及其意义[J]. 地质通报, 37(8): 1417−1427. doi: 10.12097/j.issn.1671-2552.2018.08.006

    CrossRef Google Scholar

    [128] 胡培远, 翟庆国, 唐跃, 等. 2021b. 青藏高原聂荣微陆块早古生代片麻状花岗岩地球化学、锆石U−Pb年龄和Lu−Hf同位素特征及构造背景[J]. 地质通报, 40(8): 1203−1214.

    Google Scholar

    [129] 胡培远, 翟庆国, 赵国春, 等. 2021a. 冈瓦纳大陆北缘安第斯型造山带: 藏北安多奥陶纪花岗岩锆石U−Pb年龄和地球化学证据[J]. 岩石学报, 37(2): 530−544.

    Google Scholar

    [130] 计文化, 陈守建, 赵振明, 等. 2009. 西藏冈底斯构造带申扎一带寒武系火山岩的发现及其地质意义[J]. 地质通报, 28(9): 1350−1354. doi: 10.3969/j.issn.1671-2552.2009.09.026

    CrossRef Google Scholar

    [131] 雷聪聪, 马军, 薄海军, 等. 2024. 阿拉善地块北缘微波站中—酸性岩体锆石U−Pb年代学、岩石地球化学及构造环境 [J]. 地质通报, DOI:10.12097/j.issh.2022.03.026.

    Google Scholar

    [132] 李才, 吴彦旺, 王明, 等. 2010. 青藏高原泛非—早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非造山不整合的发现[J]. 地质通报, 29(12): 1733−1736. doi: 10.3969/j.issn.1671-2552.2010.12.001

    CrossRef Google Scholar

    [133] 李才, 谢尧武, 沙绍礼, 等. 2008. 藏东八宿地区泛非期花岗岩锆石SHRIMP U−Pb定年[J]. 地质通报, (1): 64−68.

    Google Scholar

    [134] 李才. 2008. 青藏高原龙木错−双湖−澜沧江板块缝合带研究二十年[J]. 地质论评, 54(1): 105−119.

    Google Scholar

    [135] 李献华, 李武显, 李正祥. 2007. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报, 52(9): 981−991. doi: 10.3321/j.issn:0023-074X.2007.09.001

    CrossRef Google Scholar

    [136] 林仕良, 丛峰, 高永娟, 等. 2012. 滇西腾冲地块东南缘高黎贡山群片麻岩LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 地质通报, 31(2/3): 258−263. doi: 10.3969/j.issn.1671-2552.2012.02.008

    CrossRef Google Scholar

    [137] 刘琦胜, 叶培盛, 吴中海. 2012. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U−Pb测年和地球化学特征[J]. 地质通报, 31(2/3): 250−257. doi: 10.3969/j.issn.1671-2552.2012.02.007

    CrossRef Google Scholar

    [138] 刘一鸣, 李才, 王明, 等. 2014. 藏北羌塘盆地望湖岭组流纹岩地球化学特征及其地质意义[J]. 地质通报, 33(11): 1759−1767. doi: 10.3969/j.issn.1671-2552.2014.11.012

    CrossRef Google Scholar

    [139] 刘志强. 2006. 西藏申扎永珠一带石炭—二叠系碎屑岩及其沉积环境探讨[D]. 中国地质科学院硕士学位论文: 1−62.

    Google Scholar

    [140] 罗安波. 2022. 班公湖-怒江洋消亡时限和过程——基于早白垩世沉积岩和火山岩的研究[D]. 吉林大学博士学位论文: 1−232.

    Google Scholar

    [141] 时超, 李荣社, 何世平, 等. 2010. 藏南亚东地区片麻状含石榴子石黑云花岗闪长岩LA−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质通报, 29(12): 1745−1753. doi: 10.3969/j.issn.1671-2552.2010.12.003

    CrossRef Google Scholar

    [142] 王保弟, 王立全, 王冬兵, 等. 2018. 三江昌宁-孟连带原-古特提斯构造演化[J]. 地球科学, 43(8): 2527−2550.

    Google Scholar

    [143] 王强, 赵振华, 熊小林. 2000. 桐柏-大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 19(4): 297−306. doi: 10.3969/j.issn.1000-6524.2000.04.002

    CrossRef Google Scholar

    [144] 王晓先, 张进江, 杨雄英, 等. 2011. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U−Pb年龄、Hf同位素特征及其地质意义[J]. 地学前缘, 18(2): 127−139.

    Google Scholar

    [145] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, (6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [146] 吴福元, 刘传周, 张亮亮, 等. 2014. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 30(2): 293−325.

    Google Scholar

    [147] 吴昊, 翟庆国, 胡培远, 等. 2021. 西藏班戈北部早白垩世火山岩: 班公湖−怒江洋闭合的岩浆记录[J]. 中国地质, 48(5): 1623−1638. doi: 10.12029/gc20210522

    CrossRef Google Scholar

    [148] 解超明, 段梦龙, 于云鹏, 等. 2019. 西藏松多地区早侏罗世变质辉长岩的成因及其构造意义[J]. 岩石学报, 35(10): 3065−3082. doi: 10.18654/1000-0569/2019.10.07

    CrossRef Google Scholar

    [149] 解超明, 李才, 翟庆国, 等. 2021. 藏北羌塘早古生代岩浆作用及其地质意义[J]. 沉积与特提斯地质, 41(2): 340−350.

    Google Scholar

    [150] 解超明, 李才, 苏黎, 等. 2010. 藏北安多地区花岗片麻岩锆石LA−ICP−MSU−Pb定年[J]. 地质通报, 29(12): 1737−1744. doi: 10.3969/j.issn.1671-2552.2010.12.002

    CrossRef Google Scholar

    [151] 解超明, 李才, 王明, 等. 2014. 藏北聂荣微陆块的构造亲缘性——来自LA−ICP−MS锆石U−Pb年龄及Hf同位素的制约[J]. 地质通报, 33(11): 1778−1792. doi: 10.3969/j.issn.1671-2552.2014.11.014

    CrossRef Google Scholar

    [152] 徐文坦, 张雪辉, 张斌斌, 等. 2022. 赣东北地区福泉山岩体高分异S型花岗岩成因: 来自锆石U−Pb年龄、Hf同位素及地球化学的证据[J]. 地质通报, 41(4): 577−589. doi: 10.12097/j.issn.1671-2552.2022.04.005

    CrossRef Google Scholar

    [153] 许志琴, 杨经绥, 梁凤华, 等. 2005. 喜马拉雅地体的泛非—早古生代造山事件年龄记录[J]. 岩石学报, 21(1): 1−12. doi: 10.3321/j.issn:1000-0569.2005.01.001

    CrossRef Google Scholar

    [154] 杨学俊, 贾小川, 熊昌利, 等. 2012. 滇西高黎贡山南段公养河群变质基性火山岩LA−ICP−MS锆石U−Pb年龄及其地质意义[J]. 地质通报, 31(2/3): 264−276. doi: 10.3969/j.issn.1671-2552.2012.02.009

    CrossRef Google Scholar

    [155] 贠晓瑞, 蔡志慧, 何碧竹, 等. 2019. 西藏安多地区早古生代及中生代造山记录: 来自安多微陆块-南羌塘锆石U−Pb年代学及Hf同位素研究[J]. 岩石学报, 35(6): 1673−1692. doi: 10.18654/1000-0569/2019.06.04

    CrossRef Google Scholar

    [156] 张博川. 2021. 西藏物玛地区始新世流纹岩的岩石成因及地质意义[D]. 吉林大学硕士学位论文: 1−51.

    Google Scholar

    [157] 张洪亮, 杨文光, 朱利东, 等. 2019. 南拉萨地块高分异S型花岗岩锆石U−Pb年龄、地球化学特征及地质意义[J]. 矿物岩石, 39(1): 52−62.

    Google Scholar

    [158] 张亮亮, 朱弟成, 赵去丹, 等. 2010. 西藏北冈底斯巴尔达地区岩浆作用的成因: 地球化学、年代学及Sr−Nd−Hf同位素约束[J]. 岩石学报, 26(6): 1871−1888.

    Google Scholar

    [159] 张天羽. 2018. 青藏高原及邻区早古生代构造运动[D]. 吉林大学博士学位论文: 1−133.

    Google Scholar

    [160] 张泽明, 王金丽, 沈昆, 等. 2008. 环东冈瓦纳大陆周缘的古生代造山作用: 东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报, 24(7): 1627−1637.

    Google Scholar

    [161] 张雨轩, 解超明, 于云鹏, 等. 2018. 早侏罗世新特提斯洋俯冲作用—来自松多高镁闪长岩锆石U−Pb定年及Hf同位素的制约[J]. 地质通报, 37(8): 1387−1399.

    Google Scholar

    [162] 支倩, 任蕊, 段丰浩, 等. 2023. 西淮噶尔南部晚石炭世中-酸性火山岩成因机制及其对准噶尔洋闭合时限的约束[J/OL]. 地学前缘, 31(3): 1−21.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(127) PDF downloads(33) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint