2025 Vol. 44, No. 2~3
Article Contents

HUANG Shaoying, CHEN Shouwen, YUAN Wenfang, LUO Caiming, DUAN Yunjiang, KANG Qian, ZHANG Fengqi. 2025. The eruptive age and tectonic setting of the protolith of the meta-rhyolite in the eastern segment of the South Tianshan Orogenic Belt: Constraints from zircon U−Pb age and trace elements. Geological Bulletin of China, 44(2~3): 424-440. doi: 10.12097/gbc.2024.01.015
Citation: HUANG Shaoying, CHEN Shouwen, YUAN Wenfang, LUO Caiming, DUAN Yunjiang, KANG Qian, ZHANG Fengqi. 2025. The eruptive age and tectonic setting of the protolith of the meta-rhyolite in the eastern segment of the South Tianshan Orogenic Belt: Constraints from zircon U−Pb age and trace elements. Geological Bulletin of China, 44(2~3): 424-440. doi: 10.12097/gbc.2024.01.015

The eruptive age and tectonic setting of the protolith of the meta-rhyolite in the eastern segment of the South Tianshan Orogenic Belt: Constraints from zircon U−Pb age and trace elements

More Information
  • Objective

    The composition and age of metamorphic rocks provide a crucial window into understanding the nature, formation, and evolution of orogenic belt basements. Based on an analysis of zircon age and trace elements from the Xingeer Formation in the eastern part of the South Tianshan Orogenic Belt, this paper explores the age of meta−rhyolite and its significance for the tectonic evolution of the Southern Tianshan orogenic belt.

    Methods

    The lithology, LA−ICP−MS zircon U−Pb dating, and zircon trace element analysis of the meta−rhyolite in the Xingeer Formation, located in the eastern part of the South Tianshan Orogenic Belt, have been systematically conducted. The data have been comprehensively analyzed in conjunction with regional research findings.

    Results

    LA−ICP−MS zircon U−Pb dating results indicate that the protolith was formed in the Early Devonian (418~412 Ma). The zircon exhibits a relative depletion in light rare earth elements (LREE) and enrichment in heavy rare earth elements (HREE), characterized by a negative Eu anomaly and a positive Ce anomaly. Trace element analysis reveals positive anomalies of U and Hf, along with negative anomalies of Nb, La, Pr, and Ti. Based on zircon trace element analysis, it is inferred that the crustal thickness at the time of rhyolite eruption was less than 35 km, with evidence of plagioclase fractionation and crystallization in the magmatic source region. The zircon Ti thermometer indicates a high magmatic crystallization temperature (>800°C), suggesting a high−temperature magmatic origin. This implies that the rhyolite's development may be associated with continental rifting.

    Conclusions

    Based on previous studies, it is inferred that the South Tianshan Orogenic Belt may have been part of the Tarim Craton during the Early Paleozoic, with its northern margin representing an active continental margin. Influenced by subduction and retreat along the northern margin, the South Tianshan region experienced significant back−arc extension during the Late Silurian to Early Devonian. The meta−rhyolite identified in this study is likely to have formed within the tectonic setting of Early Devonian back−arc extensional rifting.

  • 加载中
  • [1] Bai J K, Li Z P, Xu X Y, et al. 2015. Tectonic Environment of Western Tianshan during the Early Carboniferous: Sedimentary and stratigraphical evidence from the bottom of the Dahalajunshan Formation[J]. Acta Sedimentological Sinica, 33(3): 459−469 (in Chinese with English abstract).

    Google Scholar

    [2] Barth A P, Wooden J L. 2010. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas[J]. Chemical Geology, 277(1/2): 149−159. doi: 10.1016/j.chemgeo.2010.07.017

    CrossRef Google Scholar

    [3] Burnham A D, Berry A J. 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity[J]. Geochimica et Cosmochimica Acta, 95: 196−212. doi: 10.1016/j.gca.2012.07.034

    CrossRef Google Scholar

    [4] Carley T L, Miller C F, Wooden J L, et al. 2014. Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record[J]. Earth and Planetary Science Letters, 405: 85−97. doi: 10.1016/j.jpgl.2014.08.015

    CrossRef Google Scholar

    [5] Claiborne L L, Miller C F, Wooden J L. 2010. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada[J]. Contributions to Mineralogy and Petrology, 160(4): 511−531. doi: 10.1007/s00410-010-0491-5

    CrossRef Google Scholar

    [6] Dai L Q, Zhao Z F, Zheng Y F, et al. 2011. Zircon Hf−O isotope evidence for crust−mantle interaction during continental deep subduction[J]. Earth and Planetary Science Letters, 308(1/2): 229−244.

    Google Scholar

    [7] El−Bialy M Z, Ali K A. 2013. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600−614 Ma) post−collisional Dokhan volcanics and Younger granites of SE Sinai, NE Arabian−Nubian Shield[J]. Chemical Geology, 360−361: 54−73. doi: 10.1016/j.chemgeo.2013.10.009

    CrossRef Google Scholar

    [8] Gao J, Qian Q, Long L, l, et al. 2009. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 28(12): 1804−1816 (in Chinese with English abstract).

    Google Scholar

    [9] Ge R F, Zhu W B, Wu H L, et al. 2012. The Paleozoic northern margin of lhe Tarim Craton: Passive or active?[J]. Lithos, 142/143: 1−15. doi: 10.1016/j.lithos.2012.02.010

    CrossRef Google Scholar

    [10] Grimes C B, John B E, Kelemen P B, et al. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 35(7): 643−646. doi: 10.1130/G23603A.1

    CrossRef Google Scholar

    [11] Grimes C B, Wooden J L, Cheadle M J, et al. 2015. “Fingerprinting”tectono−magmatic provenance using trace elements in igneous zircon[J]. Contritions to Mineralogy and Petrology, 170(5): 46.

    Google Scholar

    [12] Guo R Q, Qin Q, Muhetaer Z R, et al. 2013. Geological characteristics and tectonic significance of Ordovician granite intrusions in the western segment of Quruqtagh, Xinjiang[J]. Earth Science Frontiers, 20(4): 251−263 (in Chinese with English abstract).

    Google Scholar

    [13] Han Y G, Zhao G C, Sun M, et al. 2015. Paleozoic accretionary orogenesis in the Paleo−Asian Ocean: insights from detrital zircons from Silurian to Carboniferous strata at the north−western margin of the Tarim Craton[J]. Tectonics, 34: 334−351. doi: 10.1002/2014TC003668

    CrossRef Google Scholar

    [14] Han Y G, Zhao G C, Sun M, et al. 2016. Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian orogenic belt along the South Tianshan suture zone[J]. Lithos, 246: 1−12.

    Google Scholar

    [15] Han Y G, Zhao G C. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo−Asian Ocean[J]. Earth−Science Reviews, 186: 129−152. doi: 10.1016/j.earscirev.2017.09.012

    CrossRef Google Scholar

    [16] Hoskin P W O, Ireland T R. 2000. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 28(7): 627−630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2

    CrossRef Google Scholar

    [17] Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27−62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [18] Huang H, Wang T, Tong Y, et al. 2020. Rejuvenation of ancient micro−continents during accretionary orogenesis: insights from the Yili block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth−Science Reviews, 208: 103255.

    Google Scholar

    [19] Huang H, Zhang Z C, Santosh M, et al. 2018. Crustal evolution in the South Tianshan Terrane: Constraints from detrital zircon geochronology and implications for continental growth in the Central Asian orogenic belt[J]. Geological Journal, 54(3): 1379−1400.

    Google Scholar

    [20] Huang Y G, Luo G, Zhang T, et al. 2019. LA−CP−MS zircon U−Pb dating and trace element geochemistry of Xiaoqiaotou porphyry in Lijiang, western Yunnan[J]. Journal of Guilin University of Technology, 39(1): 26−37 (in Chinese with English abstract).

    Google Scholar

    [21] Jahn, B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society. London: Special Publications, 226(1): 73−100. doi: 10.1144/GSL.SP.2004.226.01.05

    CrossRef Google Scholar

    [22] Jiang T, Gao J, Klemd R, et al. 2014. Paleozoic ophiolitic mélanges from the South Tianshan Orogen, NW China: Geological, geochemical and geochronological implications for the geodynamic setting[J]. Tectonophysics, 612: 106−127.

    Google Scholar

    [23] Jiang T, Gao J, Klemd R, et al. 2015. Genetically and geochronologically contrasting plagiogranites in South Central Tianshan ophiolitic mélange: Implications for the breakup of Rodinia and subduction zone processes[J]. Journal of Asian Earth Sciences, 113: 266−281. doi: 10.1016/j.jseaes.2014.10.015

    CrossRef Google Scholar

    [24] Kaczmarek M A, Müentener O, Rubatto D. 2008. Trace element chemistry and U−Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps)[J]. Contributions to Mineralogy and Petrology, 155(3): 295−312. doi: 10.1007/s00410-007-0243-3

    CrossRef Google Scholar

    [25] Kemp A I S, Hawkesworth C J, Paterson B A, et al. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon[J]. Nature, 439(7076): 580−583. doi: 10.1038/nature04505

    CrossRef Google Scholar

    [26] Klemd R, Gao J. 2015. Metamorphic evolution of(ultra)−high−pressure subduct ion−related transient crust in the South Tianshan Orogen (Central Asian orogenic belt): geodynamic implications[J]. Gondwana Research, 28(1): 1−25. doi: 10.1016/j.gr.2014.11.008

    CrossRef Google Scholar

    [27] Klemd R, John T, Scherer E, et al. 2011. Changes in dip of subducted slabs at depth: Petrological and geochronological evidence from HP−UHP rocks (Tianshan, NW−China)[J]. Earth and Planetary Science Letters, 310(1/2): 9−20. doi: 10.1016/j.jpgl.2011.07.022

    CrossRef Google Scholar

    [28] Konopelko D, Biske G, Setmann R, et al. 2007. Hercynian post−collisional A−type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan[J]. Lithos, 97(1/2): 140−160. doi: 10.1016/j.lithos.2006.12.005

    CrossRef Google Scholar

    [29] Konopelko D, Seltmann R, Biske G, et al. 2009. Possible source dichotomy of contemporaneous post−collisional barren I−type versus tin−bearing A−type granites, lying on opposite sides of the South Tien Shan suture[J]. Ore Geology Reviews, 35(2): 206−216. doi: 10.1016/j.oregeorev.2009.01.002

    CrossRef Google Scholar

    [30] Lei W Y, Shi G H, Liu Y X. 2013. Research progress on trace element characteristics of zircons of different origins[J]. Earth Science Frontiers, 20(4): 273−284 (in Chinese with English abstract).

    Google Scholar

    [31] Li N, Chen Y J, Pirajno F, et al. 2012. LA-ICP−MS zircon U−Pb dating, trace element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China: Implications for Mesozoic tectono−magmatic evolution[J]. Lithos, 142/143: 34−47. doi: 10.1016/j.lithos.2012.02.013

    CrossRef Google Scholar

    [32] Li T Y, Jin C, Tian Z H, et al. 2022. Hf Isotopic and geochronological characteristics of Mesozoic granites and xenoliths in Rushan area and its implication on crustal evolution of Jiaodong Peninsula[J]. Earth Science, 47(8): 2951−2967 (in Chinese with English abstract).

    Google Scholar

    [33] Li Y J, Yang H J, Zhao Y, et al. 2009. Tectonic framework and evolution of South Tianshan, NW China[J]. Geotectonica et Metallogenia, 33(1): 94−104 (in Chinese with English abstract).

    Google Scholar

    [34] Li Z, Li X Y, Zhang P, et al. 2022. Zircon trace elemental characteristics and its geological significance of the Miocene intermediate−acid magmatic rocks in the Pusangguo deposit in Xizang[J]. Geological Review, 68(4): 1236−1260 (in Chinese with English abstract).

    Google Scholar

    [35] Lin W, Chu Y, Ji W B, et al. 2013. Geochronological and geochemical constraints for a middle Paleozoic continental arc on the northern margin of the Tarim block: Implications for the Paleozoic tectonic evolution of the South Chinese Tianshan[J]. Lithosphere, 5(4): 355−381. doi: 10.1130/L231.1

    CrossRef Google Scholar

    [36] Liu G P, Guo R Q, Cai H M, et al. 2020. U−Pb geochronology of detrital zircon in sediments from Kizil River South Tianshan, Xinjiang and its geological significance[J]. Chinese Journal of Geology, 56(1): 210−236 (in Chinese with English abstract).

    Google Scholar

    [37] Liu G P. 2021. Paleozoic crustal growth and evolution in the South Tianshan Orogenic Belt—Constraits from geochronology and Hf isotopic composition of detrital zircons from the modern river[D]. PhD Dissertation of China University of Mining and Technology (in Chinese with English abstract).

    Google Scholar

    [38] Loucks R R, Fiorentini M L, Hendquez G J. 2020. New magmatic oxybammeter using trace elements in zircon[J]. Joumal of Petrology, 61(3): gaa034. doi: 10.1093/petrology/egaa034

    CrossRef Google Scholar

    [39] McDonough W F, Sun S S. 1995. The composition of the earth[J]. Chemical Geology, 120(3/4): 223−253. doi: 10.1016/0009-2541(94)00140-4

    CrossRef Google Scholar

    [40] Ning J, Jiang Y D, Schulmann K, et al. 2023. Silurian−Devonian lithospheric thinning and thermally softening along the northern margin of the Tarim Craton: Geological mapping, petro−structural analysis and geochronological constraints[J]. Tectonics, e2023TC007792.

    Google Scholar

    [41] Paton C, Woodhead J D, Hellstrom J C, et al. 2010. Improved laser ablation U−Pb zircon geochronology through robust downhole fractionation correction[J]. Geochemistry Geophysics Geosystems, 11: Q0AA06.

    Google Scholar

    [42] Schoene B. 2014. U−Th−Pb geochronology−ScienceDirect[C]//Treatise on Geochemistry (Second Edition). New York: Elsevier, 4: 341−378.

    Google Scholar

    [43] Schulz B, Klemd R, Brätz H. 2006. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta, 70(3): 697−710. doi: 10.1016/j.gca.2005.10.001

    CrossRef Google Scholar

    [44] Smythe D J, Brenan J M. 2015. Cerium oxidation state in silicate melts: Combined ${f}_{{\mathrm{O}}_2} $, temperature and compositional effects[J]. Geochimica et Cosmochimica Acta, 170: 173−187. doi: 10.1016/j.gca.2015.07.016

    CrossRef ${f}_{{\mathrm{O}}_2} $, temperature and compositional effects" target="_blank">Google Scholar

    [45] Smythe D I, Brenan J M. 2016. Magmatic oxygen fugacity estimated using zircon−melt partitioning of cerium[J]. Earth and Planetary Science Letlters, 453: 260−266. doi: 10.1016/j.jpgl.2016.08.013

    CrossRef Google Scholar

    [46] Tang M, Ji W Q, Chu X, et al. 2020. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons[J]. Geology, 49(1): 76−80.

    Google Scholar

    [47] Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J]. Geochimica et Cosmochimica Acta, 97: 70−87. doi: 10.1016/j.gca.2012.08.032

    CrossRef Google Scholar

    [48] Wang B, Shu L S, Faure M, et al. 2011. Paleozoic tectonics of the southern Chinese Tianshan: Insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China)[J]. Tectonophysics, 497(1/4): 85−104. doi: 10.1016/j.tecto.2010.11.004

    CrossRef Google Scholar

    [49] Wang B, Shu L S, Faure M, et al. 2013. Tectonic evolution of Tarim active continental margin and Southern Tianshan in Early Paleozoic[J]. Acta Geological Sinica, 87(S1): 82−83 (in Chinese with English abstract).

    Google Scholar

    [50] Wang B, Song F, Ni X H, 2022. Paleozoic accretionary orogenesis and major transitional tectonic events of the Tianshan orogen[J]. Acta Geological Sinica, 96(10): 3514−3540 (in Chinese with English abstract).

    Google Scholar

    [51] Wang B, Zhai Y Z, Kapp P, et al. 2018b. Accretionary tectonics of back−arc oceanic basins in the South Tianshan: insights from structural, geochronological and geochemical studies of the Wuwamen ophiolite mélange[J]. GSA Bulletin, 130(1/2): 284−306. doi: 10.1130/B31397.1

    CrossRef Google Scholar

    [52] Wang M, Zhou H R, Zhang H. 2019. Detrital zircon geochronology and tectonic implications of the Mesoproterozoic Gaoshanhe Group in south margin of North China Craton[J]. Journal of Palaeoceography, 22(1): 39−55 (in Chinese with English abstract).

    Google Scholar

    [53] Wang X S, Klemd R, Gao J, et al. 2018a. Final assembly of the southwestern Central Asian Orogenic Belt as constrained by the evolution of the South Tianshan Orogen: Links with Gondwana and Pangea[J]. Journal of Geophysical Research: Solid Earth, 123: 7361−7388. doi: 10.1029/2018JB015689

    CrossRef Google Scholar

    [54] Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on conrliest earth[J]. Science, 308(5723): 841−844. doi: 10.1126/science.1110873

    CrossRef Google Scholar

    [55] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [56] Wu F Y, Li X H, Yang J H, et al. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrological Sinica, 23(6): 1217−1238 (in Chinese with English abstract).

    Google Scholar

    [57] Wu F Y, Yang J H, Liu X M, et al. 2005. Hf isotopic characteristics of 3.8 Ga zircon from eastern Hebei Province and the early crustal age of North China Craton[J]. Chinese Science Bulletin, 50(18): 1996−2003 (in Chinese with English abstract). doi: 10.1360/csb2005-50-18-1996

    CrossRef Google Scholar

    [58] Wu Y B, Zheng Y F. 2004. Genetic mineralogy of zircon and its restriction on U−Pb age interpretation[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    [59] Xiao W J, Santosh M. 2014. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth[J]. Gondwana Research, 25(4): 1429−1444. doi: 10.1016/j.gr.2014.01.008

    CrossRef Google Scholar

    [60] Xiao W J, Windley B F, Sun S, et al. 2015. A tale of amalgamation of three Permo−Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43(1): 477−507. doi: 10.1146/annurev-earth-060614-105254

    CrossRef Google Scholar

    [61] Xiao W J, Windley B F, Yuan C, et al. 2009. Paleozoic multiple subduction−accretion processes of the southern Altaids[J]. American Journal of Science, 309(3): 221−270. doi: 10.2475/03.2009.02

    CrossRef Google Scholar

    [62] Yan L L, He Z Y, Beier C, et al. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China[J]. Lithos, 320/321: 28−34. doi: 10.1016/j.lithos.2018.08.040

    CrossRef Google Scholar

    [63] Yan L L, He Z Y, Klemd R, et al. 2020. Tracking crystal−melt segregation and magma recharge using zircon trace element data[J]. Chemical Geology, 542: 119596. doi: 10.1016/j.chemgeo.2020.119596

    CrossRef Google Scholar

    [64] Yang J H, Cawood P A, Du Y S, et al. 2012. Large Igneous Province and magmatic arc sourced Permian−Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 261/262: 120−131. doi: 10.1016/j.sedgeo.2012.03.018

    CrossRef Google Scholar

    [65] Yang J S, Xu X Z, Li T F, et al. 2010. U−Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic oceanic basin[J]. Acta Petrological Sinica, 27(1): 77−95 (in Chinese with English abstract).

    Google Scholar

    [66] Yang S H, Zhou M F. 2009. Geochemistry of the similar to 430 Ma Jingbulake mafic−ultram afic intrusion in Western Xinjiang. NW China: Implications for subduction related magmatism in the South Tianshan orogenic belt[J]. Lithos, 113(1): 259−273.

    Google Scholar

    [67] Yu X H, Qin Q, Huang H, et al. 2020. Genesis and tectonic significance of the Mangqisu pluton in the South Tianshan; evidence from geochronology, geochemistry, and Nd−Hf isotopes[J]. Acta Geological Sinica, 94(10): 2893−2918 (in Chinese with English abstract).

    Google Scholar

    [68] Zhao Z Y, Zhang Z C, Santosh M, et al. 2015. Early Paleozoic magmatic− record from the northern margin of the Tarim Craton: Further insights on the evolution of the Central Asian orogenic belt[J]. Gondwana Research, 28(1): 328−347.

    Google Scholar

    [69] Zhou A R G L, Dai J G, Li Y L, et al. 2017. Zircon trace element geochemical characteristics of Late Silurian−Earl Jurassic granitoids from Eastern Kunlun Range and its geological significance[J]. Acta Petrological Sinica, 33(1): 173−190 (in Chinese with English abstract).

    Google Scholar

    [70] Zhu Z X, Li J Y, Dong L H, et al. 2008. The age determination of Late Carboniferous intrusions in Mangqisu region and its constraints to the closure of oceanic basin in South Tianshan, Xinjiang[J]. Acta Petrological Sinica, 24(12): 2761−2766 (in Chinese with English abstract).

    Google Scholar

    [71] 高俊, 钱青, 龙灵利, 等. 2009. 西天山的增生造山过程[J]. 地质通报, 28(12): 1804−1816. doi: 10.3969/j.issn.1671-2552.2009.12.013

    CrossRef Google Scholar

    [72] 郭瑞清, 秦切, 木合塔尔, 等. 2013. 新疆库鲁克塔格西段奥陶纪花岗岩体地质特征及构造意义[J]. 地学前缘, 20(4): 251−263.

    Google Scholar

    [73] 黄永高, 罗改, 张彤, 等. 2019. 滇西丽江小桥头岩体时代与成因: 锆石U−Pb定年与微量元素证据[J]. 桂林理工大学学报, 39(1): 26−37. doi: 10.3969/j.issn.1674-9057.2019.01.003

    CrossRef Google Scholar

    [74] 雷玮琰, 施光海, 刘迎新. 2013. 不同成因锆石的微量元素特征研究进展[J]. 地学前缘, 20(4): 273−284.

    Google Scholar

    [75] 李同宇, 金超, 田忠华, 等. 2022. 乳山地区中生代花岗岩及捕虏体年代学、Hf同位素特征对胶东半岛地壳演化的启示[J]. 地球科学, 47(8): 2951−2967. doi: 10.3321/j.issn.1000-2383.2022.8.dqkx202208021

    CrossRef Google Scholar

    [76] 李曰俊, 杨海军, 赵岩, 等. 2009. 南天山区域大地构造与演化[J]. 大地构造与成矿学, 33(1): 94−104. doi: 10.3969/j.issn.1001-1552.2009.01.012

    CrossRef Google Scholar

    [77] 李壮, 李兴怡, 张鹏, 等. 2022. 西藏浦桑果矿区中新世中酸性侵入岩锆石微量元素特征及地质意义[J]. 地质论评, 68(4): 1236−1260.

    Google Scholar

    [78] 刘桂萍, 郭瑞清, 蔡宏明, 等. 2020. 新疆南天山克孜尔河沉积物碎屑锆石U−Pb年代学研究及其地质意义[J]. 地质科学, 56(1): 210−236.

    Google Scholar

    [79] 刘桂萍. 2021. 南天山造山带古生代地壳生长与演化——来自现代河流碎屑锆石年代学及Hf同位素的约束[D]. 中国矿业大学博士学位论文.

    Google Scholar

    [80] 王博, 舒良树, Faure M, 等. 2013. 塔里木早古生代活动陆缘与南天山构造演化[J]. 地质学报, 87(S1): 82−83.

    Google Scholar

    [81] 王博, 宋芳, 倪兴华, 等. 2022. 天山古生代增生造山作用及其构造转换事件[J]. 地质学报, 96(10): 3514−3540. doi: 10.3969/j.issn.0001-5717.2022.10.014

    CrossRef Google Scholar

    [82] 王淼, 周洪瑞, 张恒. 2019. 华北南缘中元古界高山河群碎屑锆石U−Pb年代学及其地质意义[J]. 古地理学报, 22(1): 39−55.

    Google Scholar

    [83] 吴福元, 李献华, 杨进辉, 等. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217−1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    [84] 吴福元, 杨进辉, 柳小明, 等. 2005. 冀东3.8 Ga锆石Hf同位素特征与华北克拉通早期地壳时代[J]. 科学通报, 50(18): 1996−2003. doi: 10.3321/j.issn:0023-074X.2005.18.013

    CrossRef Google Scholar

    [85] 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [86] 新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    [87] 新疆维吾尔族自治区地质局. 1959. 1∶20万库尔勒福地图[R].

    Google Scholar

    [88] 杨经绥, 徐向珍, 李天福, 等. 2010. 新疆中天山南缘库米什地区蛇绿岩的锆石U−Pb同位素定年: 早古生代洋盆的证据[J]. 岩石学报, 27(1): 77−95.

    Google Scholar

    [89] 于新慧, 秦切, 黄河, 等. 2020. 南天山盲起苏花岗岩体的成因及构造意义: 来自年代学、地球化学及Nd−Hf同位素证据[J]. 地质学报, 94(10): 2893−2918. doi: 10.3969/j.issn.0001-5717.2020.10.009

    CrossRef Google Scholar

    [90] 周敖日格勒, 戴紧根, 李亚林, 等. 2017. 东昆仑山脉晚志留世—早侏罗世花岗类岩石中锆石微量元素地球化学特征及地质意义[J]. 岩石学报, 33(1): 173−190.

    Google Scholar

    [91] 朱志新, 李锦轶, 董连慧, 等. 2008. 新疆南天山盲起苏晚石炭世侵入岩的确定及对南天山洋盆闭合时限的限定[J]. 岩石学报, 24(12): 2761−2766.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(102) PDF downloads(40) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint