2025 Vol. 44, No. 2~3
Article Contents

LEI Congcong, GAO Qi, WANG Wenbao, LI Weixing, MA Jun, YAN Zhenjun. 2025. The Zircon LA−ICP−MS U−Pb dating and geochemistry of the Yagan intermediate-acid volcanics in the northern margin of the Alxa block: Constraints on regional tectonic evolution. Geological Bulletin of China, 44(2~3): 459-476. doi: 10.12097/gbc.2022.11.030
Citation: LEI Congcong, GAO Qi, WANG Wenbao, LI Weixing, MA Jun, YAN Zhenjun. 2025. The Zircon LA−ICP−MS U−Pb dating and geochemistry of the Yagan intermediate-acid volcanics in the northern margin of the Alxa block: Constraints on regional tectonic evolution. Geological Bulletin of China, 44(2~3): 459-476. doi: 10.12097/gbc.2022.11.030

The Zircon LA−ICP−MS U−Pb dating and geochemistry of the Yagan intermediate-acid volcanics in the northern margin of the Alxa block: Constraints on regional tectonic evolution

More Information
  • Objective

    The northern Alxa block is the key area for studying the closing of the Paleo−Asian Ocean. Since the Permian volcanics have been rarely investigated in the Yagan area, the tectonic evolution of the Yagan Fault in the Paleozoic remains uncertaintu; and more importantly, the closing timing of the Paleo−Asian Ocean in northern Alxa block is restricted.

    Methods

    In this paper, we carried out a systematic study of the petrography, geochemistry, zircon U−Pb dating for the intermediate−acid volcanics, which are located in the south of the Yagan Fault.

    Results

    The intermediate−acid volcanics in the Yagan region are mainly composed of andesite, rhyolite, dacite, rhyolitic crystal tuff and dacitic crystal tuff. The zircon LA−MC−ICP−MS U−Pb dating results show that the rhyolite and dacite were formed during the Early Permian at 278±2 Ma, 279±2 Ma, and 283±1 Ma. The Yagan intermediate−acid volcanics are characterized by high K calc−alkaline or calc−alkaline feature, relative enrichment in large ion lithophile elements, such as Rb,U and Th, and depleted in high field strength elements, such as Nb,Ta,P and Ti. They show right−leaning chondrite−normalized patterns,which indicate enrichment in LREE and depletion in HREE, and exhibit relatively moderate−strong negative Eu anomalies (average value of δEu is 0.42~0.67).

    Conclusions

    Based on the formation age and geochemical characteristics, it is concluded that the Yagan intermediate−acid volcanics were likely formed in a continental margin arc setting as products of the subduction of the Paleo−Asian ocean during Early Permian.Combined with regional geological background, it is inferred that the closure of the Paleo−Asian ocean in the northern margin of the Alxa block should postdate the late period of the Early Permian.

  • 加载中
  • [1] Anderson T. 2002. Correction of common lead in U−Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1/2): 59−79.

    Google Scholar

    [2] Badarch G, Cunningham W D, Windley B F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 21: 87−110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [3] Bai Y M, Bo H J, Hu H Y, et al. 2023. Age and geochemistry of volcanic rocks of Beishan Formation in Yangan tectonic zone, Northern Alxa and their constraints on regional tectonic evolution[J]. Geological Bulletin of China, 42(1): 136−145 (in Chinese with English abstract).

    Google Scholar

    [4] Charvet J, Shu L S, Laurent−Charvet S. 2007. Paleozoic structural and geodynamic evolution of eastern Tianshan(NW China): Welding of the Tarim and Junggar plates[J]. Episodes, 30: 162−186.

    Google Scholar

    [5] Collins W, Beams S, White A, et al. 1982. Nature and origin of A−type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189−200. doi: 10.1007/BF00374895

    CrossRef Google Scholar

    [6] Dobretsov N L, Berzin N A, Buslov M M. 1995. Opening and tectonic evolution of the Paleo−Asian Ocean[J]. International Geology Reviews, 37: 335−360.

    Google Scholar

    [7] Feng J Y, Xiao W J, Windley B, et al. 2013. Field geology, geochronology and geochemistry of mafic−ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southernAltaids[J]. Journal of Asian Earth Sciences, 78: 114−142. doi: 10.1016/j.jseaes.2013.01.020

    CrossRef Google Scholar

    [8] Gan L S, Wu T R, Chen Y, et al. 2018. Geochronology and geochemical characteristics of the Shangdan pluton in the northern margin of the Alxa Block, Inner Mongolia and its tectonic implications[J]. Acta Petrologica Sinica, 34(11): 3359−3374 (in Chinese with English abstract).

    Google Scholar

    [9] Green T H, Pearson N J. 1987. Anexperimental study of Nb and tapartitioning between Ti−rich minerals and silicate liquids at highpressure and temperature[J]. Geochimica et Cosmochimica Acta, 51(1): 55−62.

    Google Scholar

    [10] Gong Q S, Liu M Q, Liang M H, et al. 2003. The tectonic facies and tectonic evolution of Beishan orogenic belt, Gansu[J]. Northwestern Geology, 36(1): 11−17 (in Chinese with English abstract).

    Google Scholar

    [11] He S P, Ren B C, Yao W G, et al. 2002. The division of tectonic units of Beishan area, Gansu−nner Mongolia[J]. Northwestern Geology, 35(4): 30−40 (in Chinese with English abstract).

    Google Scholar

    [12] He S P, Zhou H W, Yao W G, et al. 2004. Discovery and significance of Radiolaria from Middle Devonian conglomerate in Beishan area, Gansu[J]. Northwestern Geology, 37(3): 24−29 (in Chinese with English abstract).

    Google Scholar

    [13] He S P, Zhou H W, Y, Ren B C, et al. 2005. Crustal evolution of Palaeozoic in Beishan area, Gansu and Inner Mongolia, China[J]. Northwestern Geology, 38(3): 6−15 (in Chinese with English abstract).

    Google Scholar

    [14] Hendrix M S, Graham S A, Amory J Y, et al. 1996. NoyonUul syncline, southern Mongolia: Lower Mesozoic sedimentary record of the tectonic amalgamation of central Asia[J]. Geological Society of America Bulletin, 108: 1256−1274.

    Google Scholar

    [15] Jahn B M. 2004. The Central Asian orogenic belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 226: 73−100.

    Google Scholar

    [16] Jiang S H, Nie F J, Chen W, et al. 2003. The determination of the emplacement age of granite in Mingshui‚ Beishan area‚ and its implication[J]. Acta Petrologica Et Mineralogica, 22(2): 107−111 (in Chinese with English abstract).

    Google Scholar

    [17] Kheraskova T N, Didenoko A N, Bush V A. 2003. The Vendian−Early Paleozoic history of the continental margin of Eastern Paleogondwanna, Paleoasian Ocean, and Central Asian fold belt[J]. Russ. J. Earth Sci., 5: 165−184. doi: 10.2205/2003ES000123

    CrossRef Google Scholar

    [18] Le Maitre R W, Bakteman P, Dudek A, et al. 1989. A classification of igneous rocks and glossary of terms Oxford Blackwell[M]. Scientific Publications: 1−193.

    Google Scholar

    [19] Lei C C, Bo H J, Ding H S, et al. 2023. Zircon LA−ICP−MS U−Pb dating and tectonic setting of volcanic rocks from Baishan Formation in Late Carboniferous in Yagan area, Inner Mongolia[J]. Geological Bulletin of China, 42(12): 2096−2108 (in Chinese with English abstract).

    Google Scholar

    [20] Li C N. 1992. A geochemical method for tectonomagmatic discrimination[J]. Geological Science and Technology Information, 11(3):73−84.

    Google Scholar

    [21] Li J Y, He G Q, Xu X, et al. 2006a. Crustal tectonic framework of Northern Xinjiang and adjacent regions and its formation[J]. Acta Geologica Sinica, 80(1): 148−168 (in Chinese with English abstract).

    Google Scholar

    [22] Li J Y, Wang K Z, Li Y P, et al. 2006b. Geomorphological features, crustal composition and geological evolution of the Tianshan Mountains[J]. Geological Bulletin of China, 25(8): 895−909 (in Chinese with English abstract).

    Google Scholar

    [23] Li J Y, Song B, Wang K Z, et al. 2006c. Permian mafic−ultramafic complexes on the southern margin of the Tu−Ha Basin‚East Tianshan Mountains: Geological records of vertical crustal growth in Central Asia[J]. Acta Geoscientica Sinica, 27(5): 424−446 (in Chinese with English abstract).

    Google Scholar

    [24] Li S. 2009. Triassic granitoids in Beishan−Inner Mongolia, China and its tectonic implications[D]. Doctoral Thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    Google Scholar

    [25] Li X M, Yu J Y, Wang G Q, et al. 2012. Geochronology of Jijitaizi ophiolite in Beishan area, Gansu Province, and its geological significance[J]. Geological Bulletin of China, 31(12): 2025−2031 (in Chinese with English abstract).

    Google Scholar

    [26] Liu Q, Zhao G C, Han Y G, et al. 2017. Timing of the final closure of the Paleo−Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos: 274−275.

    Google Scholar

    [27] Maniar P D, Piccoli P M. 1989. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643.

    Google Scholar

    [28] Miao L C, Zhu M S, Zhang F Q. 2014. Tectonic setting of Mesozoic magmatism and associated metallogenesis in Benshan area[J]. Geology in China, 41(4): 1190−1204.

    Google Scholar

    [29] Mossakovsky A A, Ruzhentsev S V, Samygin S G. 1993. Central Asian fold belt: Geodynamic evolution and history of formation[J]. Geotectonics, 6: 3−33.

    Google Scholar

    [30] Muller D, Rock N M S, Groves D I. 1992. Geochemical discrimination between shoshonitic and potassic volvanic rocks in different tectonic settings: A pilot study[J]. Mineralogy and Pertology, 46: 259−289.

    Google Scholar

    [31] Pearce J A. 1982. Trace element characteristics of lavas from destructive plate boundaries[C]// Thope R S. Andesitea. New York: John Wiley and Sons: 525−548.

    Google Scholar

    [32] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 656−682.

    Google Scholar

    [33] Pitcher W S, Cobbing E J. 1985. Phanerozoic Plutonismin the PeruvianEdge[M]. London: Blackie: 19−25.

    Google Scholar

    [34] Randall R P, Stephen R N. 2003. Zircon U−Th−Pb geochronology by isotope dilution—thermal ionization mass spectrometry[J]. Mineralogy and Geochemistry, 53(1): 183−213. doi: 10.2113/0530183

    CrossRef Google Scholar

    [35] Şengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299−307. doi: 10.1038/364299a0

    CrossRef Google Scholar

    [36] Shao Z G, Chen X H, Wang Z Z, et al. 2024. Characteristics of Heiyingshan Late Triassic thrust nappe structure in the Beishan orogenic belt and its constraint on the evolution of the orogenic belt[J]. Geological Bulletin of China, 43(11): 1893−1906 (in Chinese with English abstract).

    Google Scholar

    [37] Song J J. 2017. characte ristics of Late Paleozoic granite around the Ya Gan fault zone in Northern Alxa Block[D]. Master Thesis of China University of Geosciences (in Chinese with English abstract).

    Google Scholar

    [38] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publication, 42 (1) : 313 − 345.

