Citation: | ZHANG Bo, GUO Xiaoying, MENG Tao, JIANG Chao, LIU Peng, CHEN Yong. 2025. Geochemical characteristics of trace elements in the Es4x Formation of the Bonan Sag and their implications for sedimentary environment. East China Geology, 46(1): 55-67. doi: 10.16788/j.hddz.32-1865/P.2023.12.011 |
The Bonan Sag is an important oil and gas-rich region of Bohai Bay basin. In order to clarify the depositional environment and hydrocarbon potential of the hydrocarbon source rocks in the lower subsection of Es4x in the Bonan Sag, and the hydrocarbon potential of the hydrocarbon source rocks of the Es4x, we analyzed the typical mudstone samples of the Es4x in the Bonan Sag by trace element testing and organic geochemical characteristics. Through selecting the elements and element combinations sensitive to the depositional environment, such as δCen, Ceanom, Ni/Co, V/Ni, V/(V+Ni) , V/Cr, B/Ga etc., in combination with the organic geochemical characteristics, this paper clarified the climate, redox environment and salinity during the sedimentary period of the Es4x in the Bonan Sag. The applicability of these parameters in the paleoenvironment study for the working area and the factors affecting the development of source rocks with hydrocarbon generation potential were discussed. The results show that the Lan/Ybn values range from 1.62 to 3.00; B/Ga range from 1.43 to 3.73; the blackish mudstones have Pr/Ph<1, δCen>1, and Ceanom>0, and the reddish mudstones samples have δCen values ranging from 0.94 to 0.96, and Ceanom<0. It indicates a warm and humid climate in some areas during the depositional period of the Es4x in the Bonan Sag, a slow sediment deposition rate, and a freshwater-slightly saline environment of the whole area, while that part of the area was in an anoxic environment, except for the oxygen-rich environment. The results of comparative analysis show that using δCen and Ceanom is reliable to discriminate redox environments, and the relative magnitudes of mudstone Ni/Co, V/Ni, and V/(V+Ni) can infer the anoxicity of environment during their deposition, and the B/Ga ratio can distinguish freshwater-brackish water and brackish water environment. In addition, the mudstone in the study area of the Es4x has a high content of sapropelinite, the kerogen is type II-III; TOC, S1+S2, and chloroform bitumen “A” contents of some mudstones indicate that they have reached the level of general hydrocarbon source rocks. Compared with the non-hydrocarbon source rock in the study area, they have smaller B/Ga and larger ETR index and gammacerane index. This suggests that the development of hydrocarbon-generating potential source rocks in anoxic environments may depend on the salinity of the sedimentary water.
[1] | ALGEO T J, MAYNARD J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology,206(3-4):289-318. doi: 10.1016/j.chemgeo.2003.12.009 |
[2] | BOYNTON W V. 1984. Cosmochemistry of the rare earth elements: meteorite studies[J]. Developments in Geochemistry,2:63-114. |
[3] | CHEN J, WANG H T, LU H Y. 1996. Behaviours of REE and other trace elements during pedological weathering-evidence from chemical leaching of loess and paleosol from the Luochuan section in central China[J]. Acta Geologica Sinica,70(1):61-72 (in Chinese with English abstract). |
[4] | CHEN Y, ZHANG Y, ZHU Z J, ZHANG R G, LI L L, CHEN W, LIU P. 2019. Early sedimentary sequence and petroleum geological significance of faulted Basins: a case study on the lower Es4 in Bonan Sag, Jiyang Depression[J]. China Petroleum Exploration,24(3):313-322 (in Chinese with English abstract). |
[5] | CHENG Y H, JIN R S, CUNEY M, PETROV V A, MIAO P S. 2024. The strata constraint on large scale sandstone-type uranium mineralization in Meso-Cenozoic Basins, northern China[J]. Acta Geologica Sinica,98(7):1953-1976 (in Chinese with English abstract). |
[6] | ELDERFIELD H, GREAVES M J. 1982. The rare earth elements in seawater[J]. Nature,296(5854):214-219. doi: 10.1038/296214a0 |
[7] | ELDERFIELD H, PAGETT R. 1986. Rare earth elements in ichthyoliths: variations with redox conditions and depositional environment[J]. Science of the Total Environment,49:175-197. doi: 10.1016/0048-9697(86)90239-1 |
[8] | FU J M, SHENG G Y, XU J Y, JIA R F, FAN S F, PENG P A, EGLINTON G, GOWAR A P. 1991. Application of biomarker compounds in assess-ment of paleoenvironments of Chinese terrestrial sediments[J]. Geochimica,(1):1-12 (in Chinese with English abstract). |
[9] | GALARRAGA F, REATEGUI K, MARTÏNEZ A, MARTÍNEZ M, LLAMAS J F, MÁRQUEZ G. 2008. V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American Basins[J]. Journal of Petroleum Science and Engineering,61(1):9-14. doi: 10.1016/j.petrol.2007.10.001 |
[10] | HASKIN M A, HASKIN L A. 1966. Rare earths in European shales: a redetermination[J]. Science,154(3748):507-509. doi: 10.1126/science.154.3748.507 |
[11] | HATCH J R, LEVENTHAL J S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A.[J]. Chemical Geology,99(1-3):65-82. doi: 10.1016/0009-2541(92)90031-Y |
[12] | HE H X, XIAO J F, LAN Q, YANG H Y, HUANG M L. 2022. Black mudstone sedimentary environment and shale gas accumulation conditions of lower Silurian Longmaxi Formation in Northern Guizhou Province[J]. Earth and Environment,50(6):898-908 (in Chinese with English abstract). |
[13] | HUANG X Y, GAO M S, HOU G H, ZHANG G, DANG X Z. 2023. Grain size characteristics and environmental response of marine sediments in Laizhou Bay[J]. East China Geology,44(4):402-414 (in Chinese with English abstract). |
[14] | JONES B, MANNING D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,111(1-4):111-129. doi: 10.1016/0009-2541(94)90085-X |
[15] | KONG Q F. 2007. The organic maceral characteristic of Yanchang source rock in Ordos Basin[J]. Xinjiang Petroleum Geology,28(2):163-166 (in Chinese with English abstract). |
[16] | LI C M, ZENG J H, LIU H T, LI H J, LOU D, CUI Y, DONG X Y, LIU S N. 2023. Geochemical characteristics and development mechanism of upper Paleozoic dark mudstone in Huanghua Depression of Bohai Bay Basin, China[J]. Journal of Earth Sciences and Environment,45(2):306-321 (in Chinese with English abstract). |
[17] | LI L, ZHANG P Y, LIANG K K, LI S K, WEI Z F, WANG Y L. 2023. Main controlling factors and models of organic matter enrichment in salt lake facies: a case study of gray mudstone of Lower Youshashan Formation in western Qaidam Basin[J]. Natural Gas Geoscience,34(8):1357-1373 (in Chinese with English abstract). |
[18] | LI S J, XIAO K H, WO Y J, LONG S X, CAI L G. 2008. REE geochemical characteristics and their geological signification in Silurian, West of Hunan Province and North of Guizhou Province[J]. Geoscience,22(2):273-280 (in Chinese with English abstract). |
[19] | LI Z L, JIANG Y L, LIU H. 2008. Effects of Guxi fault on gas migration and accumulation in Gubei buried hill zone[J]. Petroleum Geology and Recovery Efficiency,15(5):24-26 (in Chinese with English abstract). |
[20] | LIU J E. 2014. Petroleum accumulation and depositional features of red beds in the lower Es4 of Bonan Sag, the Jiyang Depression[D]. Wuhan: China University of Geosciences (in Chinese with English abstract). |
[21] | MENG Q T, LIU Z J, HU F, SUN P C, LIU R, ZHOU R J, ZHEN Z. 2013. Geochemical characteristics of Eocene oil shale and its geological significances in Huadian Basin[J]. Journal of Jilin University (Earth Science Edition),43(2):390-399 (in Chinese with English abstract). |
[22] | RIMMER S M. 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology,206(3-4):373-391. doi: 10.1016/j.chemgeo.2003.12.029 |
[23] | SONG G Q, LIU P, LIU Y L. 2014. Diagenesis and reservoir porosity evolution of the lower section of the 4th member of Shahejie Formation in Bonan Sag[J]. Acta Sedimentologica Sinica,32(5):941-948 (in Chinese with English abstract). |
[24] | TANAKA K, AKAGAWA F, YAMAMOTO K, TANI Y, KAWABE I, KAWAI T. 2007. Rare earth element geochemistry of Lake Baikal sediment: its implication for geochemical response to climate change during the last glacial/interglacial transition[J]. Quaternary Science Reviews,26(9-10):1362-1368. doi: 10.1016/j.quascirev.2007.02.004 |
[25] | TIAN D R, WU K, ZHANG R C, PAN W J, WANG X. 2018. Geochemical features and oil-source correlation of crude oils from JZ20 oil field on the northern margin of Liaoxi Uplift, Bohai Bay Basin[J]. Petroleum Geology & Experiment,40(3):410-417 (in Chinese with English abstract). |
[26] | WANG X Y, JIANG Z X. 2021. Geochemical characteristics of trace and rare earth elements in the 3rd Member of Paleocene Funing Formation in Dongtai Depression, North Jiangsu Basin, and their geological significance[J]. Geological Review,67(2):355-366 (in Chinese with English abstract). |
[27] | WANG F, LIU X C, DENG X Q, LI Y H, TIAN J C, LI S X, YOU J X. 2017. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica,35(6):1265-1273 (in Chinese with English abstract). |
[28] | WANG Y J, WANG Y B, WANG Y J, TAN J Y. 2010. Organic petrology of hydrocarbon source rocks from Taizhou Formation in Gaoyou Depression[J]. Natural Gas Geoscience,21(6):1024-1028 (in Chinese with English abstract). |
[29] | WANG Y X, XU S, HAO F, POULTON S W, ZHANG Y Y, GUO T X, LU Y B, BAI N. 2021. Arid climate disturbance and the development of salinized lacustrine oil shale in the Middle Jurassic Dameigou Formation, Qaidam Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110533. |
[30] | WANG Y S, ZHANG S. 2023. Formation mechanism of high-quality reservoirs in deep strata of Paleogene, Bonan Subsag, Zhanhua Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment,45(1):11-19 (in Chinese with English abstract). |
[31] | WEI W, ALGEO T J. 2020. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks[J]. Geochimica et Cosmochimica Acta,287:341-366. doi: 10.1016/j.gca.2019.06.034 |
[32] | XU Q S, WANG Y S, GONG J Q, YUE Y, MENG T, ZHANG S, JIANG C. 2023. The migration of sedimentary center during the Lower Submember of the Fourth Member of Shahejie period in the Bonan Sag[J]. Geological Review,69(S1):301-302 (in Chinese with English abstract). |
[33] | XU Q S, WANG Y S, MA L C, MENG T, BI J F, WANG T Y. 2021. The evolution of paleoclimate during the Lower Submember of the Fourth Member of Shahejie period in the Bonan Sag[J]. Geological Review,67(S1):127-128 (in Chinese with English abstract). |
[34] | YANG Y Y. 2021. Application implications of biomarkers in geochemistry – a case study of tricycloterpene alkane compounds[J]. Inner Mongolia Science Technology & Economy, (19): 88-89, 91 (in Chinese). |
[35] | YANG K, ZHU X M, YANG H Y, ZHU S F, DONG Y L, JIN L, SHEN T T, YE L. 2022. Multi method characterization of a paleo-provenance system: a case study from the lower 4th member of the Shahejie Formation from the Bonan Sag in Zhanhua Depression, Bohai Bay Basin[J]. Acta Sedimentologica Sinica,40(6):1542-1560 (in Chinese with English abstract). |
[36] | YUAN G Y, LI F J. 2023. Geochemical characteristics and geological significance of Paleogene rare earth elements in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience,34(8):1374-1384 (in Chinese with English abstract). |
[37] | ZHANG C C, FANG C G, LIU T, WU T, SHAO W, LIAO S B, XU J L. 2024. Research progress on flood-triggered hyperpycnal flows in sedimentary Basins[J]. East China Geology,45(1):49-61 (in Chinese with English abstract). |
[38] | ZHANG G W, TAO S, TANG D Z, XU Y B, CUI Y, WANG Q. 2017. Geochemical characteristics of trace elements and Rare earth elements in Permian Lucaogou oil shale, Santanghu Basin[J]. Journal of China Coal Society,42(8):2081-2089 (in Chinese with English abstract). |
[39] | ZHAO C J, KANG Z H, HOU Y H, YU X D, WANG E B. 2020. Geochemical characteristics of rare earth elements and their geological significance of Permian Shales in lower Yangtze area[J]. Earth Science,45(11):4118-4127 (in Chinese with English abstract). |
[40] | ZHAO Y Y, LI S Z, LI D, GUO L L, DAI L M, TAO J L. 2019. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia,43(1):141-167 (in Chinese with English abstract). |
[41] | ZHOU W, HAN X, LONG Y, YUE L, XU A Q, CHEN R. 2024. Discussion on the geological features and sedimentary environment of the Early Carboniferous Jiujialu Formation in Jinsha area of central Guizhou[J]. East China Geology,45(2):187-197 (in Chinese with English abstract). |
[42] | ZHU W L, HUANG B J, MI L J, WILKINS R W T, FU N, XIAO X M. 2009. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan Basins, South China Sea[J]. AAPG Bulletin,93(6):741-761. doi: 10.1306/02170908099 |
[43] | 陈骏, 王洪涛, 鹿化煜. 1996. 陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J]. 地质学报,70(1):61-72. |
[44] | 陈阳, 张扬, 朱正杰, 张瑞刚, 李良林, 陈威, 刘鹏. 2019. 济阳坳陷渤南洼陷沙四下亚段沉积序列及石油地质意义[J]. 中国石油勘探,24(3):313-322. doi: 10.3969/j.issn.1672-7703.2019.03.004 |
[45] | 程银行, 金若时, CUNEY M, PETROV V A, 苗培森. 2024. 中国北方盆地大规模铀成矿作用: 地层篇[J]. 地质学报,98(7):1953-1976. |
[46] | 傅家谟, 盛国英, 许家友, 贾蓉芬, 范善发, 彭平安, EGLINTON G, GOWAR A P. 1991. 应用生物标志化合物参数判识古沉积环境[J]. 地球化学,(1):1-12. doi: 10.3321/j.issn:0379-1726.1991.01.001 |
[47] | 何洪茜, 肖加飞, 兰青, 杨海英, 黄明亮. 2022. 黔北下志留统龙马溪组黑色泥岩沉积环境及页岩气成藏条件[J]. 地球与环境,50(6):898-908. |
[48] | 黄学勇, 高茂生, 侯国华, 张戈, 党显璋. 2023. 莱州湾海洋沉积物粒度特征及其环境响应分析[J]. 华东地质,44(4):402-414. |
[49] | 孔庆芬. 2007. 鄂尔多斯盆地延长组烃源岩有机显微组分特征[J]. 新疆石油地质,28(2):163-166. doi: 10.3969/j.issn.1001-3873.2007.02.009 |
[50] | 李传明, 曾溅辉, 刘海涛, 李宏军, 楼达, 崔宇, 董雄英, 刘姝宁. 2023. 渤海湾盆地黄骅坳陷上古生界暗色泥岩地球化学特征及其发育机制[J]. 地球科学与环境学报,45(2):306-321. |
[51] | 李伦, 张鹏远, 梁慨慷, 李尚昆, 魏志福, 王永莉. 2023. 盐湖相有机质富集主控因素与模式——以柴西盆地新近系上新统下油砂山组灰色泥岩为例[J]. 天然气地球科学,34(8):1357-1373. |
[52] | 李双建, 肖开华, 沃玉进, 龙胜祥, 蔡立国. 2008. 湘西、黔北地区志留系稀土元素地球化学特征及其地质意义[J]. 现代地质,22(2):273-280. doi: 10.3969/j.issn.1000-8527.2008.02.014 |
[53] | 李宗亮, 蒋有录, 刘华. 2008. 孤西断层对孤北潜山带天然气运移和聚集的影响[J]. 油气地质与采收率,15(5):24-26. doi: 10.3969/j.issn.1009-9603.2008.05.007 |
[54] | 刘军锷. 2014. 济阳坳陷渤南洼陷沙四下亚段红层沉积特征及其油气富集规律[D]. 武汉: 中国地质大学(武汉). |
[55] | 孟庆涛, 刘招君, 胡菲, 孙平昌, 柳蓉, 周人杰, 甄甄. 2013. 桦甸盆地始新统油页岩稀土元素地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版),43(2):390-399. |
[56] | 宋国奇, 刘鹏, 刘雅利. 2014. 渤南洼陷沙河街组四段下亚段成岩作用与储层孔隙演化[J]. 沉积学报,32(5):941-948. |
[57] | 田德瑞, 吴奎, 张如才, 潘文静, 王鑫. 2018. 渤海湾盆地辽西凸起北段锦州20油田原油地球化学特征及油源对比[J]. 石油实验地质,40(3):410-417. doi: 10.11781/sysydz201803410 |
[58] | 王旭影, 姜在兴. 2021. 苏北东台坳陷古新统阜宁组三段微量、稀土元素地球化学特征及其地质意义[J]. 地质论评,67(2):355-366. |
[59] | 王峰, 刘玄春, 邓秀芹, 李元昊, 田景春, 李士祥, 尤靖茜. 2017. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报,35(6):1265-1273. |
[60] | 王永建, 王延斌, 王言剑, 坛俊影. 2010. 高邮凹陷泰州组烃源岩有机岩石学[J]. 天然气地球科学,21(6):1024-1028. |
[61] | 王永诗, 张顺. 2023. 渤海湾盆地沾化凹陷渤南洼陷古近系深层优质储层形成机制[J]. 石油实验地质,45(1):11-19. doi: 10.11781/sysydz202301011 |
[62] | 徐琦松, 王永诗, 巩建强, 岳宇, 孟涛, 张盛, 姜超. 2023. 渤南洼陷沙四下亚段沉积中心迁移演化规律[J]. 地质论评,69(S1):301-302. |
[63] | 徐琦松, 王永诗, 马立驰, 孟涛, 毕俊凤, 王天宇. 2021. 渤南洼陷沙四下亚段沉积时期古气候演化[J]. 地质论评,67(S1):127-128. |
[64] | 杨岩岩. 2021. 地球化学中生物标志物的应用意义——以三环萜烷化合物为例[J]. 内蒙古科技与经济,(19):88-89,91. |
[65] | 杨棵, 朱筱敏, 杨怀宇, 朱世发, 董艳蕾, 金磊, 申婷婷, 叶蕾. 2022. 古物源体系多方法表征——以渤海湾盆地沾化渤南洼陷沙四下亚段为例[J]. 沉积学报,40(6):1542-1560. |
[66] | 苑广尧, 李凤杰. 2023. 柴达木盆地北缘古近系稀土元素地球化学特征及其地质意义[J]. 天然气地球科学,34(8):1374-1384. |
[67] | 章诚诚, 方朝刚, 刘桃, 吴通, 邵威, 廖圣兵, 徐锦龙. 2024. 沉积盆地洪水异重流研究进展[J]. 华东地质,45(1):49-61. |
[68] | 张国伟, 陶树, 汤达祯, 徐银波, 崔义, 王琼. 2017. 三塘湖盆地二叠系芦草沟组油页岩微量元素和稀土元素地球化学特征[J]. 煤炭学报,42(8):2081-2089. |
[69] | 赵晨君, 康志宏, 侯阳红, 余旭东, 王恩博. 2020. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义[J]. 地球科学,45(11):4118-4127. |
[70] | 赵彦彦, 李三忠, 李达, 郭玲莉, 戴黎明, 陶建丽. 2019. 碳酸盐(岩)的稀土元素特征及其古环境指示意义[J]. 大地构造与成矿学,43(1):141-167. |
[71] | 周武, 韩雪, 龙宇, 岳龙, 徐安全, 陈仁. 2024. 黔中金沙地区早石炭世九架炉组地质特征及沉积环境讨论[J]. 华东地质,45(2):187-197. |
Tectonic setting of the Bonan Sag (a) and tectonic map of the top of the Es4x Formation (b) (Sourced from Shengli Oilfield)
REE patterns of mudstone in the Es4x from Bonan Sag
Correlation of δCeN-δEuN(a), δCeN-ΣREE(b)and δCeN-(La/Sm)N(c)of mudstone in Es4x from Bonan Sag
Correlation between the content of Ni and Co (a), the content of V and Ni (b) of mudstone in the Es4x from Bonan Sag
Correlation of Ceanom with Ni /Co (a), V/Ni (b), V/(V+Ni) (c), V/Cr (d) of mudstone in the Es4x from Bonan Sag
Correlation of B with Ga of mudstone in the Es4x from Bonan Sag
Relationship between HI and Tmax of mudstone in the Es4x of Bonan Sag (after Zhu et al., 2009)