Citation: | WU Lingfang, ZHAI Qingguo, HU Peiyuan, TANG Yue, LIU Yiming, LI Jinyong, YANG Ning. 2024. Petrogenesis of the Dongfeng granite and its dioritic enclave: Implications for the Triassic magmatism in the Songpan−Ganzi Orogenic Belt. Geological Bulletin of China, 43(12): 2237-2255. doi: 10.12097/gbc.2024.08.017 |
The Songpan−Ganzi Orogenic Belt has emerged as a prominent Li−polymetallic metallogenic belt in China, characterized by polymetallic mineralization intricately associated with granitic magmatism during the Late Triassic to Early Jurassic period. The complicated magma evolution has resulted in the geochemical diversity of these granites. Enclaves play an important role in the formation of granite. However, it is still enigmatic about the role played by enclaves in the formation of granite within the Songpan−Ganzi Orogenic Belt, as well as their contribution to Li in the magmatic system. The Dongfeng pluton, located in the eastern part of the Songpan−Ganzi Orogenic Belt, is a typical granitoid that contains numerous enclaves. Zircon U−Pb dating yielded crystallization ages of 211.8 ± 1.0 Ma for the biotite granite and 210.5 ± 1.1 Ma for the dioritic enclave. The biotite granite is characterized by high−Si and prealuminous, alongside low Rb content, Rb/Sr and Rb/Ba ratios. Furthermore, it displays negative zircon εHf(t) values ranging from −10.2 to −5.9, notably high (87Sr/86Sr)i ratios between 0.7117 and 0.7118, and negative εNd(t) values of −9.7 to −9.3. These features suggest that the parental magma derived from the partial melting of meta−sediments within the upper to middle crust. These dioritic enclaves display high concentrations of Mg, Ca, Cr and Ni, and relatively slightly depleted zircon Hf isotopes (εHf(t) = −9.6 to −1.3) and whole−rock Nd isotopes (εNd(t) = −9.5 to −8.8), as well as lower radiogenic Sr isotopes ((87Sr/86Sr)i = 0.7108~0.7113). This indicates a lower crustal source that had undergone modifications by asthenospheric mantle materials. The pronounced variations in An values from core to rim of the plagioclase phenocrysts from the biotite granite and dioritic enclaves provides compelling evidence for mixing process involving felsic and mafic magmas. The dioritic enclaves exhibit a low Li content (26×10−6~52×10−6), reflecting that the lithium deposits in the Songpan−Ganzi Orogenic Belt are not contributed by the lower crust or deeper mantle materials.
[1] | Ballouard C, Poujol M, Boulvais P, et al. 2016. Nb–Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 44(3): 231−234. |
[2] | Bennett E N, Lissenberg C J, Cashman K V. 2019. The significance of plagioclase textures in mid−ocean ridge basalt (Gakkel Ridge, Arctic Ocean)[J]. Contributions to Mineralogy and Petrology, 174: 1−22. |
[3] | Blundy J, Cashman K, Humphreys M. 2006. Magma heating by decompression−driven crystallization beneath andesite volcanoes[J]. Nature, 443(7107): 76−80. doi: 10.1038/nature05100 |
[4] | Cai H M, Zhang H F, Xu W C, et al. 2010. Petrogenesis of Indosinian volcanic rocks in Songpan−Garzê fold belt of the northeastern Tibetan Plateau: New evidence for lithospheric delamination[J]. Science China Earth Sciences, 53: 1316−1328. doi: 10.1007/s11430-010-4033-9 |
[5] | Chappell B W, White A J R. 1992. I− and S−type granites in the Lachlan Fold Belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 1−26. |
[6] | Chappell B W, Wyborn D. 2012. Origin of enclaves in S−type granites of the Lachlan Fold Belt[J]. Lithos, 154: 235−247. doi: 10.1016/j.lithos.2012.07.012 |
[7] | Chen M, Wang Y H, G Q, et al. 2023. Discovery of Late Triassic basic rocks in the Xiacangjie area of Songpan-Ganzi terrane and its geological significance[J]. Acta Petrologica et Mineralogica, 42(1): 1−12 (in Chinese). |
[8] | Cheng Y B, Spandler C, Mao J, et al. 2012. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: A case of two−stage mixing of crust−and mantle−derived magmas[J]. Contributions to Mineralogy and Petrology, 164: 659−676. doi: 10.1007/s00410-012-0766-0 |
[9] | Dai H Z, Wang D H, Liu L J, et al. 2019. Geochronology and geochemistry of Li (Be)−bearing granitic pegmatites from the Jiajika superlarge Li−polymetallic deposit in Western Sichuan, China[J]. Journal of Earth Science, 30: 707−727. doi: 10.1007/s12583-019-1011-9 |
[10] | Davidson J P, Tepley III F J. 1997. Recharge in volcanic systems: Evidence from isotope profiles of phenocrysts[J]. Science, 275(5301): 826−829. doi: 10.1126/science.275.5301.826 |
[11] | De Sigoyer J, Vanderhaeghe O, Duchêne S, et al. 2014. Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary−orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan plateau, China[J]. Journal of Asian Earth Sciences, 88: 192−216. doi: 10.1016/j.jseaes.2014.01.010 |
[12] | Deschamps F, Duchêne S, De Sigoyer J, et al. 2017. Coeval mantle−derived and crust−derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China)[J]. Journal of Petrology, 58(11): 2221−2256. doi: 10.1093/petrology/egy007 |
[13] | Fei G C, Menuge J F, Li Y Q, et al. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions[J]. Lithos, 364/365: 105555. |
[14] | Flood R H, Shaw S E. 2014. Microgranitoid enclaves in the felsic Looanga monzogranite, New England Batholith, Australia: Pressure quench cumulates[J]. Lithos, 198: 92−102. |
[15] | Gao J G, Wei G Y, Li G W, et al. 2024. Geochemical constraints on the origin of the rare metal mineralization in granite-pegmatite, evidence from three-kilometer scientific drilling core in the Jiajika Li deposit, eastern Tibetan Plateau[J]. Ore Geology Reviews, 165: 105852. |
[16] | Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid−absent versus fluid−fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39−42. doi: 10.1130/G38336.1 |
[17] | Hao X F, Fu X Fang, Liang B, et al. 2015. Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance[J]. Mineral Deposits, 34(6): 1199−1208 (in Chinese). |
[18] | Harris N, Inger S. 1992. Trace element modelling of pelite−derived granites[J]. Contributions to Mineralogy and Petrology, 110(1): 46−56. doi: 10.1007/BF00310881 |
[19] | Harris N, Massey J, Inger S. 1993. The role of fluids in the formation of high Himalayan leucogranites[J]. Geological Society, London, Special Publications, 74(1): 391−400. |
[20] | Holden P, Halliday A N, Stephens W E. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production[J]. Nature, 330(6143): 53−56. doi: 10.1038/330053a0 |
[21] | Hou K J, Li Y H, Tian Y R. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J]. Mineral Deposits, 28: 481−492 (in Chinese). |
[22] | Hu J M, Meng Q R, Shi Y R, et al. 2005. SHRIMP U−Pb dating of zircons from granitoid bodies in the Songpan−Ganzi terrane and its implications[J]. Acta Petrogica Sinica, 21(3): 867−880 (in Chinese with English abstract). |
[23] | Li J K, Li P, Yan Q G, et al. 2023. Geology and mineralization of the Songpan-Ganze-West Kunlun pegmatite-type rare-metal metallogenic belt in China: An overview and synthesis[J]. Science China Earth Sciences, 66(8): 1702−1724. |
[24] | Li X F, Tian S H, Wang D H, et al. 2020. Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: Evidence from zircon U−Pb dating, Hf−O isotope and geochemistry[J]. Mineral Deposits, 39(2): 273−304 (in Chinese with English abstract). |
[25] | Liu D M, Xiao Y F, Li N, et al. 2022. Geochemistry, chronology and tectonic significances of the Darizelong granite intrusion in the northern Songpan−Garzê orogenic belt[J]. Acta Mineralogica Sinica, 42(3): 270−84 (in Chinese with English abstract). |
[26] | Lu Y X, Yang J S, Xu Z Q, et al. 2022. Possible northward subduction in the Ganzi−Litang ocean: evidence from Dawu−Luhuo magmatic rocks in the Songpan−Ganzi orogen[J]. Acta Geologica Sinica, 96(7): 2380−2402 (in Chinese with English abstract). |
[27] | Luo G, Yang X J, Bai X Z, et al. 2009. Trace Element Geochemical Characteristics of the granite bodies in Yanggonghai and its neighboring area in northwestern Sichuan[J]. Geological Survey and Research, 32(1): 15−21 (in Chinese with English abstract). |
[28] | Luo X L, Li W Q, Du D H, et al. 2024. Iron isotope systematics of the Jiajika granite-pegmatite lithium deposit, Sichuan, China[J]. Ore Geology Reviews, 165: 105903. |
[29] | Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635−643. |
[30] | Morse S A. 1984. Cation diffusion in plagioclase feldspar[J]. Science, 225(4661): 504−505. doi: 10.1126/science.225.4661.504 |
[31] | Nelson, Stephen T, Montana A. 1992. Sieve−textured plagioclase in volcanic rocks produced by rapid decompression[J]. American Mineralogist, 77: 1242−49. |
[32] | Norris P C, Skulas−Ray A C, Riley I, et al. 2018. Identification of specialized pro−resolving mediator clusters from healthy adults after intravenous low−dose endotoxin and omega−3 supplementation: A methodological validation[J]. Scientific Reports, 8(1): 18050. doi: 10.1038/s41598-018-36679-4 |
[33] | Pullen A, Kapp P, Gehrels G E, et al. 2008. Triassic continental subduction in central Tibet and Mediterranean−style closure of the Paleo−Tethys Ocean[J]. Geology, 36(5): 351−354. doi: 10.1130/G24435A.1 |
[34] | Russell W A, Papanastassiou D A, Tombrello T A. 1978. Ca isotope fractionation on the Earth and other solar system materials[J]. Geochimica et Cosmochimica Acta, 42(8): 1075−1090. doi: 10.1016/0016-7037(78)90105-9 |
[35] | Shi Z L, Zhang H F, Cai H M. 2009. Petrogenesis of strongly peraluminous granites in Markan area Songpan fold belt and its tectonic implication[J]. Earth Science−Journal of China University of Geosciences, 34(4): 569−584 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.062 |
[36] | Sláma J, Košler J, Condon D J, et al. 2008. Plešovice zircon−a new natural reference material for U–Pb and Hf isotopic microanalysis[J]. Chemical geology, 249(1/2): 1−35. |
[37] | Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313–345. |
[38] | Sylvester P J. 1998. Post−collisional strongly peraluminous granites[J]. Lithos, 45(1/4): 29−44. |
[39] | Ustunisik G, Kilinc A, Nielsen R L. 2014. New insights into the processes controlling compositional zoning in plagioclase[J]. Lithos, 200: 80−93. |
[40] | Wang D H, Li J K, Fu X F. 2005. 40Ar/39Ar dating for the Jiajika pegmatite−type rare metal deposit in western Sichuan and its significance[J]. Geochimica, 34(6): 3−9 (in Chinese with English abstract). |
[41] | Wilson M. 1997. Igneous petrogenesis[M]. Unwin Hyman Ltd. |
[42] | Wu F Y, Yue H, Xie L W, et al. 2006. Hf isotopic compositions of the standard zircons and bad deleyites used in U−Pb geochronology[J]. Chemical Geology, 234: 105−126. doi: 10.1016/j.chemgeo.2006.05.003 |
[43] | Xiao L, Zhang H F, Clemens J D, et al. 2007. Late Triassic granitoids of the eastern margin of the Tibetan Plateau: Geochronology, petrogenesis and implications for tectonic evolution[J]. Lithos, 96(3/4): 436−452. |
[44] | Xu Z Q, Fu X F, Wang R C, et al. 2020. Generation of lithium−bearing pegmatite deposits within the Songpan−Ganze orogenic belt, East Tibet[J]. Lithos, 354: 105281. |
[45] | Yan S W, Zhu B, Wu W X, et al. 2015. Petrogenesis and geodynamic implications of the Wanlicheng granites and hosted magmatic enclaves in Songpan−Garzê orogen: Evidence from petrography and geochemistry[J]. Geological Bulletin of China, 34(2/3): 292−305 (in Chinese with English abstract). |
[46] | Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual review of Earth and Planetary Sciences, 28(1): 211−280. |
[47] | Yuan C, Zhou M F, Sun M, et al. 2010. Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere[J]. Earth and Planetary Science Letters, 290(3/4): 481−492. |
[48] | Zhang H F, Parrish R, Zhang L, et al. 2007. A−type granite and adakitic magmatism association in Songpan−Garzê fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination[J]. Lithos, 97(3/4): 323−335. |
[49] | Zhang H F, Zhang L, Harris N, et al. 2006. U–Pb zircon ages, geochemical and isotopic compositions of granitoids in Songpan−Garze fold belt, eastern Tibetan Plateau: Constraints on petrogenesis and tectonic evolution of the basement[J]. Contributions to Mineralogy and Petrology, 152: 75−88. doi: 10.1007/s00410-006-0095-2 |
[50] | Zhang H J, Tian S H, Wang D H, et al. 2022. Lithium isotopic constraints on the petrogenesis of the Jiajika two-mica granites and associated Li mineralization[J]. Ore Geology Reviews, 150: 105174. |
[51] | Zhang L Y, Ding L, Pullen A, et al. 2014. Age and geochemistry of western Hoh−Xil–Songpan−Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo−Tethys ocean[J]. Lithos, 190: 328−348. |
[52] | Zhao H, Chen, B Huang C, et al. 2022. Geochemical and Sr-Nd-Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: implications for Li mineralization[J]. Contributions to Mineralogy and Petrology, 177(1): 3−16. |
[53] | Zheng Y C, Hou Z Q, Fu Q, et al. 2016. Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 264: 125−140. |
[54] | Zheng Y L, Xu Z Q, Li G W, et al. 2020. Genesis of the Markam gneiss dome within the Songpan−Ganzi orogenic belt, eastern Tibetan Plateau[J]. Lithos, 362: 105475. |
[55] | Zhou M F, Yan D P, Kennedy A K, et al. 2002. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc−magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196(1/2): 51−67. |
[56] | Zhou X, Zhou Y, Luo L P, et al. 2018. Zircon LA−ICP−MS U−Pb dating of quartz diorite of Rongxuka lithium deposit in western Sichuan and its tectonic implication[J]. Mineralogy and Petrology, 38(4): 88−97 (in Chinese with English abstract). |
[57] | Zhu J Y, Zhu W B, Xu Z Q, et al. 2023. The geochronology of pegmatites in the Jiajika lithium deposit, western Sichuan, China: Implications for multi-stage magmatic-hydrothermal events in the Songpan-Ganze rare metal metallogenic belt[J]. Ore Geology Reviews, 159: 105582. |
[58] | 陈敏, 王雁鹤, 谷强, 等. 2023. 松潘-甘孜地体下仓界地区晚三叠世基性岩的发现及其地质意义[J]. 岩石矿物学杂志, 42(1): 1−12. |
[59] | 郝雪峰, 付小方, 梁斌, 等. 2015. 川西甲基卡花岗岩和新三号矿脉的形成时代及意义[J]. 矿床地质, 34(6): 1199−1208. |
[60] | 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS 锆石微区原位U-Pb 定年技术[J]. 矿床地质, 28(4): 481−492. |
[61] | 胡健民, 孟庆任, 石玉若, 等. 2005. 松潘−甘孜地体内花岗岩锆石SHRIMP U−Pb定年及其构造意义[J]. 岩石学报, 21(3): 867−880. |
[62] | 李贤芳, 田世洪, 王登红, 等. 2020. 川西甲基卡锂矿床花岗岩与伟晶岩成因关系: U−Pb定年、Hf−O同位素和地球化学证据[J]. 矿床地质, 39(2): 273−304. |
[63] | 刘大明, 肖渊甫, 李宁, 等. 2022. 松潘−甘孜造山带北部达日泽龙花岗岩体地球化学、年代学及构造意义[J]. 矿物学报, 42(3): 270−84. |
[64] | 卢雨潇, 杨经绥, 许志琴, 等. 2022. 甘孜−理塘洋可能存在北向俯冲: 来自松潘−甘孜道孚−炉霍岩浆岩的证据[J]. 地质学报, 96(7): 2380−2402. |
[65] | 罗改, 杨学俊, 白宪洲, 等. 2009. 川西北羊拱海及邻区花岗岩体微量元素地球化学特征[J]. 地质调查与研究, 32(1): 15−21. |
[66] | 时章亮, 张宏飞, 蔡宏明. 2009. 松潘造山带马尔康强过铝质花岗岩的成因及其构造意义[J]. 地球科学, 34(4): 569−584. |
[67] | 王登红, 李建康, 付小方. 2005. 四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义[J]. 地球化学, 34(6): 3−9. |
[68] | 许志琴. 1992. 中国松潘−甘孜造山带的造山过程[M]. 北京: 地质出版社. |
[69] | 鄢圣武, 朱兵, 伍文湘, 等. 2015. 松潘−甘孜造山带万里城花岗岩及其岩浆包体的成因与地球动力学意义[J]. 地质通报, 34(2/3): 292−305. |
[70] | 周雄, 周玉, 罗丽萍, 等. 2018. 川西容须卡锂辉石矿床石英闪长岩锆石LA−ICP MS测年及构造意义[J]. 矿物岩石, 38(4): 88−97. |
Simplified geologic map of the Songpan−Ganzi Orogenic Belt (a), distribution map of magmatic rocks in the eastern Songpan−Ganzi Orogenic Belt (b) and simplified geological map of the Dongfeng granitoid (c)
Cathodoluminescence images and chondrite−normalized REE patterns of zircons from the biotite granite (a, c) and its dioritic enclaves (b, d) of the Dongfeng granitoid
Zircon U−Pb concordia diagrams for the biotite granite (a, c) and dioritic enclave (b, d) for the Dongfeng granitoid
A/CNK−A/NK (a) and SiO2−(Na2O+K2O) (b) diagrams for the Dongfeng granitoid
Harker variation diagrams for the Dongfeng granitoid
Chondrite−normalized REE patterns (a) and primitive mantle−normalized trace element spider diagrams (b) for the Dongfeng granitoid
Texture and An variations of plagioclases in the biotite granite (a~f) and its dioritic enclaves (g~l) of the Dongfeng granitoid
Rb/Sr−Rb/Ba (a) and Ba−Rb/Sr (b) diagrams for biotite granites in the Dongfeng granitoid
Zr/Hf−Nb/Ta (a) and Li−Nb/Ta (b) diagrams for the Dongfeng granitoid