    Google Scholar

    [39] Solomovich L I, Trifonov B A. 2002. Postcollisional granites in the South Tien Shan Variscan Collisional Belt, Kyrgyzstan[J]. Journal of Asian Earth Sciences Phanerozoic Continental Growth in Central Asia21, 7−21.

    Google Scholar

    [40] Tang K D. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino−Korean Craton[J]. Tectonis, 9: 249−260.

    Google Scholar

    [41] Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics. 33(2): 241−265.

    Google Scholar

    [42] Wang Z Y, Li G Z, Ding H S, et al. 2022. Determination and geological significance of Beishan Group in Yagan Area, Ejiana, Inner Mongolia[J]. Earth Science, 47(4): 1177−1193 (in Chinese with English abstract).

    Google Scholar

    [43] Whalen J B, Currie K L, Chappell B W. 1987. A−type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407−419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    [44] Winchester J A, Floyd P A. 1976. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks[J]. Earth & Planetary Science Letters, 28(3): 450−469.

    Google Scholar

    [45] Windley B F, Alexeiev D, Xiao W J. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [46] Wu T R, He G Q. 1993. Tectonic units and their fundamental characteristics on the northern margin of the Alaxa block[J]. Acta Geologica Sinica, 67(2): 98−108 (in Chinese with English abstract).

    Google Scholar

    [47] Xiao W J, Windley B F, Hao J. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22: 1069.

    Google Scholar

    [48] Xiao W J, Mao Q G, Windley B F. 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage[J]. American Journal of Science, 310(10): 1553−1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    [49] Xin H T, Niu W C, Tian J, et al. 2020. Spatio−temporal structure of Beishan orogenic belt and evolution of Paleo−Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 39(9): 1297−1316 (in Chinese with English abstract).

    Google Scholar

    [50] Yang H Q, Li Y, Zhao G B, et al. 2010. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology, 43(1): 26−36 (in Chinese with English abstract).

    Google Scholar

    [51] Yue Y, Liu J G, Graham S A. 2001. Tectonic correlation of Beishan and Inner Mongolia orogens and its implications reconstruction of north China[C]//Hendrix M S, Davis G A. Paleozoic and Mesozoic tectonic evolution of Central and Eastern Asia: From continental assembly to intracontinental deformtion. Geological Society of America Memoir, 194: 101−116.

    Google Scholar

    [52] Zheng R G, Zhang J. 2024. Tectonic switching during Carboniferous−Early Triassic within the southern Alxa[J]. Geological Bulletin of China, 43(12): 2190−2203(in Chinese with English abstract).

    Google Scholar

    [53] 白宇明, 薄海军, 胡浩远, 等. 2023. 内蒙古阿拉善北部雅干构造带白山组火山岩年龄、地球化学特征及其对区域构造演化的约束[J]. 地质通报, 42(1): 136−145. doi: 10.12097/j.issn.1671-2552.2023.01.012

    CrossRef Google Scholar

    [54] 甘立胜, 吴泰然, 陈彦, 等. 2018. 内蒙古阿拉善北缘尚丹岩体的年代学、地球化学特征及构造意义[J]. 岩石学报, 34(11): 3359−3374.

    Google Scholar

    [55] 龚全胜, 刘明强, 梁明宏, 等. 2003. 北山造山带大地构造相及构造演化[J]. 西北地质, 36(1): 11−17. doi: 10.3969/j.issn.1009-6248.2003.01.002

    CrossRef Google Scholar

    [56] 何世平, 任秉琛, 姚文光, 等. 2002. 甘肃内蒙古北山地区构造单元划分[J]. 西北地质, 35(4): 30−40. doi: 10.3969/j.issn.1009-6248.2002.04.004

    CrossRef Google Scholar

    [57] 何世平, 周会武, 姚文光, 等. 2004. 甘肃北山中泥盆统砾岩中放射虫的发现及其地质意义[J]. 西北地质, 37(3): 24−29. doi: 10.3969/j.issn.1009-6248.2004.03.005

    CrossRef Google Scholar

    [58] 何世平, 周会武, 任秉琛, 等. 2005. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 38(3): 6−15. doi: 10.3969/j.issn.1009-6248.2005.03.002

    CrossRef Google Scholar

    [59] 江思宏, 聂凤军, 陈文, 等. 2003. 北山明水地区花岗岩时代的确定及其地质意义[J]. 岩石矿物学杂志, 22(2): 107−111. doi: 10.3969/j.issn.1000-6524.2003.02.001

    CrossRef Google Scholar

    [60] 雷聪聪, 薄海军, 丁海生, 等. 2023. 内蒙古自治区雅干地区白山组火山岩LA−ICP−MS锆石U−Pb年龄及其构造环境[J]. 地质通报, 42(12): 2096−2108.

    Google Scholar

    [61] 李昌年. 1992. 构造岩浆判别的地球化学方法及其讨论[J]. 地质科技情报, 11(3):73−84.

    Google Scholar

    [62] 李锦轶, 何国琦, 徐新, 等. 2006a. 新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J]. 地质学报, 80(1): 148−168.

    Google Scholar

    [63] 李锦轶, 王克卓, 李亚萍, 等. 2006b. 天山山脉地貌特征、地壳组成与地质演化[J]. 地质通报, 25(8): 895−909.

    Google Scholar

    [64] 李锦轶, 宋彪, 王克卓, 等. 2006c. 东天山吐哈盆地南缘二叠纪幔源岩浆杂岩: 中亚地区陆壳垂向生长的地质记录[J]. 地球学报, 27(5): 424−446.

    Google Scholar

    [65] 李向民, 余吉远, 王国强, 等. 2012. 甘肃北山地区芨芨台子蛇绿岩 LA−ICP−MS锆石U−Pb测年及其地质意义[J]. 地质通报, 31(12): 20252031.

    Google Scholar

    [66] 李舢. 2009. 北山—内蒙古地区三叠纪花岗岩及其构造意义[D]. 中国地质科学院博士学位论文.

    Google Scholar

    [67] 苗来成, 朱明帅, 张福勤. 2014. 北山地区中生代岩浆活动与成矿构造背景分析[J]. 中国地质, 41(4): 1190−1204. doi: 10.3969/j.issn.1000-3657.2014.04.013

    CrossRef Google Scholar

    [68] 邵兆刚, 陈宣华, 王增振, 等. 2024. 北山造山带黑鹰山晚三叠世逆冲推覆构造特征及其对造山带演化的制约[J]. 地质通报, 43(11): 1893−1906.

    Google Scholar

    [69] 宋嘉佳. 2017. 阿拉善地块北部雅干断裂带周缘晚古生代花岗岩体特征[D]. 中国地质大学硕士学位论文.

    Google Scholar

    [70] 王振义, 李钢柱, 丁海生, 等. 2022. 内蒙古额济纳旗雅干地区北山岩群的厘定及其地质意义[J]. 地球科学, 47(4): 1177−1193. doi: 10.3321/j.issn.1000-2383.2022.4.dqkx202204003

    CrossRef Google Scholar

    [71] 吴泰然, 何国琦. 1993. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 67(2): 98−108.

    Google Scholar

    [72] 辛后田, 牛文超, 田健, 等. 2020. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 39(9): 1297−1316.

    Google Scholar

    [73] 杨合群, 李英, 赵国斌, 等. 2010. 北山蛇绿岩特征及构造属性[J]. 西北地质, 43(1): 26−36. doi: 10.3969/j.issn.1009-6248.2010.01.002

    CrossRef Google Scholar

    [74] 郑荣国, 张进. 2024. 阿拉善南部地区石炭纪—二叠纪期间的构造体制转换[J]. 地质通报, 43(12): 2190−2203.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(95) PDF downloads(24) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint