2025 Vol. 46, No. 1
Article Contents

LI Xiaodong, LI Yong. 2025. Study on the mineralogical characteristics of crystalline graphite from Xiangshan graphite deposit in Huaining County, Anhui Province. East China Geology, 46(1): 68-78. doi: 10.16788/j.hddz.32-1865/P.2024.21.014
Citation: LI Xiaodong, LI Yong. 2025. Study on the mineralogical characteristics of crystalline graphite from Xiangshan graphite deposit in Huaining County, Anhui Province. East China Geology, 46(1): 68-78. doi: 10.16788/j.hddz.32-1865/P.2024.21.014

Study on the mineralogical characteristics of crystalline graphite from Xiangshan graphite deposit in Huaining County, Anhui Province

  • In this paper, the researchers have employed a variety of analytical testing methods and research techniques to conduct the first study on the crystalline graphite mineralogical characteristics of Xiangshan graphite deposit in Huaining County, Anhui Province. The crystalline graphite of the Xiangshan deposit has a relatively complete crystal form and appears as flake aggregates. Energy spectrum analysis shows that the content of C atom in the crystalline graphite ranges from 91.99% to 92.74%. Laser Raman spectroscopy shows that graphite has a high degree of crystallinity and an orderly complete carbon atomic structure. Its laser Raman characteristic spectrum lacks D1 and D2 peaks, similar to the Raman spectroscopy in graphene. Powder X-ray diffraction (XRD) reveals that the crystalline graphite exhibits characteristics of 2H type graphite, with an axis length a=0.246 1~0.246 6 nm, c=0.669 3~0.670 0 nm, and a unit cell volume V=0.035 1~0.035 29 nm3. The thickness of graphite flake varies from 37.1~43.3 nm, the degree of graphitization 82~96, the estimated metamorphic temperature 542.4~587.2 ℃, the content of 3R polymorphism 9.03%~10.37% and δ13C value −29.223‰~−26.926‰. These findings all suggest that the graphite carbon derived from bio-organic carbon deposited in the strata, which is closer to the level of peat and modern organic matter. Besides, there is no evidence of carbon-containing fluid brought in by magma and inorganic carbon resulting from carbonate rock decomposition.

  • 加载中
  • [1] AOYA M, KOUKETSU Y, ENDO S, SHIMIZU H, MIZUKAMI T, NAKAMURA D, WALLIS S. 2010. Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks[J]. Journal of Metamorphic Geology,28(9):895-914. doi: 10.1111/j.1525-1314.2010.00896.x

    CrossRef Google Scholar

    [2] BACON G E. 1952. The powder diffraction intensities of graphite for X-rays and neutrons[J]. Acta Crystallographica,5(4):492-499. doi: 10.1107/S0365110X52001416

    CrossRef Google Scholar

    [3] BAI Q, ZHANG S T, WANG W L, WANG Z J. 2015. Variance of graphite import-export volume and price in China for 2003-2012: a time-series analysis[J]. Resources Policy,44:65-70. doi: 10.1016/j.resourpol.2015.01.004

    CrossRef Google Scholar

    [4] BAIJU K R, SATISH-KUMAR M, KAGI H, NAMBIAR C G, RAVISANKAR M. 2005. Mineralogical characterization of graphite deposits from Thodupuzha-Kanjirappally Belt, Madurai Granulite Block, southern India[J]. Gondwana Research,8(2):223-230. doi: 10.1016/S1342-937X(05)71120-5

    CrossRef Google Scholar

    [5] BEYSSAC O, GOFFÉ B, CHOPIN C, ROUZAUD J N. 2002. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. Journal of Metamorphic Geology,20(9):859-871. doi: 10.1046/j.1525-1314.2002.00408.x

    CrossRef Google Scholar

    [6] CHEN W R. 1990. Crystal structure of graphite[J]. Carbon Techniques,(4):39-40 (in Chinese).

    Google Scholar

    [7] COSTA S, BOROWIAK-PALEN E, KRUSZYŃSKA M, BACHMATIUK A, KALEŃCZUK R J. 2008. Characterization of carbon nanotubes by Raman spectroscopy[J]. Materials Science-Poland,26(2):433-441.

    Google Scholar

    [8] CUI X J, LIU Q F, LI K, YU L, WU Y K. 2018. Mineralogical characteristics of coal-based cryptocrystalline graphite in Lutang area, Hunan Province, China[J]. Acta Mineralogica Sinica,38(2):142-151 (in Chinese with English abstract).

    Google Scholar

    [9] DUAN J Q. 2017. Research on mineralogy and exploitation of microcrystalline graphite from Chenzhou, Hunan Province[D]. Mianyang: Southwest University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [10] DUAN J Q, SUN H J, PENG T J. 2016. Mineralogical characteristics of microcrystalline graphite in Chenzhou, Hunan Province[J]. Journal of Mineralogy and Petrology,36(3):7-14 (in Chinese with English abstract).

    Google Scholar

    [11] GENERAL ADMINISTRATION OF QUALITY SUPERVISION, INSPECTION AND QUARANTINE OF THE PEOPLE'S REPUBLIC OF CHINA, NATIONAL STANDARDIZATION ADMINISTRATION OF CHINA. 2010. GB/T 18340.2-2010 Geochemical Analysis Methods for Geological Samples Part 2: Determination of Stable Carbon Isotopes in Organic Matter by Isotope Mass Spectrometry [S]. Beijing: China Standards Press, 5-8(in Chinese).

    Google Scholar

    [12] GUO H Z. 1989. Study on flake graphite in China[J]. Journal of China Building Materials Academy,(3):267-278 (in Chinese with English abstract).

    Google Scholar

    [13] HOEFS J. 2009. Stable isotope geochemistry[M]. Berlin, Heidelberg: Springer.

    Google Scholar

    [14] HU S Y, EVANS K, CRAW D, REMPEL K, BOURDET J, DICK J, GRICE K. 2015. Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks, New Zealand[J]. Ore Geology Reviews,70:80-95. doi: 10.1016/j.oregeorev.2015.03.021

    CrossRef Google Scholar

    [15] HUANG H B, YUAN J, LING B, BAI X, LI M J, LIU J K. 2023. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology,44(1):103-117 (in Chinese with English abstract).

    Google Scholar

    [16] JIANG G Z. 2016. Gold and graphite deposits prospecting in Bayan Obo rift, Inner Mongolia[D]. Beijing: China University of Geosciences (in Chinese with English abstract).

    Google Scholar

    [17] JIANG G Z, LI Y K, WANG A J, YANG X, YANG B, MA L. 2017. Genetic features of Dawudian graphite deposit in Urad Middle Banner, Inner Mongolia[J]. Earth Science Frontiers,24(5):306-316 (in Chinese with English abstract).

    Google Scholar

    [18] KOURKOUMELIS N. 2013. PowDLL, a reusable .NET component for interconverting powder diffraction data: recent developments[M]//O’NEILL L. ICDD annual spring meetings. Powder Diffraction, 28: 137-148.

    Google Scholar

    [19] KUZMANY H, PFEIFFER R, HULMAN M, KRAMBERGER C. 2004. Raman spectroscopy of fullerenes and fullerene-nanotube composites[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362(1824): 2375-2406.

    Google Scholar

    [20] LAN X Y. 1981. Study on the charateristics of Precambrian graphite-bearing formation and the genesis of graphite deposits in Nanshu, Shandong Province[J]. Journal of Jilin University,(3):30-42 (in Chinese).

    Google Scholar

    [21] LI X D, DU Y D, XU B, PAN Y G, TIAN J, ZHANG Y Y, XU G, WANG H. 2022. Mineralogical characteristics of crystalline graphite in the Fengyang area of Anhui Province within the eastern Bengbu uplift zone of the southeastern margin of North China Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 260-273 (in Chinese with English abstract).

    Google Scholar

    [22] LI Y, MA D, WU R F. 2022. Geological characteristics and prospecting target of the Xiangshan graphite deposit, Huaining, Anhui Province[J]. Geology of Anhui,32(1):33-36,92 (in Chinese with English abstract).

    Google Scholar

    [23] LI M F, ZENG F G, QI F H, SUN B L. 2009. Raman spectroscopic characteristics of different rank coals and the relation with XRD structural parameters[J]. Spectroscopy and Spectral Analysis,29(9):2446-2449 (in Chinese with English abstract).

    Google Scholar

    [24] LIU J. 2017. Moving toward the application and industrialization of graphene: processes of graphite formation and graphitic crystal chemistry[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).

    Google Scholar

    [25] LUO G M, JUNIUM C K, KUMP L R, HUANG J H, LI C, FENG Q L, SHI X Y, BAI X, XIE S C. 2014. Shallow stratification prevailed for ∼1700 to ∼1300 Ma ocean: evidence from organic carbon isotopes in the North China Craton[J]. Earth and Planetary Science Letters,400:219-232. doi: 10.1016/j.jpgl.2014.05.020

    CrossRef Google Scholar

    [26] LUQUE F J, CRESPO-FEO E, BARRENECHEA J F, ORTEGA L. 2012. Carbon isotopes of graphite: implications on fluid history[J]. Geoscience Frontiers,3(2):197-207. doi: 10.1016/j.gsf.2011.11.006

    CrossRef Google Scholar

    [27] LUQUE F J, PASTERIS J D, WOPENKA B, RODAS M, BARRENECHEA J F. 1998. Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation[J]. American Journal of Science,298(6):471-498. doi: 10.2475/ajs.298.6.471

    CrossRef Google Scholar

    [28] MAFRA D L, KONG J, SATO K, SAITO R, DRESSELHAUS M S, ARAUJO P T. 2012. Using gate-modulated Raman scattering and electron-phonon interactions to probe single-layer graphene: a different approach to assign phonon combination modes[J]. Physical Review B,86(19):195434. doi: 10.1103/PhysRevB.86.195434

    CrossRef Google Scholar

    [29] MIZUTANI S, SATISH-KUMAR M, YOSHINO T. 2014. Experimental determination of carbon isotope fractionation between graphite and carbonated silicate melt under upper mantle conditions[J]. Earth and Planetary Science Letters,392:86-93. doi: 10.1016/j.jpgl.2014.02.006

    CrossRef Google Scholar

    [30] SANYAL P, ACHARYA B C, BHATTACHARYA S K, SARKAR A, AGRAWAL S, BERA M K. 2009. Origin of graphite, and temperature of metamorphism in Precambrian eastern Ghats Mobile Belt, Orissa, India: a carbon isotope approach[J]. Journal of Asian Earth Sciences,36(2-3):252-260 doi: 10.1016/j.jseaes.2009.06.008

    CrossRef Google Scholar

    [31] SATISH-KUMAR M, JASZCZAK J A, HAMAMATSU T, WADA H. 2011. Relationship between structure, morphology, and carbon isotopic composition of graphite in marbles: implications for calcite-graphite carbon isotope thermometry[J]. American Mineralogist,96(4):470-485. doi: 10.2138/am.2011.3576

    CrossRef Google Scholar

    [32] SFORNA M C, VAN ZUILEN M A, PHILIPPOT P. 2014. Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, western Australia[J]. Geochimica et Cosmochimica Acta,124:18-33. doi: 10.1016/j.gca.2013.09.031

    CrossRef Google Scholar

    [33] SHI G, GONG Z, HUANG N, YE J, ZHOU D R, SHAO W, TENG L, LIAO S B, LI J Q. 2023. The main controlling factors of the gas content in the Permian Dalong Formation of the Xuanjing area, the lower Yangtze region: a case study of Gangdi 1 Well[J]. East China Geology,44(1):93-102 (in Chinese with English abstract).

    Google Scholar

    [34] SHI H, BARKER J, SAÏDI M Y, KOKSBANG R. 1996. Structure and lithium intercalation properties of synthetic and natural graphite[J]. Journal of the Electrochemical Society,143(11):3466-3472. doi: 10.1149/1.1837238

    CrossRef Google Scholar

    [35] SONIBARE O O, HAEGER T, FOLEY S F. 2010. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy,35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025

    CrossRef Google Scholar

    [36] SUN H J, DUAN J Q, PENG T J. 2017. Study on mineralogical characteristics of microcrystalline graphite. bulletin of mineralogy[J]. Petrology and Geochemistry,(36):37 (in Chinese).

    Google Scholar

    [37] TUINSTRA F and KOENIG JL. 1970. Raman spectrum of graphite[J]. The Journal of Chemical Physics,53(3):1126-1130.

    Google Scholar

    [38] VAN ZUILEN M A, FLIEGEL D, WIRTH R, LEPLAND A, QU Y G, SCHREIBER A, ROMASHKIN A E, PHILIPPOT P. 2012. Mineral-templated growth of natural graphite films[J]. Geochimica et Cosmochimica Acta,83:252-262. doi: 10.1016/j.gca.2011.12.030

    CrossRef Google Scholar

    [39] WANG K Q. 1989. A preliminary discussion on the basic properties of natural graphite and its relation to the metamorphic grade[J]. Nonmetallic Geology,(6):11-17 (in Chinese with English abstract).

    Google Scholar

    [40] WANG K Q. 1990. A study on the structure of graphite crystals in Nanshu graphite deposit, Shandong Province[J]. Acta Mineralogica Sinica,10(2):106-114 (in Chinese with English abstract).

    Google Scholar

    [41] WU J X, XU H, ZHANG J. 2014. Raman spectroscopy of graphene[J]. Acta Chimica Sinica,72(3):301-318 (in Chinese with English abstract). doi: 10.6023/A13090936

    CrossRef Google Scholar

    [42] WU Y K. 2022. Research on the mineralization of graphite in the Lutang coal measures of Hunan Province[D].Beijing: China University of Mining and Technology(in Chinese with English abstract).

    Google Scholar

    [43] XIAN H Y, PENG T J, SUN H J, WU X. 2015. Mineralogical characteristics of some typical graphite samples in China[J]. Acta Mineralogica Sinica,35(3):395-405 (in Chinese with English abstract).

    Google Scholar

    [44] YANG R. 2021. Study on the microstructure characteristics of coal bearing graphite——taking the Lutang mining area in Hunan Province as an example[D].Handan:Hebei University of Engineering (in Chinese with English abstract).

    Google Scholar

    [45] ZHAO B S, LIU J J, WANG J P, ZHAI Y S, PENG R M, WANG S G, SHEN C L. 2007. Trace elements geochemistry of the black rock series from Bayan Obo Group and their geological implications[J]. Geoscience,21(1):87-94 (in Chinese with English abstract).

    Google Scholar

    [46] ZHAO W Z, XIE X, ZHANG B B, ZHANG J T, HE T. 2024. Application of deep eutectic solvent extraction in eco-geological sample analysis[J]. East China Geology,45(1):78-87 (in Chinese with English abstract).

    Google Scholar

    [47] 陈蔚然. 1990. 石墨的晶体结构[J]. 炭素技术, (4): 39-40.

    Google Scholar

    [48] 崔先健, 刘钦甫, 李阔, 余力, 毋应科. 2018. 湖南鲁塘煤系隐晶质石墨矿物学特征[J]. 矿物学报,38(2):142-151.

    Google Scholar

    [49] 段佳琪. 2017. 湖南郴州微晶石墨矿物学及开发利用研究[D]. 绵阳: 西南科技大学.

    Google Scholar

    [50] 段佳琪, 孙红娟, 彭同江. 2016. 湖南郴州微晶石墨的矿物学特征[J]. 矿物岩石,36(3):7-14.

    Google Scholar

    [51] 郭海珠. 1989. 中国鳞片石墨的研究[J]. 水泥与房建材料,(3):267-278.

    Google Scholar

    [52] 黄海波, 袁静, 凌波, 白晓, 李民敬, 刘建坤. 2023. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质,44(1):103-117.

    Google Scholar

    [53] 姜高珍. 2016. 内蒙古白云鄂博裂谷系金矿石墨矿成矿预测综合研究[D]. 北京: 中国地质大学.

    Google Scholar

    [54] 姜高珍, 李以科, 王安建, 杨轩, 杨彪, 马莉. 2017. 内蒙古乌拉特中旗大乌淀石墨矿成因特征分析[J]. 地学前缘,24(5):306-316.

    Google Scholar

    [55] 兰心俨. 1981. 山东南墅前寒武纪含石墨建造的特征及石墨矿床的成因研究[J]. 长春地质学院学报, (3): 30-42.

    Google Scholar

    [56] 李小东, 杜玉雕, 徐波, 潘宇观, 田晶, 张宜勇, 徐刚, 汪欢. 2022. 华北板块东南缘蚌埠隆起带东段安徽凤阳地区晶质石墨矿物学特征研究[J]. 矿物岩石地球化学通报,41(2):260-273.

    Google Scholar

    [57] 李勇, 马冬, 吴仁飞. 2022. 安徽怀宁象山石墨矿床地质特征及找矿方向[J]. 安徽地质,32(1):33-36,92. doi: 10.3969/j.issn.1005-6157.2022.01.008

    CrossRef Google Scholar

    [58] 李美芬, 曾凡桂, 齐福辉, 孙蓓蕾. 2009. 不同煤级煤的Raman谱特征及与XRD结构参数的关系[J]. 光谱学与光谱分析,29(9):2446-2449.

    Google Scholar

    [59] 刘剑. 2017. 天然石墨的成因、晶体化学特征及对石墨烯产业化的约束[D]. 北京: 中国地质大学(北京).

    Google Scholar

    [60] 石刚, 龚赞, 黄宁, 叶隽, 周道容, 邵威, 滕龙, 廖圣兵, 李建青. 2023. 下扬子宣泾地区二叠系大隆组页岩含气量主控因素分析——以港地1井为例[J]. 华东地质,44(1):93-102.

    Google Scholar

    [61] 孙红娟, 段佳琪, 彭同江. 2017. 微晶石墨的矿物学特征研究[J]. 矿物岩石地球化学通报, (36)增刊: 37.

    Google Scholar

    [62] 王克勤. 1989. 石墨矿物的一些基本性质及与变质程度关系初探[J]. 建材地质,(6):11-17.

    Google Scholar

    [63] 王克勤. 1990. 山东南墅石墨矿石墨晶体结构的研究[J]. 矿物学报,10(2):106-114. doi: 10.3321/j.issn:1000-4734.1990.02.003

    CrossRef Google Scholar

    [64] 吴娟霞, 徐华, 张锦. 2014. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报,72(3):301-318.

    Google Scholar

    [65] 毋应科. 2022. 湖南鲁塘煤系石墨成矿作用研究[D]. 北京:中国矿业大学.

    Google Scholar

    [66] 鲜海洋, 彭同江, 孙红娟, 吴逍. 2015. 我国若干典型石墨矿山石墨的矿物学特征[J]. 矿物学报,35(3):395-405.

    Google Scholar

    [67] 杨瑞. 2021. 煤系石墨微观结构特征研究-以湖南鲁塘矿区为例[D].邯郸:河北工程大学.

    Google Scholar

    [68] 赵百胜, 刘家军, 王建平, 翟裕生, 彭润民, 王守光, 沈存利. 2007. 白云鄂博群黑色岩系微量元素地球化学特征及地质意义[J]. 现代地质,21(1):87-94. doi: 10.3969/j.issn.1000-8527.2007.01.010

    CrossRef Google Scholar

    [69] 赵文志, 谢旭, 张兵兵, 张锦涛, 何添. 2024. 深共晶溶剂在生态地质样品分析中的应用研究[J]. 华东地质,45(1):78-87.

    Google Scholar

    [70] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 2010. GB/T18340.2—2010 地质样品有机地球化学分析方法 第2部分:有机质稳定碳同位素测定 同位素质谱法[S]. 北京:中国标准出版社, 5-8.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(5)

Article Metrics

Article views(113) PDF downloads(9) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint