2024 Vol. 43, No. 12
Article Contents

LIU Jianfeng, ZHAO Shuo, ZHANG Jin, ZHANG Wenlong, LYU Qianlu. 2024. Discovery of Early Cambrian grandiorite to the north of the Xar Moron River, Inner Mongolia and its geological significance for the Early Paleozoic tectonic evolution in the southeast of the Central Asian Orogenic Belt. Geological Bulletin of China, 43(12): 2204-2218. doi: 10.12097/gbc.2024.07.068
Citation: LIU Jianfeng, ZHAO Shuo, ZHANG Jin, ZHANG Wenlong, LYU Qianlu. 2024. Discovery of Early Cambrian grandiorite to the north of the Xar Moron River, Inner Mongolia and its geological significance for the Early Paleozoic tectonic evolution in the southeast of the Central Asian Orogenic Belt. Geological Bulletin of China, 43(12): 2204-2218. doi: 10.12097/gbc.2024.07.068

Discovery of Early Cambrian grandiorite to the north of the Xar Moron River, Inner Mongolia and its geological significance for the Early Paleozoic tectonic evolution in the southeast of the Central Asian Orogenic Belt

  • In view of the controversy about the tectonic affinities of the ‘Shuangjing Paleocontinent’ in southeast Central Asian Orogenic Belt (CAOB), the geochronology, petrology and geochemistry of the Dong’gou gneissic granodiorite, which was originally classified as an early Precambrian intrusion, in the Xar Moron River area of Inner Mongolia have been studied. Zircon U−Pb dating shows that the granodiorite was formed in the Early Cambrian (526±2 Ma). Combined with other geochronological age data published in the region, it is suggested that ‘Shuangjing Paleocontinent’ was not an early Precambrian micro−continent in the CAOB. The Dong’gou granodiorite is mainly composed of plagioclase, quartz and amphibole. The contents of SiO2 of the rocks range from 64.20% to 67.53%, and the contents of Na2O and K2O are 5.21% to 5.75% and 0.37% to 0.56%, respectively, indicating the characteristics of subalkaline series magmatic rocks, which are rich in sodium and poor in potassium. The aluminum saturation index (A/CNK) of the rocks is between 0.77 and 0.85, further suggesting that the Dong’gou granodiorite belonging to meta−aluminous I−type granite. In terms of trace elements, the rocks are depleted in high field strength elements (HFSE) such as Nb, Ta, P and Ti, indicating the geochemical characteristics of the magmatic rocks formed in subduction setting. The whole rock εNd(t) values and lower crust two−stage model ages of the Dong’gou granodiorite are −13.76 to −15.84 and 2361 Ma to 2523 Ma, respectively, suggesting that there might be Archaean−Paleoproterozoic crustal material in the magmatic source. Based on the analysis of regional data, the Dong’gou granodiorite might belong to the Early Paleozoic Bainaimiao magmatic arc between the North China Craton and the Xar Moron River suture zone. The discovery of the pluton suggests that the subduction of the Paleo−Asian Ocean in southeast CAOB might have started in Early Cambrian.

  • 加载中
  • [1] Barker F. 1979. Trondhjemite: definition, environment and hypotheses of origin[C]//Barker F. Trondhjemites dacites and related rocks. Amsterdam: Elsevier: 1−12.

    Google Scholar

    [2] Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson P. Rare earth element geochemistry. Amsterdam: Elsevier: 63−114.

    Google Scholar

    [3] Chen Y, Zhang Z C, Qian X Y, et al. 2020. Early to Mid−Paleozoic magmatic and sedimentary records in the Bainaimiao Arc: An advancing subduction−induced terrane accretion along the northern margin of the North China Craton[J]. Gondwana Research, 79: 263−282. doi: 10.1016/j.gr.2019.08.012

    CrossRef Google Scholar

    [4] Gao L M. 2004. Basic characteristics of the Xar Moron River fault and its geodynamic significance[D]. Master Thesis of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    Google Scholar

    [5] He X X, Tang S H, Zhu X K, et al. 2007. Precise measurement of Nd isotopic ratios by means of multi−collector magnetic sector inductively coupled plasma mass spectrometry[J]. Acta Geoscientica Sinica, 28(4): 405−410 (in Chinese with English abstract).

    Google Scholar

    [6] He Z Y, Klemd R, Yan L L, et al. 2018. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: Evidence from oxygen and hafnium isotopes in zircon[J]. Scientific Reports, 8: 5054. doi: 10.1038/s41598-018-23393-4

    CrossRef Google Scholar

    [7] Hong D W, Zhang J S, Wang T, et al. 2004. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 23: 799−813.

    Google Scholar

    [8] Huang B H, Ding Q H. 1998. The Angara flora from northern China[J]. Acta Geoscientica Sinica, 19(1): 97−104 (in Chinese with English abstract).

    Google Scholar

    [9] Jahn B M, Wu F Y, Hong D W. 2000. Important crustal growth in the Phanerozoic: Isotopic evidence of granitoids from East central Asia[J]. Proceedings of the Indian Academy of Science (Earth and Planetary Science), 109: 5−20. doi: 10.1007/BF02719146

    CrossRef Google Scholar

    [10] Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 226(1): 73−100.

    Google Scholar

    [11] Jian P, Liu D Y, Kröner A, et al. 2008. Time scale of an early to mid−Paleozoic orogenic cycle of the long−lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 101(3/4): 233−259.

    Google Scholar

    [12] Jiang S H, Liang Q L, Nie F J, et al. 2014. A preliminary study of zircon LA−MC−ICP−MS U−Pb ages of the Shuangjingzi complex in Linxi, Inner Mongolia[J]. Geology in China, 41(4): 1108−1123 (in Chinese with English abstract).

    Google Scholar

    [13] Kelemen P B, Hanghøj K, Greene A R. 2014. One view of the geochemistry of subduction−related magmatic arcs, with an emphasis on primitive andesite and lower crust[C]//Rudnick R L. Treatise on geochemistry. Elsevier, 4: 749−805.

    Google Scholar

    [14] Khain E V, Bibikova E V, Kröner A, et al. 2002. The most ancient ophiolite of the Central Asian fold belt: U−Ph and Pb−Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 199: 311−325. doi: 10.1016/S0012-821X(02)00587-3

    CrossRef Google Scholar

    [15] Krӧner A, Kovach V, Belousova E, et al. 2014a. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 25: 103−125. doi: 10.1016/j.gr.2012.12.023

    CrossRef Google Scholar

    [16] Kröner A, Rojas−Agramonte Y. 2014b. The Altaids as seen by eduard suess, and present thinking on the Late Mesoproterozoic to Palaeozoic evolution of Central Asia[J]. Austrian Journal of Earth Sciences, 107(1): 156−168.

    Google Scholar

    [17] Kuzmichev A B, Larionov A N. 2013. Neoproterozoic island arcs in East Sayan: duration of magmatism (from U−Pb zircon dating of volcanic clastics)[J]. Russian Geology and Geophysics, 54: 34−43.

    Google Scholar

    [18] Lei H, Zhang G B, Xu B. 2021. The Late Paleozoic extending and thinning processes of the Xing'an−Mongolia orogenic belt: Geochemical evidence from the plutons in Linxi area, Inner Mongolia[J]. Acta Petrologica Sinica, 37(7): 2029−2050 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.07.05

    CrossRef Google Scholar

    [19] Li C Y, Wang Q, Liu X Y, et al. 1982. Explanatory notes to the tectonic map of China[M]. Beijing: Cartographic Publishing House (in Chinese).

    Google Scholar

    [20] Li C Y, Wang Q, Liu X Y, et al. 1984. Tectonic evolution of Asia[J]. Bulletin of the Chinese Academy of Geological Science, 10: 3−10 (in Chinese with English abstract).

    Google Scholar

    [21] Li J Y, Gao Li M, Sun G H, et al. 2007. Shuangjingzi middle Triassic syncollisional crust−derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino−Korean paleo−plates[J]. Acta Petrologica Sinica, 23: 565−582 (in Chinese with English abstract).

    Google Scholar

    [22] Li J Y, Zhang J, Yang T N, et al. 2009. Crustal tectonic division and evolution of the southern part of the North Asian orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584−605 (in Chinese with English abstract).

    Google Scholar

    [23] Li J Y, Liu J F, Qu J F, et al. 2019a. Major geological features and crustal tectonic framework of Northeast China[J]. Acta Petrologica Sinica, 35(10): 2989−3016 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.04

    CrossRef Google Scholar

    [24] Li J Y, Liu J F, Qu J F, et al. 2019b. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts?[J]. Earth Science, 44(10): 3157−3177 (in Chinese with English abstract).

    Google Scholar

    [25] Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo−Asian Ocean and subduction of the Paleo−Pacific Plate[J]. Journal of Asian Earth Sciences, 26: 207−224. doi: 10.1016/j.jseaes.2005.09.001

    CrossRef Google Scholar

    [26] Li Y L, Zhou H W, Ge M C, et al. 2008. LA−ICPMS zircon U−Pb dating of migmatite from north Shuangjing schist in Linxi, Inner Mongolia[J]. Mineralogy and Petrology, 28(2): 10−16 (in Chinese with English abstract).

    Google Scholar

    [27] Li Y L, Zhou H W, Zhong Z Q, et al. 2009. Collision processes of North China and Siberian Plates: Evidence from LA−ICP−MS zircon U−Pb age on deformed Granite in Xar Moron Suture Zone[J]. Earth Science, 34(6): 931−938 (in Chinese with English abstract).

    Google Scholar

    [28] Li Y L, Zhou H W, Xiao W J, et al. 2012. Superposition of Paleo−Asian and west−pacific tectonic domains in the eastern section of the Solonker suture zone: Insights from petrology, geochemistry and geochronology of deformed diorite in Xar Moron fault zone, Inner Mongolia[J]. Earth Science, 37(3): 433−450 (in Chinese with English abstract).

    Google Scholar

    [29] Liu B, Han B F, Xu Z, et al. 2016. The Cambrian initiation of intra−oceanic subduction in the southern Paleo−Asian Ocean: Further evidence from the Barleik subduction−related metamorphic complex in the West Junggar region, NW China[J]. Journal of Asian Earth Sciences, 123: 1−21.

    Google Scholar

    [30] Liu J F, Li J Y, Sun L X, et al. 2016. Zircon U−Pb dating of the Jiujingzi ophiolite in Bairin Left Banner, Inner Mongolia: Constraints on the formation and evolution of the Xar Moron River suture zone[J]. Geology in China, 43(6): 1947−1962 (in Chinese with English abstract).

    Google Scholar

    [31] Liu J F, Zhao S, Zhang W L, et al. 2022. Database of 1∶50000 regional geological map of Shuangjing—Bilutai area, east Inner Mongolia (within the standard 1∶50000 geological maps of K50E004017, K50E004018, K50E004019, K50E005017, K50E005018, K50E005019)[DB]. Geoscientific Data & Discovery Publishing System. DOI: 10.35080/data.A.2022.P012.

    Google Scholar

    [32] Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013

    CrossRef Google Scholar

    [33] Liu Y J, Ma Y F, Feng Z Q, et al. 2022. Paleozoic orocline in the eastern Central Asian Orogenic Belt[J]. Acta Geologica Sinica, 96(10): 3468−3493 (in Chinese with English abstract).

    Google Scholar

    [34] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    Google Scholar

    [35] Liu Y S, Hu Z C, Zong K Q, et al. 2010. Reappraisement and refinement of zircon U−Pb isotope and trace element analyses by LA−ICP−MS[J]. Chinese Science Bulletin, 55(15): 1535−1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [36] Ludwig K R. 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, California.

    Google Scholar

    [37] Ma S X, Wang Z Q, Zhang Y L, et al. 2019. Bainaimiao arc as an exotic terrane along the northern margin of the North China Craton: Evidences from petrography, zircon U−Pb dating, and geochemistry of the Early Devonian deposits[J]. Tectonics, 38(8): 2606−2624. doi: 10.1029/2018TC005426

    CrossRef Google Scholar

    [38] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth−Science Review, 37: 215−224.

    Google Scholar

    [39] Miyazaki T, Shuto K. 1998. Sr and Nd isotope ratios of twelve GSJ rock reference samples[J]. Geochemical Journal, 32: 345−350. doi: 10.2343/geochemj.32.345

    CrossRef Google Scholar

    [40] Nie F J, Pei R F, Wu L S, et al. 1995. Nd and Sr isotope study on greenschist and granodiorite of the Bainaimiao District, Inner Mongolia, China[J]. Acta Geoscientica Sinica, (1): 36−44 (in Chinese with English abstract).

    Google Scholar

    [41] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956−983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [42] Qian C, Lu L, Wang Y, et al. 2020. Age and geochemistry of amphibolite in Shuangsheng area, eastern Inner Mongolia: New evidence from the Paleoproterozoic basement of Bainaimiao island arc[J]. Geological Bulletin of China, 39(6): 905−918 (in Chinese with English abstract).

    Google Scholar

    [43] Ren J S, Niu B G, Liu Z G. 1999. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, 6(3): 85−93 (in Chinese with English abstract).

    Google Scholar

    [44] Ren R, Han B F, Xu Z, et al. 2014. When did the subduction first initiate in the southern Paleo−Asian Ocean: New constraints from a Cambrian intra−oceanic arc system in West Junggar, NW China[J]. Earth and Planetary Science Letters, 388: 222−236. doi: 10.1016/j.jpgl.2013.11.055

    CrossRef Google Scholar

    [45] Sengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 364: 209−307.

    Google Scholar

    [46] Sengör A M C, Natal’in B A. 1996. Paleotectonics of Asia: fragments of a synthesis[C]//Yin A, Harrison M. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press: 486−640.

    Google Scholar

    [47] Shao J A, Wang Y, Tang K D. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China[J]. Acta Petrologica Sinica, 33(10): 3002−3010 (in Chinese with English abstract).

    Google Scholar

    [48] Shao J A, Tian W, Tang K D, et al. 2018. Preliminary discussion on the role of microcontinental blocks in the evolution of the Central Asian orogenic belt: Taking the Xilinhaote microcontinental block as an example[J]. Earth Science Frontiers, 25(4): 1−10 (in Chinese with English abstract).

    Google Scholar

    [49] Shi G H, Liu D Y, Zhang F Q, et al. 2003. SHRIMP U−Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China[J]. Chinese Science Bulletin, 48(24): 2742−2748. doi: 10.1007/BF02901768

    CrossRef Google Scholar

    [50] SIGSNM (The Second Institute of Geological Survey of Nei Monggol (Inner Mongolia) Autonomous Region). 1995. Report of 1: 50000 Regional Geological Survey of Renjiayingzi Area (K50E004018)[R], (in Chinese).

    Google Scholar

    [51] Song B, Zhang Y H, Wan Y S, et al. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(Supp.): 26−30 (in Chinese with English abstract).

    Google Scholar

    [52] SRGSTLP (The Second Regional Geological Survey Team of Liaoning Province). 1971a. Report of 1∶ 200000 Regional Geological Survey of Baitazimiao (L-50-XXXV) and Linxi Area (K-50-5)[R] (in Chinese).

    Google Scholar

    [53] SRGSTLP (The Second Regional Geological Survey Team of Liaoning Province). 1971b. Report of 1∶ 200000 Regional Geological Survey of Wufendi area (K-50-XI)[R] (in Chinese).

    Google Scholar

    [54] Sun L X, Ren B F, Wang S Q, et al. 2018. Petrogenesis of the Mesoproterozoic gneissic granite in the Sonid Left Banner Area, Inner Mongolia, and its tectonic implications[J]. Acta Geologica Sinica, 92(11): 2167−2189 (in Chinese with English abstract).

    Google Scholar

    [55] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the ocean basins. London: Geological Society Special Publications, 42: 313−345.

    Google Scholar

    [56] Tang S H, Li J, Liang X R, et al. 2017. Reference Material Preparation of 143Nd/144Nd Isotope Ratio[J]. Rock and Mineral Analysis, 36(2): 163−170 (In Chinese with English abstract).

    Google Scholar

    [57] TGIMEDIM (The Tenth Geological Institute of Mineral Exploration and Development, Inner Mongolia. 1997. Report of 1∶50000 Regional Geological Survey of Xiachang Area (K50E005018)[R](in Chinese).

    Google Scholar

    [58] Wang H Z. 1981. Geotectonic units of China from the view—point of mobilism[J]. Earth Science, 1: 42−66 (In Chinese with English abstract).

    Google Scholar

    [59] Wang Q. 1986. Recognition of the suture between the Sino−Korean and Siberian Paleoplates in the middle part of Inner Mongolia[J]. Acta Geologica Sinica, 60(1): 31−43 (in Chinese with English abstract).

    Google Scholar

    [60] Wang Q, Liu X Y, Li J Y. 1991. Paleoplate tectonics in Nei Monggol of China[J]. Bulletin of the Chinese Academy of Geological Sciences, 22: 1−15 (in Chinese with English abstract).

    Google Scholar

    [61] Wang Y J, Fan Z Y. 1997. Discovery of Permian radiolarians in ophiolite belt on northern side of Xarmoron river, Nei Monggol and its geological significance[J]. Acta Palaeontologica Sinica, 36(1): 58−69 (in Chinese with English abstract).

    Google Scholar

    [62] Wang Y, Fan Z Y, Fang S, et al. 1999. Geological information were discovered and their plate tectonic significance on the northern bank of Xarmoron river[J]. Geology of Inner Mongolia, (1): 6−27 (in Chinese with English abstract).

    Google Scholar

    [63] Wang Z W, Liu Z Y, Yang Z N, et al. 2023. Magmatic and sedimentary records of Columbia−Rodinia supercontinent cycle in microcontinents within eastern central Asian orogenic belt[J]. Geological Review, 69(6): 2115−2140 (in Chinese with English abstract).

    Google Scholar

    [64] Wilde S A, Dorsett−Bain H L, Lennon R G. 1999. Geological setting and controls on the development of graphite, sillimanite and phosphate mineralization within the Jiamusi Massif: An exotic fragment of Gondwanaland located in noah−eastern China?[J]. Gondwana Research, 2(1): 21−46.

    Google Scholar

    [65] Wilde S A, Wu F Y, Zhang X Z. 2003. Late Pan−African magmatism in northeastern China: SHRIMP U Pb zircon evidence from granitoids in the Jiamusi Massif[J]. Precambrian Reseach, 122: 311−327.

    Google Scholar

    [66] Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022

    CrossRef Google Scholar

    [67] Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41: 1−30. doi: 10.1016/j.jseaes.2010.11.014

    CrossRef Google Scholar

    [68] Wu Y B, Zheng Y F. 2004. Genesis of zircon and its constraints on interpretation of U−Pb age[J]. Chinese Science Bulletin, 49(15): 1554−1569. doi: 10.1007/BF03184122

    CrossRef Google Scholar

    [69] Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1069.

    Google Scholar

    [70] Xiao W J, Windley B F, Huang B C, et al. 2009. End−Permian to mid−Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 98(6): 1189−1217. doi: 10.1007/s00531-008-0407-z

    CrossRef Google Scholar

    [71] Xiao W J, Windley B F, Han C M, et al. 2018. Late Paleozoic to early Triassic multiple roll−back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth−Science Reviews, 186: 94−128. doi: 10.1016/j.earscirev.2017.09.020

    CrossRef Google Scholar

    [72] Zhang J R, Wei C J, Chu H, et al. 2016. Mesozoic metamorphism and its tectonic implication along the Solonker suture zone in central Inner Mongolia, China[J]. Lithos, 261: 262−277.

    Google Scholar

    [73] Zhang J R, Wei C J, Chu H. 2018. Multiple metamorphic events recorded in the metamorphic terranes in central Inner Mongolia, Northern China: Implication for the tectonic evolution of the Xing’an−Inner Mongolia Orogenic Belt[J]. Journal of Asian Earth Sciences, 167: 52−67. doi: 10.1016/j.jseaes.2018.04.007

    CrossRef Google Scholar

    [74] Zhang J, Qu J F, Liu J F, et al. 2021. The evolution of the Xar Moron tectonic belt in the eastern Central Asian Orogenic Belt: Constraints from evidences of deformation and low−temperature thermochronology[J]. Sedimentary Geology and Tethyan Geology, 41(2): 190−217 (in Chinese with English abstract).

    Google Scholar

    [75] Zhang S H, Zhao Y, Ye H, et al. 2014. Origin and evolution of the Bainaimiao arc belt: implications for crustal growth in the southern central Asian orogenic belt[J]. Geological Society of America Bulletin, 126: 1275−1300. doi: 10.1130/B31042.1

    CrossRef Google Scholar

    [76] Zhang W, Jian P. 2008. SHRIMP dating of early Paleozoic granites from north Damaoqi, Inner Mongolia[J]. Acta Geologica Sinica, 82(6): 778−787 (in Chinese with English abstract).

    Google Scholar

    [77] Zhao P, Faure M, Chen Y, et al. 2015. A new Triassic shortening−extrusion tectonic model for Central−Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)[J]. Earth and Planetary Science Letters, 426: 46−57.

    Google Scholar

    [78] Zhao S, Liu J F, Zhang Y T, et al. 2021. Geochronology and petrogenesis of the Yuanbaoshan leucogranite in southeast Inner Mongolia: Implications for the collision between the Sino−Korean and Siberian paleo−plates[J]. Lithos, 384/385: 105981.

    Google Scholar

    [79] Zindler A, Hart S. 1986. Chemical geodynamics[J]. Annual Reviews of Earth and Planetary Science, 14: 493−571. doi: 10.1146/annurev.ea.14.050186.002425

    CrossRef Google Scholar

    [80] 高立明. 2004. 西拉木伦河断裂带基本特征及其动力学意义[D]. 中国地质科学院硕士学位论文.

    Google Scholar

    [81] 何学贤, 唐索寒, 朱祥坤, 等. 2007. 多接收器等离子体质谱(MC-ICPMS)高精度测定Nd同位素方法[J]. 地球学报, 28(4): 405−410. doi: 10.3321/j.issn:1006-3021.2007.04.012

    CrossRef Google Scholar

    [82] 黄本宏, 丁秋红. 1998. 中国北方安加拉植物群[J]. 地球学报, 19(1): 97−104.

    Google Scholar

    [83] 江思宏, 梁清玲, 聂凤军, 等. 2014. 内蒙古林西双井子杂岩锆石LA−MC−ICP−MS测年初步研究[J]. 中国地质, 41(4): 1108−1123. doi: 10.3969/j.issn.1000-3657.2014.04.006

    CrossRef Google Scholar

    [84] 雷豪, 张贵宾, 徐备. 2021. 兴蒙造山带晚古生代伸展减薄过程: 来自内蒙林西地区岩体的地球化学证据[J]. 岩石学报, 37(7): 2029−2050. doi: 10.18654/1000-0569/2021.07.05

    CrossRef Google Scholar

    [85] 李春昱, 王荃, 刘雪亚, 等. 1982. 亚洲大地构造图说明书[M]. 北京: 地图出版社.

    Google Scholar

    [86] 李春昱, 王荃, 刘雪亚, 等. 1984. 亚洲大地构造的演化[J]. 中国地质科学院院报, 10: 3−10.

    Google Scholar

    [87] 李锦轶, 高立明, 孙桂华, 等. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 23(3): 565−582. doi: 10.3969/j.issn.1000-0569.2007.03.004

    CrossRef Google Scholar

    [88] 李锦轶, 张进, 杨天南, 等. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报: 地球科学版, 39(4): 584−605.

    Google Scholar

    [89] 李锦轶, 刘建峰, 曲军峰, 等. 2019a. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 35(10): 2989−3016.

    Google Scholar

    [90] 李锦轶, 刘建峰, 曲军峰, 等. 2019b. 中国东北地区古生代构造单元: 地块还是造山带? [J]. 地球科学, 44(10): 3157−3177.

    Google Scholar

    [91] 李益龙, 周汉文, 葛梦春, 等. 2008. 内蒙古林西县双井片岩北缘混合岩LA−ICPMS锆石U−Pb年龄[J]. 矿物岩石, 28(2): 10−16. doi: 10.3969/j.issn.1001-6872.2008.02.003

    CrossRef Google Scholar

    [92] 李益龙, 周汉文, 钟增球, 等. 2009. 华北与西伯利亚板块的对接过程: 来自西拉木伦缝合带变形花岗岩锆石LA−ICP−MS U−Pb年龄证据[J]. 地球科学, 34(6): 931−938. doi: 10.3321/j.issn:1000-2383.2009.06.007

    CrossRef Google Scholar

    [93] 李益龙, 周汉文, 肖文交, 等. 2012. 古亚洲构造域和西太平洋构造域在索伦缝合带东段的叠加: 来自内蒙古林西县西拉木伦断裂带内变形闪长岩的岩石学、地球化学和年代学证据[J]. 地球科学, 37(3): 433−450.

    Google Scholar

    [94] 辽宁省第二区域地质测量队. 1971a. 白塔子庙幅(L-50-XXXV)和林西县幅(K-50-V)区域地质矿产报告书[R].

    Google Scholar

    [95] 辽宁省第二区域地质测量队. 1971b. 五分地幅(K-50-XI)区域地质矿产报告书[R].

    Google Scholar

    [96] 刘建峰, 李锦轶, 孙立新, 等. 2016. 内蒙古巴林左旗九井子蛇绿岩锆石U−Pb定年: 对西拉木伦河缝合带形成演化的约束[J]. 中国地质, 43(6): 1947−1962. doi: 10.12029/gc20160607

    CrossRef Google Scholar

    [97] 刘建峰, 赵硕, 张文龙, 等. 2022. 中国地质调查局: 内蒙古东部双井—必鲁台地区(K50E004017, K50E004018, K50E004019, K50E005017, K50E005018, K50E005019图幅之内) 1∶50000区域地质图数据库[DB]. DOI: 10.35080/data.A.2022.P012.

    Google Scholar

    [98] 刘永江, 马永非, 冯志强, 等. 2022. 中亚造山带东段古生代山弯构造[J]. 地质学报, 96(10): 3468−3493. doi: 10.3969/j.issn.0001-5717.2022.10.012

    CrossRef Google Scholar

    [99] 内蒙古自治区第二区域地质研究院. 1995. 任家营子幅(K50E004018)区域地质调查说明书[R].

    Google Scholar

    [100] 内蒙古自治区第十地质矿产勘查开发院. 1997. 下场幅(K50E005018)区域地质调查说明书[R].

    Google Scholar

    [101] 聂凤军, 裴荣富, 吴良士, 等. 1995. 内蒙古白乃庙地区绿片岩和花岗闪长斑岩的钕和锶同位素研究[J]. 地球学报, (1): 36−44.

    Google Scholar

    [102] 钱程, 陆露, 汪岩, 等. 2020. 内蒙古白乃庙岛弧发现古元古代变质基底——来自双胜地区斜长角闪岩年龄和地球化学的证据[J]. 地质通报, 39(6): 905−918. doi: 10.12097/j.issn.1671-2552.2020.06.010

    CrossRef Google Scholar

    [103] 任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, 6(3): 85−93. doi: 10.3321/j.issn:1005-2321.1999.03.008

    CrossRef Google Scholar

    [104] 邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代—早中生代构造环境的讨论[J]. 岩石学报, 33(10): 3002−3010.

    Google Scholar

    [105] 邵济安, 田伟, 唐克东, 等. 2018. 初论微陆块在中亚造山带演化中的作用: 以锡林浩特微陆块为例[J]. 地学前缘, 25(4): 1−10.

    Google Scholar

    [106] 宋彪, 张玉海, 万渝生, 等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 48(增刊): 26−30.

    Google Scholar

    [107] 孙立新, 任邦方, 王树庆, 等. 2018. 内蒙古苏尼特左旗中元古代片麻状花岗岩的成因及大地构造意义[J]. 地质学报, 92(11): 2167−2189. doi: 10.3969/j.issn.0001-5717.2018.11.001

    CrossRef Google Scholar

    [108] 唐索寒, 李津, 梁细荣, 等. 钕同位素比值143Nd/144Nd标准溶液研制[J]. 岩矿测试, 2017, 36(2): 163−170.

    Google Scholar

    [109] 王鸿祯. 1981. 从活动论观点论中国大地构造分区[J]. 地球科学, 1: 42−66.

    Google Scholar

    [110] 王荃. 1986. 内蒙古中部中朝与西伯利亚古板块间缝合线的确定[J]. 地质学报, 1: 31−43.

    Google Scholar

    [111] 王荃, 刘雪亚, 李锦轶. 1991. 中国内蒙古中部的古板块构造[J]. 中国地质科学院院报, 22: 1−15.

    Google Scholar

    [112] 王友, 樊志勇, 方曙, 等. 1999. 西拉木伦河北岸新发现地质资料及其构造意义[J]. 内蒙古地质, (1): 6−27.

    Google Scholar

    [113] 王玉净, 樊志勇. 1997. 内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J]. 古生物学报, 36(1): 58−68.

    Google Scholar

    [114] 王志伟, 刘振宇, 杨振宁, 等. 2023. 中亚造山带东部微陆块在Columbia-Rodinia超大陆演化中的岩浆-沉积记录[J]. 地质论评, 69(6): 2115−2140.

    Google Scholar

    [115] 张进, 曲军峰, 刘建峰, 等. 2021. 中亚造山带东段西拉木伦构造带的性质与演化: 来自变形和低温热年代学的约束[J]. 沉积与特提斯地质, 41(2): 190−217.

    Google Scholar

    [116] 张维, 简平. 2008. 内蒙古达茂旗北部早古生代花岗岩类SHRIMP U−Pb年代学[J]. 地质学报, 82(6): 778−787. doi: 10.3321/j.issn:0001-5717.2008.06.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(202) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint