2025 Vol. 46, No. 1
Article Contents

WANG Jinchao, HAN Zengqiang, WANG Yiteng, LIU Houcheng, WANG Chao, HU Sheng. 2025. The detection system based on ultrasonic synthetic aperture imaging and multi-frequency scanning. East China Geology, 46(1): 79-88. doi: 10.16788/j.hddz.32-1865/P.2023.12.015
Citation: WANG Jinchao, HAN Zengqiang, WANG Yiteng, LIU Houcheng, WANG Chao, HU Sheng. 2025. The detection system based on ultrasonic synthetic aperture imaging and multi-frequency scanning. East China Geology, 46(1): 79-88. doi: 10.16788/j.hddz.32-1865/P.2023.12.015

The detection system based on ultrasonic synthetic aperture imaging and multi-frequency scanning

  • It is particularly important for the underground engineering design and construction in karst development areas to identify the refined structure of hollow areas and underground morphology based on the structural characteristics of underground rock mass and survey techniques in deep voids. In order to further understand the “black box” structure of deep underground rock mass and master key technology of accurate exploration in underground space, this article introduces a detection system by borehole ultrasonic synthetic aperture imaging and multi-frequency scanning. According to the synergistic effect of optics and acoustics inside the borehole, this system derived a multi-frequency ultrasonic scanning technology suitable for detecting complex geological borehole rock mass, and designed a comprehensive survey equipment for borehole rock mass structure with intelligent perception and recognition capabilities. In addition, the system can synchronously survey borehole rock walls, caves inside the borehole, and near-field surrounding rocks in complex geological environments. Combined with its supporting analysis methods, we have constructed a comprehensive survey system for borehole rock mass structure integrating “observation, measurement, and characterization”. The test results show that the ultrasonic synthetic aperture imaging and multi-frequency scanning detection inside the borehole can perform 360° precise detection by going into inaccessible underground spaces along the borehole, enriching the survey data of rock structure in underground space development and construction, which has forward-looking and wide application prospects.

  • 加载中
  • [1] HE J S, LI D Q, HU Y F, LING F, WANG J H. 2022. Geophysical exploration methods for strong interference urban underground space[J]. Chinese Journal of Engineering Geophysics,19(5):559-567 (in Chinese with English abstract).

    Google Scholar

    [2] HU L L, HUANG D J, HE H, YANG R. 2022a. Application of comprehensive geophysical exploration method in geological disaster of karst collapse in Northwest Guangxi[J]. Mineral Resources and Geology,36(1):165-171 (in Chinese with English abstract).

    Google Scholar

    [3] HU L L, HUANG D J, XIE S B, ZENG X Y, YANG R. 2022b. Application of comprehensive geophysical exploration technology on karst cave detection at a limestone mine: an example of Dingxiangshan limestone mine in Guigang city of Guangxi[J]. Mineral Resources and Geology,36(6):1182-1189 (in Chinese with English abstract).

    Google Scholar

    [4] LIN X C, SU W S, CHEN Z G. 2012. Acoustic borehole televiewer and its application to the site investigation of underground building[J]. Chinese Journal of Engineering Geophysics,9(3):263-268 (in Chinese with English abstract).

    Google Scholar

    [5] LIU Y X, GAO M S, ZHAO H S, HE S L, LI Z G, ZHANG Z C. 2020. Detection of overlying rock structure and identification of key stratum by drilling and logging technology[J]. Journal of Mining and Strata Control Engineering,2(2):81-89 (in Chinese with English abstract).

    Google Scholar

    [6] LONG X, SUN Z Y, ZHOU A G, LIU D L. 2015. Hydrogeochemical and isotopic evidence for flow paths of karst waters collected in the Heshang Cave, Central China[J]. Journal of Earth Science,26(1):149-156.

    Google Scholar

    [7] MA L H, ZHAO H S, YIN Y L, WANG Y L, HE S L, LI B W. 2019. Lithological identification and rock structure analysis based on axial acceleration logging of inclined boreholes[J]. China Metal Bulletin, (10): 201-203 (in Chinese with English abstract).

    Google Scholar

    [8] SHANG L N, PAN J, CAO R, ZHOU Q C, KONG X H. 2024.Structural characteristics of the Binhai Fault Zone in Jiangsu offshore -implications from gravity and magnetic data[J]. East China Geology, 45(1): 101-114(in Chinese with English abstract).

    Google Scholar

    [9] SUN P, WANG Q, WANG C Y, LIU J B, CHEN F, ZHANG J. 2023. Application of geophysical method in the interface exploration between backfill soil rock and bedrock of the mine pit[J]. East China Geology,44(4):439-447 (in Chinese with English abstract).

    Google Scholar

    [10] WANG L, CHEN Y, YU D Y, HU J P, XU Y H, YANG W, WANG T. 2022. Seismic airgun-the key technology of future urban underground space exploration[J]. Chinese Journal of Geophysics,65(12):4750-4759 (in Chinese with English abstract).

    Google Scholar

    [11] WANG L F, LIU H S, TONG S Y, YIN Y X, XING L, ZOU Z H, XU X G. 2015. Retrieving drill bit seismic signals using surface seismometers[J]. Journal of Earth Science,26(4):567-576. doi: 10.1007/s12583-015-0568-1

    CrossRef Google Scholar

    [12] WANG J C, TAO D X, HUANG Y Q, WANG C Y, HAN Z Q, HU S. 2019. Borehole imaging method based on ultrasonic synthetic aperture technology[J]. Rock and Soil Mechanics,40(S1):557-564 (in Chinese with English abstract).

    Google Scholar

    [13] WANG J C, WANG C Y, DU Q, LUO P, HUANG J F. 2023. Research on 3D visualization of geological boreholes based on photo-acoustic combination measurement[J]. Chinese Journal of Rock Mechanics and Engineering,42(3):649-660 (in Chinese with English abstract).

    Google Scholar

    [14] WANG J C, WANG C Y, HAN Z Q. 2020a. Multi-frequency ultrasonic underground cavity scanning detection technology in borehole[J]. Measurement,161:107889. doi: 10.1016/j.measurement.2020.107889

    CrossRef Google Scholar

    [15] WANG J C, WANG C Y, HAN Z Q, JIAO Y Y, ZOU J P. 2020b. Study of hidden structure detection for tunnel surrounding rock with pulse reflection method[J]. Measurement,159:107791. doi: 10.1016/j.measurement.2020.107791

    CrossRef Google Scholar

    [16] WANG J C, XU H H, CHEN W, WANG C Y, HAN Z Q. 2022. Evaluation method for rock mass structure integrity based on borehole multivariate data[J]. International Journal of Geomechanics,22(1):04021248. doi: 10.1061/(ASCE)GM.1943-5622.0002232

    CrossRef Google Scholar

    [17] ZHANG X L, XIE T, ZHOU W, GAO H, DENG D, QU J Y. 2023. The application of the opposing coils transient electromagnetic method and microtremor survey method in shallow karst detection[J]. Coal Geology & Exploration,51(12):157-166 (in Chinese with English abstract).

    Google Scholar

    [18] ZHANG H, ZHOU Q P, JIANG Y H, JIN Y, CHEN Z, JIA Z Y, MEI S J. 2023. Sublacustrine sedimentary topography detection and analysis of Poyang Lake based on sub-bottom profiler[J]. East China Geology,44(3):313-322 (in Chinese with English abstract).

    Google Scholar

    [19] ZHOU L M, WANG F G, XIAO G Q, FU D G, LUO R. 2016. Experimental investigations of rock mass for south bank expansion project of Kariba power station by comprehensive logging[J]. Journal of Yangtze River Scientific Research Institute,33(12):109-112 (in Chinese with English abstract).

    Google Scholar

    [20] ZOU C C, SHI G, PAN L Z. 2004. Acoustic borehole images for fracture extraction and analysis in second pre-pilot Drillhole of CCSD[J]. Journal of Earth Science,15(1):123-127.

    Google Scholar

    [21] 何继善, 李帝铨, 胡艳芳, 凌帆, 王金海. 2022. 城市强干扰环境地下空间探测技术与应用[J]. 工程地球物理学报,19(5):559-567.

    Google Scholar

    [22] 胡磊磊, 黄德军, 何辉, 杨荣. 2022a. 综合物探在桂西北岩溶塌陷地质灾害中的应用[J]. 矿产与地质,36(1):165-171.

    Google Scholar

    [23] 胡磊磊, 黄德军, 谢绍彬, 曾宣源, 杨荣. 2022b. 综合物探技术在石灰石矿山溶洞探测的应用研究——以广西贵港市定祥山石灰石矿山为例[J]. 矿产与地质,36(6):1182-1189.

    Google Scholar

    [24] 林孝城, 苏文生, 陈宗刚. 2012. 声学钻孔电视及在地下建筑物选址调查中的应用[J]. 工程地球物理学报,9(3):263-268. doi: 10.3969/j.issn.1672-7940.2012.03.003

    CrossRef Google Scholar

    [25] 刘垚鑫, 高明仕, 赵华山, 何双龙, 李振国, 张志聪. 2020. 钻孔测井技术探测覆岩结构及其关键层判识[J]. 采矿与岩层控制工程学报,2(2):81-89.

    Google Scholar

    [26] 马良慧, 赵华山, 尹杨林, 王言龙, 何双龙, 李笔文. 2019. 基于仰斜钻孔轴向加速度测井的岩性识别与岩体结构分析[J]. 中国金属通报,(10):201-203. doi: 10.3969/j.issn.1672-1667.2019.10.123

    CrossRef Google Scholar

    [27] 尚鲁宁, 潘军, 曹瑞, 周青春, 孔祥淮. 2024.基于重磁数据研究江苏岸外滨海断裂带及邻区构造特征[J]. 华东地质, 45(1): 101-114.

    Google Scholar

    [28] 孙平, 王谦, 王重阳, 刘俊伯, 陈峰, 张建. 2023. 物探方法在采矿坑回填土石与基岩分界面勘探中的应用[J]. 华东地质,44(4):439-447.

    Google Scholar

    [29] 王栎, 陈颙, 于大勇, 胡久鹏, 徐逸鹤, 杨微, 王涛. 2022. 未来城市地下空间探测的关键技术——大陆气枪震源[J]. 地球物理学报,65(12):4750-4759. doi: 10.6038/cjg2022P0782

    CrossRef Google Scholar

    [30] 汪进超, 陶东新, 黄燕庆, 王川婴, 韩增强, 胡胜. 2019. 基于超声波合成孔径技术的钻孔成像方法[J]. 岩土力学,40(S1):557-564.

    Google Scholar

    [31] 汪进超, 王川婴, 杜琦, 罗鹏, 黄俊峰. 2023. 基于光声组合测量的地质钻孔三维可视化研究[J]. 岩石力学与工程学报,42(3):649-660.

    Google Scholar

    [32] 张学亮, 谢涛, 周炜, 高辉, 邓冬, 曲靖祎. 2023. 等值反磁通瞬变电磁和微动勘探在浅部岩溶探测中的应用[J]. 煤田地质与勘探,51(12):157-166. doi: 10.12363/issn.1001-1986.23.05.0287

    CrossRef Google Scholar

    [33] 张鸿, 周权平, 姜月华, 金阳, 陈孜, 贾正阳, 梅世嘉. 2023. 基于浅地层剖面仪的鄱阳湖水下沉积地形探测与分析[J]. 华东地质,44(3):313-322.

    Google Scholar

    [34] 周黎明, 王法刚, 肖国强, 付代光, 罗荣. 2016. 卡里巴电站南岸扩机工程岩体特性综合测井试验[J]. 长江科学院院报,33(12):109-112. doi: 10.11988/ckyyb.20160174

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(54) PDF downloads(10) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint