2024 Vol. 43, No. 12
Article Contents

FU Junyu, YANG Xiaoping, CUI Dandan, YANG Hao, NA Fuchao, PANG Xuejiao, SUN Wei. 2024. Identification and tectonic setting of Early Paleozoic ophiolite in Wolihe, northern part of Greater Khingan Mountains. Geological Bulletin of China, 43(12): 2219-2236. doi: 10.12097/gbc.2024.05.031
Citation: FU Junyu, YANG Xiaoping, CUI Dandan, YANG Hao, NA Fuchao, PANG Xuejiao, SUN Wei. 2024. Identification and tectonic setting of Early Paleozoic ophiolite in Wolihe, northern part of Greater Khingan Mountains. Geological Bulletin of China, 43(12): 2219-2236. doi: 10.12097/gbc.2024.05.031

Identification and tectonic setting of Early Paleozoic ophiolite in Wolihe, northern part of Greater Khingan Mountains

More Information
  • A set of mafic−ultramafic rocks emerged from the Early Paleozoic volcano−sedimentary strata in the Wolihe of Duobaoshan area, northern part of the Greater Khingan Mountains, whose formation age and structural properties are still unclear.In this paper, petrology, petrogeochemistry and zircon U−Pb (LA−MC−ICP−MS) chronology are used to systematically study the set of mafic−ultramafic rocks.The results show that the mafic−ultramafic rocks include serpentinite, serpentinized pyroxene peridotite, altered gabbro, hornblende gabbro, basaltic andesite and pillow basalt, which have the characteristics of ophiolite combination; The first two are mantle rocks, gabbro has the characteristics of cumulates, basalt andesite is equivalent to basic dike, pillow basalt is submarine extruded rock; They are distributed in the matrix of Early Paleozoic stratified pyroclastic rock and clastic sedimentary rock, and together constitute a set of ophiolitic mellitic rocks.Among them, mafic rocks belong to the calc−alkaline series,ultramafic rocks and mafic rocks are rich in large ion lithophile elements Ba, K, Sr, and depleted in high field strength elements Nb, P, Ti and Th, which have the characteristics of active continental margin arc volcanic rocks.The formation age of basalt andesite in the upper unit of ophiolite is 447 Ma.In summary, it is considered that the ophiolite belongs to suprasubduction zone type ophiolite (SSZ), which formed in the tectonic setting of the arc back basin. The youngest geological body of the ophiolite tectonic emplacement is the Early to Middle Ordovician, and it is speculated that the ophiolite tectonic emplacement is located at the end of the late Ordovician, it is inferred that the ophiolite tectonic emplacement was at the end of the Late Ordovician.

  • 加载中
  • [1] Bao Z W, Chen S H, Zhang Z T. 1994. Study on REE and Sm−Nd isotopes of Hegenshan Ophiolite, Inner Mongolia[J]. Geochimica, 23(4): 340−349(in Chinese with English abstract).

    Google Scholar

    [2] Coleman R G. Translated by Bao P S. 1982. Ophiolite [M]. Beijing: Geological Publishing House: 29−64/ (in Chinese).

    Google Scholar

    [3] Condie K C. 1976. Plate tectonics and crustal evolution[M]. London: Pergamon Press: 1−288.

    Google Scholar

    [4] Cui G, Wang J Y, Zhang J X, et al. 2008. U−Pb SHRIMP dating of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance[J]. Global Geology, 27(4): 386−394(in Chinese with English abstract).

    Google Scholar

    [5] Deng J H, Luo Z H, Shu S G, et al. 2004. Petrogenesis, tectonic environment and mineralization[M]. Beijing: Geological Publishing House: 11−21(in Chinese).

    Google Scholar

    [6] Dilek Y. 2003. Ophiolite concept and its evolution[J]. Geological Society of America, Special Paper, 373: 1−16.

    Google Scholar

    [7] Dilek Y, Furnes H, Shallo M. 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana[J]. Gondwana Research, 11: 453−475. doi: 10.1016/j.gr.2007.01.005

    CrossRef Google Scholar

    [8] Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemicaland tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 123: 387−411. doi: 10.1130/B30446.1

    CrossRef Google Scholar

    [9] Du B Y, Feng Z Q, Liu Y W, et al. 2017. Determination of Neoproterozoic meta−gabbro from Huanerku, Da Hinggan mountains and its geological significance[J]. Global Geology, 36(3): 751−762(in Chinese with English abstract).

    Google Scholar

    [10] Feng Z Q, Liu Y J, Li Y R, et al. 2017. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China[J]. Journal of Asian Earth Sciences, 144: 5−21. doi: 10.1016/j.jseaes.2016.12.006

    CrossRef Google Scholar

    [11] Feng Z Q, LiuY J, Jin W, et al. 2019. Spatiotemporal distribution of ophiolites in the northern Great Xingan Range and its relationship with the geotectonic evolution of NE China[J]. Earth Science Frontiers, 26(2): 120−136(in Chinese with English abstract).

    Google Scholar

    [12] Fu J Y, Wang Y, Na F C, et al. 2015. Zircon U−Pb geochronology and geochemistry of the Hadayang mafic−ultramafic rocks in Inner Mongolia: Constraints on the Late Devonian subduction of Nenjiang−Heihe area, Northeast China[J]. Geology in China, 42(6): 1740−1753(in Chinese with English abstract).

    Google Scholar

    [13] Fu J Y, Zhu Q, Yang Y J, et al. 2019. Geological Map of the People's Republic of China (Northeast) (1∶1 500 000)[M]. Beijing: Geology Press: 105−143(in Chinese).

    Google Scholar

    [14] Fu J Y, Na F C, Qiang C, et al. 2023. Chronology and tectonic setting of the Luomahu rock group in the Woduhe area, northwest of Lesser Hinggan mountains[J]. Geology and Resources, 32(1): 1−13 (in Chinese with English abstract).

    Google Scholar

    [15] Ge W C, Wu F Y, Zhou C Y, et al. 2007. Porphyry Cu−Mo deposits in the eastern Xing'an−Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications[J]. Chinese Science Bulletin, 52(24): 3416−3427. doi: 10.1007/s11434-007-0466-8

    CrossRef Google Scholar

    [16] Hao Y J, Ren Y S, Duan M X, et al. 2015. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China[J]. Journal of Asian Earth Sciences, 97: 442−458. doi: 10.1016/j.jseaes.2014.08.007

    CrossRef Google Scholar

    [17] Huang Y W, Liu Y, Wang X C, et al. 2009. Petrological features and tectonic significance of the Ordovician in Duobaoshan ore district, northern Heilongjiang[J]. Chinese Journal of Geology, 44(1): 245−256(in Chinese with English abstract).

    Google Scholar

    [18] Jian P, Kröner A, Windley B F, et al. 2010. Zircon ages of the Bayankhongor ophiolite mélange and associated rocks: Time constraints on Neoproterozoic to Cambrian accretionary and collisional orogenesis in Central Mongolia[J]. Precambrian Research, 177: 162−180. doi: 10.1016/j.precamres.2009.11.009

    CrossRef Google Scholar

    [19] Jian P, Kröner A, Windley B F, et al. 2012. Carboniferous and Cretaceous mafic–ultramafic massifs in Inner Mongolia (China): A SHRIMP zircon and geochemical study of the previously presumed integral “Hegenshan ophiolite”[J]. Lithos, 142/143: 48−66. doi: 10.1016/j.lithos.2012.03.007

    CrossRef Google Scholar

    [20] Li C N. 1992. Petrology of trace elements in igneous rocks[M]. Wuhan: China University of Geosciences Press: 104−118(in Chinese).

    Google Scholar

    [21] Li H K, Geng J Z, Hao S A, et al. 2009. Using laser ablation multiple receivers plasma mass spectrometer (LA−MC−ICPMS) determination of zircon U−Pb isotope age[J]. Acta Mineralogica Sinica, 29(S1): 600−601(in Chinese with English abstract).

    Google Scholar

    [22] Li H Y, Zhou Z G, Li P G, et al. 2016. Geochemical features and significance of Late Ordovician Gabbros in East Ujimqin Banner, Inner Mongolia[J]. Geological Review, 62(2): 300−316(in Chinese with English abstract).

    Google Scholar

    [23] Li Y, Xu W L, Wang F, et al. 2017. Early−Middle Ordovician volcanism along the eastern margin of the Xing’an Massif, Northeast China: Constraints on the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs[J]. International Geology Review, 2017: 1−17.

    Google Scholar

    [24] Li Y. 2016. The study of the main rock and typical deposits in the North of Duobaoshan district, Heilongjiang Province[D]. Master's Thesis of China University of Geosciences(Beijing) (in Chinese with English abstract).

    Google Scholar

    [25] Lin M, Ma C Q, Xu L M, et al. 2019. Geological characteristics of subduction−accretionary complexes in Hellestein district, Inner Mongolia and its discovery significance[J]. Earth Science, 44(10): 3279−3296 (in Chinese with English abstract).

    Google Scholar

    [26] Lin M. 2022. The compositional and structural characteristics of the subduction−accretion melange belt in Hailesitai, Inner Mongolia[D]. PhD Dissertation of China University of Geosciences(Wuhan) (in Chinese with English abstract).

    Google Scholar

    [27] Liu J F, Sun W D, Sun Y, et al. 2008. Geochemistry and Platinum−group Elements of Ultramafic Rocks from the Songshugou Area in the Eastern Qinling: Constraints on Petrogenesis[J]. Geological Review, 54(1): 57−64(in Chinese with English abstract).

    Google Scholar

    [28] Liu J F, Li J Y, Zhao S, et al. 2023. A late Neoproterozoic to early Paleozoic accretionary orogenic belt in the eastern Central Asian orogenic Belt: Evidence from the Irshi ophiolite m´elange in the middle segment of the Great Xing’an Range[J]. Journal of Asian Earth Sciences, (251): 105657.

    Google Scholar

    [29] Liu J, Zhou Z H, He Z F, et al. 2015. Zircon U−Pb dating and geochemistry of ore−bearing tonalite in Tongshan copper deposit, Heilongjiang Province[J]. Mineral Deposits, 34(2): 289−308(in Chinese with English abstract).

    Google Scholar

    [30] Liu Y J, Feng Z Q, Jiang L W, et al. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047 (in Chinese with English abstract).

    Google Scholar

    [31] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−MC−ICP−MS without applying an internal standard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [32] Ludwig, K. R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, California.

    Google Scholar

    [33] Ma Q, Liu J F, Chi X G. 2018. Petrogeochemistry of the Late Ordovician quartzdiorite in Zhalantun area of Da Hinggan Mountains and its geological significance[J]. Geological Bulletin of China, 37(5): 853−862(in Chinese with English abstract).

    Google Scholar

    [34] Miao L C, Fan W M, Liu D Y, et al. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late− stage tectonic evolution of the Inner Mongolia− Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 32(5): 348−370.

    Google Scholar

    [35] Miao L C, Zhang F Q, Jiao S J. 2015. Age, protoliths and tectonic implications of the Toudaoqiao blueschist Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 105: 360−373. doi: 10.1016/j.jseaes.2015.01.028

    CrossRef Google Scholar

    [36] Na F C, Fu J Y, Wang Y, et al. 2014. LA−ICP−MS zircon U−Pb age of the chlorite−muscovite tectonic schist in Hadayang, Morin Dawa Banner, Iner Mongolia, and its tectonic significance[J]. Geological Bulletin of China, 33(9): 1326−1332(in Chinese with English abstract).

    Google Scholar

    [37] Na F C, Wu Y, Song W M, et al. 2022. Geochronology, petrogenesis, and tectonic implications of Early Paleozoic intermediate−basic complex of East Ujimqin Banner area[J]. Acta Petrologica Sinica, 38(9): 2762−2780(in Chinese with English abstract).

    Google Scholar

    [38] Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 39(1): 1−28 (in Chinese with English abstract).

    Google Scholar

    [39] Pearce J A. 1982. Trace element characteristics of lava from destructive plate boundaries[C]//Thorpe R S. Andesites: orogenic andesites and related rocks. New York: John Willey and Suns: 525−548.

    Google Scholar

    [40] Pearce J A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiohte classification and the search for Archean oceanic crust[J]. Lithos, 100: 14−48. doi: 10.1016/j.lithos.2007.06.016

    CrossRef Google Scholar

    [41] Qin T, Guo R R, ZangY Q, et al. 2019. Recognition of Early Paleozoic magmatisms in the supposed Proterozoic basements of Zhalantun, Great Xing’an Range, NE China[J]. Acta Geologica Sinica (English Edition), 93(5): 1434−1455. doi: 10.1111/1755-6724.14359

    CrossRef Google Scholar

    [42] Robinson P T, Bai W J, Yang J S, et al. 1995. Geochemical constraints on petrogenesis and crustal accretion of the Hegenshan Ophiolite, Northern China[J]. Acta Petrologica Sinica, 11(Supp): 112−124(in Chinese with English abstract).

    Google Scholar

    [43] Shao X F. 2018. Geochemical characteristics and geological significance of the Ordovician Duobaoshan Formation located in Dula’er Bridge in Inner Mongolia[J]. Jilin Geology, 37(4): 21−28(in Chinese with English abstract).

    Google Scholar

    [44] Shervais J W. 1982. Ti−V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 59(1): 101−118. doi: 10.1016/0012-821X(82)90120-0

    CrossRef Google Scholar

    [45] Shu G L, Li Z M, Lv J C, et al. 2019. Structural evolution and optimization of prospecting target area in Arong Banner area, east margin of Greater Khingan Mountains[M]. Wuhan: China University of Geosciences Press(in Chinese).

    Google Scholar

    [46] Wang L M. 2015. Geochemistry of the Ordovician vocanic rocks in Aershan, Inner Mongolia and its tectonic significance[D]. Master Thesis of Jilin University(in Chinese with English abstract).

    Google Scholar

    [47] Wang Y, Fu J Y, Yang F, et al. 2015. Contraction and extension in Nenjiang−Heihe tectonic belt: Evidence from the Late Paleozoic granitoid geochemistry[J]. Journal of Jilin University: Earth Science Edition, 45(2): 374−388(in Chinese with English abstract).

    Google Scholar

    [48] Wang Z G, Yu X Y, Zhao Z H, et al. 1989. Rare Earth Element Geochemistry [M]. Beijing: Science Press: 165−182(in Chinese).

    Google Scholar

    [49] Wu G, Chen Y C, Sun F Y, et al. 2015. Geochronology, geochemistry, and Sr−Nd−Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance[J]. Journal of Asian Earth Sciences, 97: 229−250. doi: 10.1016/j.jseaes.2014.07.031

    CrossRef Google Scholar

    [50] Wu Y B, Zheng Y F. 2004. Zircon genetic mineralogy research and interpretation of U−Pb age restriction[J]. Chinese Science Bulletin, 49(16): 1589−1604(in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    [51] Xiang A P, Yang Y C, Li G T, et al. 2012. Diagenetic and metallogenic ages of Duobaoshan porphyry Cu−Mo deposit in Heilongjiang Province[J]. Mineral Deposits, 31(6): 1237−1248(in Chinese with English abstract).

    Google Scholar

    [52] Yang Y S, Lv X B, Gao R Z, et al. 2016. Geochronology, Geochemistry and Geological Significance of the Tonalite Porphyry in Zhengguang gold deposit, Heilongjiang Province[J]. Geotectonica et Metallogenia, 40(4): 674−700(in Chinese with English abstract).

    Google Scholar

    [53] Yang Z L, Wang S Q, Hu X J, et al. 2018. Geochronology and geochemistry of Early Paleozoic gabbroic diorites in East Ujimqin Banner of Inner Mongolia and their geological significance[J]. Acta Petrologica et Mineralogica, 37(3): 349−365(in Chinese with English abstract).

    Google Scholar

    [54] Yang Z L, Hu X J, Wang S Q, et al. 2020. Geochronology, geochemistry and geological significance of Early Paleozoic volcanic rocks in northern East Ujimqin Banner, Inner Mongolia[J]. Acta Petrologica Sinica, 36(4): 1107−1126(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.04.09

    CrossRef Google Scholar

    [55] Yu J J, Xu Z G, Xu F S. 1996. Tectonic setting of Ordovician volcanic rocks in northwestern Xiaoxinganling, Heilongjiang Province[J]. Acta Geoscientia Sinica, 17(1): 54−64 (in Chinese with English abstract).

    Google Scholar

    [56] Zeng Q D, Liu J M, Chu S X, et al. 2014. Re−Os and U−Pb geochronology of the Duobaoshan porphyry Cu−Mo−(Au)deposit, northeast China, and its geological significance[J]. Journal of Asian Earth Sciences, 79: 895−909. doi: 10.1016/j.jseaes.2013.02.007

    CrossRef Google Scholar

    [57] Zhang J, Deng J F, Xiao Q H, et al. 2012. New advances in the study of ophiolites[J]. Geological Bulletin of China, 31(1): 1−12(in Chinese with English abstract).

    Google Scholar

    [58] Zhang Q. 1990. Classification of ophiolites[J]. Scientia Geologica Sinica, 25(1): 54−61.

    Google Scholar

    [59] Zhang Q, Qian Q, Wang Y. 2000. Rock Assemblages of Ophiolites and Magmatism beneath Oceanic Ridges[J]. Acta Petrologica et Mineralogica, 19(1): 1−7(in Chinese with English abstract).

    Google Scholar

    [60] Zhang Q. 2014. Classifications of mafic−ultrafic rockes and their tectonics significance[J]. Chines Journal of Geology, 49(3): 982−1017(in Chinese with English abstract).

    Google Scholar

    [61] Zhao C, Qin K Z, Song G X, et al. 2018. Petrogenesis and tectonic setting of ore−related porphyry in the Duobaoshan Cu deposit within the eastern Central Asian Orogenic Belt, Heilongjiang Province, NE China[J]. Journal of Asian Earth Sciences, 165: 352−370. doi: 10.1016/j.jseaes.2018.07.002

    CrossRef Google Scholar

    [62] Zhao C, Qin K Z, Song G X, et al. 2019. Early Palaeozoic high−Mg basalt−andesite suite in the Duobaoshan Porphyry Cu deposit, NE China: Constraints on petrogenesis, mineralization, and tectonic setting[J]. Gondwana Research, 71: 91−116. doi: 10.1016/j.gr.2019.01.015

    CrossRef Google Scholar

    [63] Zhao H L, Zhu C Y, Liu H Y, et al. 2012. Zircon SHRIMP U−Pb dating and its tectonic implications of the granodiorite in Duobaoshan copper deposit, Heilongjiang Province[J]. Geology and Resources, 21(5): 421−424 (in Chinese with English abstract).

    Google Scholar

    [64] Zhao Z, Chi X G, Pan S Y, et al. 2010. Zircon U−Pb LA−ICP−MS dating of Carboniferous volcanics and its geological significance in the northwestern Lesser Xing' an Range[J]. Acta Petrologica Sinica, 26(8): 2452−2464(in Chinese with English abstract).

    Google Scholar

    [65] Zhou G Q. 2008. Ophiolite: Some key aspects regarding its definition and classification[J]. Journal of Nanjing University (Natural Sciences), 44(1): 1−24(in Chinese with English abstract).

    Google Scholar

    [66] Zhou J B, Wang B, Wilde S A, et al. 2015. Geochemistry and U−Pb zircon dating of the Toudaoqiao blueschists in the Great Xing'an Range, northeast China, and tectonic implications[J]. Journal of Asian Earth Sciences, 97: 197−210. doi: 10.1016/j.jseaes.2014.07.011

    CrossRef Google Scholar

    [67] Zhou Z G, Liu C F, Wang G S, et al. 2018. Geochronology, geochemistry and tectonic significance of the Dashizhai ophiolitic mélange belt, southeastern Xing'an-Mongolia orogenic belt[J]. International Journal of Earth Sciences, https://doi.org/10.1007/s00531-018-1642-6.

    Google Scholar

    [68] Zong K Q, Wang D B, Hu Z C, et al. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537−571.

    Google Scholar

    [69] Colemam R G. 鲍佩声译. 1982. 蛇绿岩[M]. 北京: 地质出版社: 29−64.

    Google Scholar

    [70] Robinson P T, 白文吉, 杨经绥, 等. 1995. 内蒙古贺根山蛇绿岩岩石成因和地壳增生的地球化学制约[J]. 岩石学报, 11(Supp): 112−124.

    Google Scholar

    [71] 包志伟, 陈森皇, 张桢堂. 1994. 内蒙古贺根山地区蛇绿岩稀土元素和Sm−Nd同位素研究[J]. 地球化学, 23(4): 340−349. doi: 10.3321/j.issn:0379-1726.1994.04.004

    CrossRef Google Scholar

    [72] 崔根, 王金益, 张景仙, 等. 2008. 黑龙江多宝山花岗闪长岩的锆石SHRIMP U−Pb年龄及其地质意义[J]. 世界地质, 27(4): 386−394. doi: 10.3969/j.issn.1004-5589.2008.04.006

    CrossRef Google Scholar

    [73] 邓晋福, 罗照华, 苏尚国, 等. 2004. 岩石成因\构造环境与矿矿作用[M]. 北京: 地质出版社: 11−21.

    Google Scholar

    [74] 杜兵盈, 冯志强, 刘宇崴, 等. 2017. 大兴安岭环二库新元古代变质辉长岩的厘定及其地质意义[J]. 世界地质, 36(3): 751−762. doi: 10.3969/j.issn.1004-5589.2017.03.010

    CrossRef Google Scholar

    [75] 冯志强, 刘永江, 金巍, 等. 2019. 东北大兴安岭北段蛇绿岩的时空分布及与区域构造演化关系的研究[J]. 地学前缘, 26(2): 120−136.

    Google Scholar

    [76] 付俊彧, 那福超, 钱程, 等. 2023. 小兴安岭西北部卧都河地区落马湖岩群年代学及构造背景[J]. 地质与资源, 32(1): 1−13. doi: 10.3969/j.issn.1671-1947.2013.01.001

    CrossRef Google Scholar

    [77] 付俊彧, 汪岩, 那福超, 等. 2015. 内蒙古哈达阳镁铁—超镁铁质岩锆石U−Pb 年代学及地球化学特征: 对嫩江—黑河地区晚泥盆世俯冲背景的制约[J]. 中国地质, 42(6): 1740−1753.

    Google Scholar

    [78] 付俊彧, 朱群, 杨雅军, 等. 2019. 中华人民共和国地质图(东北)(1∶ 1500000 )说明书[M]. 北京: 地质出版社: 105−143.

    Google Scholar

    [79] 黑龙江省地质调查研究院. 2009. 卧都河幅-黑河市幅1∶25万区域地质调查报告[R].

    Google Scholar

    [80] 黄永卫, 刘扬, 王喜臣, 等. 2009. 黑龙江北部多宝山矿区奥陶系的岩石特征和构造意义[J]. 地质科学, 44(1): 245−256. doi: 10.3321/j.issn:0563-5020.2009.01.019

    CrossRef Google Scholar

    [81] 李昌年. 1992. 火成岩微量元素岩石学[M]. 武汉: 中国地质大学出版社: 104−118.

    Google Scholar

    [82] 李红英, 周志广, 李鹏举, 等. 2016. 内蒙古东乌珠穆沁旗晚奥陶世辉长闪长岩地球化学特征及其地质意义[J]. 地质论评, 62(2): 300−316.

    Google Scholar

    [83] 李怀坤, 耿建珍, 郝爽, 等. 2009. 用激光烧蚀多接收器等离子体质谱仪(LA−MC−ICP−MS)测定锆石U−Pb同位素年龄的研究[J]. 矿物学报, 29(S1): 600−601.

    Google Scholar

    [84] 李运. 2016. 黑龙江多宝山矿集区北部主要岩体与典型矿床研究[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [85] 林敏, 马昌前, 徐立明, 等. 2019. 内蒙古海勒斯台俯冲增生混杂岩地质特征及发现的意义[J]. 地球科学, 44(10): 3279−3296.

    Google Scholar

    [86] 林敏. 2022. 内蒙古海勒斯台俯冲增生混杂岩带的物质组成及构造特征[D]. 中国地质大学(武汉)博士学位论文.

    Google Scholar

    [87] 刘军, 周振华, 何哲峰, 等. 2015. 黑龙江省铜山铜矿床英云闪长岩锆石U−Pb 年龄及地球化学特征[J]. 矿床地质, 34(2): 289−308.

    Google Scholar

    [88] 刘军锋, 孙卫东, 孙勇, 等. 2008. 东秦岭松树沟超镁铁质岩体地球化学和铂族元素特征: 对成因的指示[J]. 地质论评, 54(1): 57−64. doi: 10.3321/j.issn:0371-5736.2008.01.007

    CrossRef Google Scholar

    [89] 刘永江, 冯志强, 蒋立伟, 等. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047.

    Google Scholar

    [90] 马庆, 刘建峰, 迟效国. 2018. 大兴安岭扎兰屯地区晚奥陶世石英闪长岩体岩石地球化学特征及其地质意义[J]. 地质通报, 37(5): 853−862.

    Google Scholar

    [91] 那福超, 付俊彧, 汪岩, 等. 2014. 内蒙古莫力达瓦旗哈达阳绿泥石白云母构造片岩LA−ICP−MS 锆石U−Pb 年龄及其地质意义[J]. 地质通报, 33(9): 1326−1332. doi: 10.3969/j.issn.1671-2552.2014.09.007

    CrossRef Google Scholar

    [92] 那福超, 伍月, 宋维民, 等. 2022. 东乌旗地区早古生代中-基性杂岩锆石U−Pb 年代学及地球化学特征[J]. 岩石学报, 38(9): 2762−2780. doi: 10.18654/1000.0569/2022.09.15

    CrossRef Google Scholar

    [93] 潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001

    CrossRef Google Scholar

    [94] 邵学峰. 2018. 内蒙古杜拉尔桥地区奥陶系多宝山组地球化学特征及其地质意义[J]. 吉林地质, 37(4): 21−28. doi: 10.3969/j.issn.1001-2427.2018.04.004

    CrossRef Google Scholar

    [95] 沈阳地质调查中心. 2021. 内蒙古1∶5万阿荣旗幅等四幅区域地质调查报告[R].

    Google Scholar

    [96] 舒广龙, 李伫民, 吕俊超, 等. 2019. 大兴安岭东缘阿荣旗地区构造演化及找矿靶区优选[M]. 武汉: 中国地质大学出版社.

    Google Scholar

    [97] 汪岩, 付俊彧, 杨帆, 等. 2015. 嫩江-黑河构造带收缩与伸展——源自晚古生代花岗岩类的地球化学证据[J]. 吉林大学学报(地球科学版), 45(2): 374−388.

    Google Scholar

    [98] 王利民. 2015. 内蒙古阿尔山地区奥陶纪火山岩地球化学特征及其构造意义[D]. 吉林大学硕士学位论文.

    Google Scholar

    [99] 王中刚, 于学元, 赵振华, 等. 1989. 稀土元素地球化学[M]. 北京: 科学出版社: 165−182.

    Google Scholar

    [100] 吴元保, 郑永飞. 2004. 锆石成因矿物研究及其对U−Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

    [101] 向安平, 杨郧城, 李贵涛, 等. 2012. 黑龙江多宝山斑岩Cu−Mo 矿床成岩成矿时代研究[J]. 矿床地质, 31(6): 1237−1248. doi: 10.3969/j.issn.0258-7106.2012.06.009

    CrossRef Google Scholar

    [102] 杨永胜, 吕新彪, 高荣臻, 等. 2016. 黑龙江争光金矿床英云闪长斑岩年代学、地球化学及地质意义[J]. 大地构造与成矿学, 40(4): 674−700.

    Google Scholar

    [103] 杨泽黎, 王树庆, 胡晓佳, 等. 2018. 内蒙古东乌珠穆沁旗早古生代辉长闪长岩年代学和地球化学特征及地质意义[J]. 岩石矿物学杂志, 37(3): 349−365. doi: 10.3969/j.issn.1000-6524.2018.03.001

    CrossRef Google Scholar

    [104] 杨泽黎, 胡晓佳, 王树庆, 等. 2020. 内蒙古东乌旗北部早古生代火山岩年代学、地球化学特征及地质意义[J]. 岩石学报, 36(4): 1107−1126. doi: 10.18654/2095-8927/009

    CrossRef Google Scholar

    [105] 余金杰, 徐志刚, 徐凤山. 1996. 小兴安岭西北部奥陶系火山岩形成环境[J]. 地球学报, 17(1): 54−64.

    Google Scholar

    [106] 张进, 邓晋福, 肖庆辉, 等. 2012. 蛇绿岩研究的最新进展[J]. 地质通报, 31(1): 1−12. doi: 10.3969/j.issn.1671-2552.2012.01.001

    CrossRef Google Scholar

    [107] 张旗, 钱青, 王焰. 2000. 蛇绿岩岩石组合及洋脊下岩浆作用[J]. 岩石矿物学杂志, 19(1): 1−7. doi: 10.3969/j.issn.1000-6524.2000.01.001

    CrossRef Google Scholar

    [108] 张旗. 2014. 镁铁-超镁铁岩的分类及其构造意义[J]. 地质科学, 49(3): 982−1017. doi: 10.3969/j.issn.0563-5020.2014.03.022

    CrossRef Google Scholar

    [109] 赵焕利, 朱春艳, 刘海洋, 等. 2012. 黑龙江多宝山铜矿床中花岗闪长岩锆石SHRIMP U−Pb 测年及其构造意义[J]. 地质与资源, 21(5): 421−424. doi: 10.3969/j.issn.1671-1947.2012.05.001

    CrossRef Google Scholar

    [110] 赵芝, 迟效国, 潘世语, 等. 2010. 小兴安岭西北部石炭纪地层火山岩的锆石LA−ICP−MS U−Pb年代学及其地质意义[J]. 岩石学报, 26(8): 2452−2464.

    Google Scholar

    [111] 周国庆. 2008. 蛇绿岩研究新进展及其定义和分类的再讨论[J]. 南京大学学报(自然科学), 44(1): 1−24.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(333) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint