2024 Vol. 43, No. 10
Article Contents

HUANG Liang, HUANG Zhao, SUN Zaibo, ZENG Wentao, HE Yunlong, LYU Wei, YANG Xushan, LIU Fulai, HE Zhaorong. 2024. Discovery and determination of high-pressure garnet-amphibolite in Dahongshan Group in Gasa area, southwest margin of central Yangtze, Yunnan Province. Geological Bulletin of China, 43(10): 1818-1829. doi: 10.12097/gbc.2022.08.003
Citation: HUANG Liang, HUANG Zhao, SUN Zaibo, ZENG Wentao, HE Yunlong, LYU Wei, YANG Xushan, LIU Fulai, HE Zhaorong. 2024. Discovery and determination of high-pressure garnet-amphibolite in Dahongshan Group in Gasa area, southwest margin of central Yangtze, Yunnan Province. Geological Bulletin of China, 43(10): 1818-1829. doi: 10.12097/gbc.2022.08.003

Discovery and determination of high-pressure garnet-amphibolite in Dahongshan Group in Gasa area, southwest margin of central Yangtze, Yunnan Province

More Information
  • In the course of field geological investigation, a new set of metamorphic rocks with strong metamorphism was discovered in the Hongshan Formation of Dahongshan Group in the shallow lava iron ore area of Jiesa, Xinping County, central Yunnan Province. Petrographic studies show that the metamorphic rocks are eclogite amphibolites with strong retrometamorphism and only partial subduction−reentrant mineralogical records. There is no mineral association in the early metamorphic and peak metamorphic stages of the rocks, and the mineral generations have the characteristics of clockwise metamorphic tracks. According to the results of electron probe test, the maximum metamorphic pressure recorded by GBP (Garnet−Biotite−Plagioclase) average temperature manometer is 1.52 GPa. The maximum metamorphic pressure of hornblende recorded by temperature manometer method is 0.66 GPa, which indicates that the eclogite in this study is of high pressure metamorphic grade. According to the diagenetic age, metamorphic age and geochemical characteristics of Dahongshan Group, it is believed that Dahongshan Group was formed in the cracking period of the Columbia supercontinent and is a rock component of the Late Paleoproterozoic ocean basin. The main−stage metamorphism was formed by the subduction−reentrant process of the Rodinia supercontinent, and the Dahongshan Group may be an incomplete set of ophiolitic melanomics, representing the remnants of the Late Paleoproterozoic ocean basin.

  • 加载中
  • [1] Cao D B. 1997. Metamorphism characteristics of Dahongshan rock group in the Nangan Xilahe area[J]. Yunnan Geology, 6(2): 184−191(in Chinese with English abstract).

    Google Scholar

    [2] Cheng S H, You Z D. 2018. Metamorphic petrology[M]. Beijing: Geological Publishing House: 1−300(in Chinese).

    Google Scholar

    [3] Coleman R G, Lee D E, Beatty L B, et al. 1965. Eclogites: their difference and similarities[J]. Geological Society America Bulletin, 76: 483−508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2

    CrossRef Google Scholar

    [4] Cui Y L, Qin D X, Gao J, et al. 2005. An introductory comparative discussion beteewn Longbohe copper deposit and Dahongshan iron−copper deposit in Yunnan Province[J]. Strategic Study of CAE, (S1): 195−201(in Chinese with English abstract).

    Google Scholar

    [5] Gerya T V, Perchuk L L, et al. 1997. Petrology of the tunmanshet zonal metamorphic complex[J]. Eastern Sayan Petrology, 5(6): 503−533.

    Google Scholar

    [6] Feng Y C. 2015. Geological Characteristics and Metallogenic Model Research of the Fe−Cu Deposit in Dahongshan, Yunnan Province[D]. Master's thesis of Kunming University of Science and Technology: 1−56(in Chinese with English abstract).

    Google Scholar

    [7] Geng Y S, Yang C H, Wang X S, et al. 2007. Age of Crystalline Basement in Western Margin of Yangtze Terrane[J]. Geological Journal of China Universities, 13(3): 429−441(in Chinese with English abstract).

    Google Scholar

    [8] Greentree M R, Li Z X. 2008. The oldest known rocks in south−western China: SHRIMP U−Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences, 33(5): 289−302.

    Google Scholar

    [9] Holdway M J. 2000. Application of new experiment al and garnet Margules data to the garnet−biotite geothermometer[J]. American Mineralogist, 85: 881−892. doi: 10.2138/am-2000-0701

    CrossRef Google Scholar

    [10] Holland T, Blundy J. 1994. Non−ideal interactions in calcic amphiboles and their bearing on amphibole−plagioclase thermometry[J]. Contributions to Mineralogy and Petrology, 116: 443−447.

    Google Scholar

    [11] Huang L, Tian S M, Zhang H, et al. 2021. The discovery and determination of high−pressure gneiss in Caojian area of Yunlong, western Yunnan Province [J]. Acta Petrologica et Mineralogica, 40(4): 747−756(in Chinese with English abstract).

    Google Scholar

    [12] Leake B E, Woolley A R, Arps C E S, et al. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names[J]. The Canadian Mineralogist, 35: 219−246.

    Google Scholar

    [13] Li J S, Zhang J J, Liu W, et al. 2022. Mineralogical charcteristics and constrainst of formation conditions of garnet in kimberlite in Shizhuang area, southern He’nan Province[J]. Geologcal Bulletin of China, 41(5): 824−835(in Chinese with English abstract).

    Google Scholar

    [14] Jin T F, Li Y G, Fei G C, et al. 2017. Geochronology of zircon U−Pb from Hongshan Formation in the Dahongshan Group in the Southwest Yangtze Block for the Redefinitions of the Forming Age of the Protolith and Metamorphic Age[J]. Geological Review, 63(4): 894−910(in Chinese with English abstract).

    Google Scholar

    [15] Jin T F, Luo W, Li Y G, et al. 2021. Sm−Nd isotopic dating of calcite in the ore−bearing calcite vein from the Dahongshan iron copper polymetallic deposit in the southwestern margin of Yangtze block and its significance[J]. Acta Mineralogica Sinca, 41(3): 343−354(in Chinese with English abstract).

    Google Scholar

    [16] Kunming Iron and Steel Group Limited Liability Company. 2014. Production and exploration report of Dahongshan Iron and copper mine, Xinping County, Yunnan Province[R](in Chinese).

    Google Scholar

    [17] O’Brien P J. 1997. Garnetzoning and reaction texturesin overprinted eclogites, BohemianMassif, EuropeanVariscides: A recordoftheir thermalhistoryduringexhumation[J]. Lithos, 41: 119−133. doi: 10.1016/S0024-4937(97)82008-7

    CrossRef Google Scholar

    [18] Qian J H, Shen Y R. 1983. Genesis of ancient volcanic iron copper deposit in Dahongshan, Yunnan Province[N]. Geological Bulletin: Mineral deposits and Minerals, 15: 12(in Chinese).

    Google Scholar

    [19] Wang L B. 2001. Naming convention for pyroxene− International Mineralogical Association Committee on New Minerals and Mineral Nomenclature Report of the Professional Committee on Anthracite[J]. Acta Petrologica et Mineralogica, 20(1): 84−100(in Chinese).

    Google Scholar

    [20] Wei J D. 2016. Study on the geochemical characteristics of metamorphic volcanic rocks in the Dahongshan Group, Dahongshan area, central Yunnan[D]. Master's thesis of Kunming University of Science and Technology: 1−80(in Chinese with English abstract).

    Google Scholar

    [21] Wu K W. 2008. Study on geochemistry and metallogenic mechanism of stratified copper deposit in Dahongshan, Yunnan Province[D]. Master's thesis of Institute of Geochemistry, Chinese Academy of Science: 1−113(in Chinese with English abstract).

    Google Scholar

    [22] Yang H, Liu F L, Du L L, et al. 2012. Zircon U−Pb dating for metavolcanites in the Laochanghe Formation of the Dahongshan Group in southwestern Yangtze Block, and its geological significance[J]. Acta Petrologica Sinica, 28(9): 2994−3014(in Chinese with English abstract).

    Google Scholar

    [23] Yang H, Liu F L, Liu P H, et al. 2013. 40Ar−39Ar dating for muscovite in garnet muscovite−felsic schists of the Dahongshan Group in southwestern Yangtze Block and its geological significance[J]. Acta Petrologica Sinica, 29(6): 2161−2170(in Chinese with English abstract).

    Google Scholar

    [24] Yang H, Liu P H, Meng E, et, al. 2014. Geochemistry and its tectonic implications of metabasite in the Dahongshan Group in southwestern Yangtze block[J]. Acta Petrologica Sinica, 30(10): 3021−3033(in Chinese with English abstract).

    Google Scholar

    [25] Yang X L, Zhang L F, Zhao Z D, et al. 2014. Metamorphic evolution of glaucophane eclogites from Sumdo, Lhasa block of Tibetan Plateau: Phase equilibria and metamorphic P−T path[J]. Acta Petrologica Sinica, 30(5): 1505−1519(in Chinese with English abstract).

    Google Scholar

    [26] Yunnan Province Geological Survey. 2013. Yunnan Province metallogenic geological background research report[M]. Beijing: Geological Publishing House: 1−368 (in Chinese).

    Google Scholar

    [27] Yunnan Geological and Mineral Resource Bureau. 1990a. Dahongshan ancient volcanic iron copper deposit in Yunnan province[M]. Beijing: Geological Publishing House: 1−530 (in Chinese with English abstract).

    Google Scholar

    [28] Yunnan Geological and Mineral Resource Bureau. 1990b. Regional geological records of Yunnan Province[M]. Beijing: Geological Publishing House: 1−530 (in Chinese with English abstract).

    Google Scholar

    [29] Zhai Q G, Li C, Wang J, et al. 2009. Petrology, mineralogy and PTt path for the eclogite from central Qiangtang, northern Tibet, China[J]. Geological Bulletin of China, 28(9): 1207−1220(in Chinese with English abstract).

    Google Scholar

    [30] Zhang C, Zhang L F, Zhang G B, et al. 2009. Petrology and calculation of retrograde PT path of eclogites from Xitiesshan, North Qaidam, China[J]. Acta Petrologica Sinica, 25(9): 2247−2259(in Chinese with English abstract).

    Google Scholar

    [31] Zhang J S, Wei C J, Zhou X W. 2006. Phase equilibria of glaucophane−and kyanite−bearing eclogites in the UHP belt of western Dabiesshan[J]. Acta Petrologica Sinica, 22(12): 2861−2874(in Chinese with English abstract) .

    Google Scholar

    [32] Zhang Z M, Yang Y, Zhang J X. 1999. The compositional zoning and dynamic significance of garnet in the eclogite of the western part of the Altai Mountains[J]. Chinese Science Bulletin, 44(16): 1769−1773(in Chinese). doi: 10.1360/csb1999-44-16-1769

    CrossRef Google Scholar

    [33] Zhao X F. 2010. Paleoproterozoic crustal evolution and Fe−Cu metallogeny of the Western Yangtze Block, SW China[D]. Ph. D. Dissertation of the University of Hong Kong: 1−192.

    Google Scholar

    [34] Zhao X F, Zhou M F. 2011. Fe−Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG(iron−oxide−copper−gold) metallogenic province[J]. Miner Deposita, 46: 731−747. doi: 10.1007/s00126-011-0342-y

    CrossRef Google Scholar

    [35] Zhou M F, Zhao X F, Chen W T, et al. 2014. Proterozoic Fe−Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth−Science Reviews, 139: 59−82. doi: 10.1016/j.earscirev.2014.08.013

    CrossRef Google Scholar

    [36] 曹德斌. 1997. 南甘—西拉河地区大红山岩群的变质作用特征[J]. 云南地质, 6(2): 184−191.

    Google Scholar

    [37] 程素华, 游振东. 2018. 变质岩岩石学[M]. 北京: 地质出版社: 1−300.

    Google Scholar

    [38] 崔银亮, 秦德先, 高俊, 等. 2005. 云南金平龙脖河铜矿床与新平大红山铁铜矿床对比研究[J]. 中国工程科学, 7(增刊): 195−201.

    Google Scholar

    [39] 冯裕昌. 2015. 云南大红山铁铜矿床地质特征及成矿模式研究[D]. 昆明理工大学硕士学位论文: 1−56.

    Google Scholar

    [40] 耿元生, 杨崇辉, 王新社, 等. 2007. 扬子地台西缘结晶基底的时代[J]. 高校地质学报, 13(3): 429−441. doi: 10.3969/j.issn.1006-7493.2007.03.012

    CrossRef Google Scholar

    [41] 黄亮, 田素梅, 张虎, 等. 2021. 滇西云龙漕涧地区高压片麻岩的发现及厘定[J]. 岩石矿物学杂志, 40(4): 747−756.

    Google Scholar

    [42] 昆明钢铁集团有限责任公司. 2014. 云南省新平县大红山铁矿铁铜矿生产勘探报告[R].

    Google Scholar

    [43] 李积山, 张军杰, 刘伟, 等. 2022. 豫南史庄一带金伯利岩中石榴子石矿物学特征及其形成条件的约束[J]. 地质通报, 41(5): 824−835. doi: 10.12097/j.issn.1671-2552.2022.05.008

    CrossRef Google Scholar

    [44] 金廷福, 李佑国, 费光春, 等. 2017. 扬子地台西南缘大红山群红山组的锆石 U−Pb 年代学研究——对其原岩形成时代和变质时代的再限定[J]. 地质论评, 63(4): 894−910.

    Google Scholar

    [45] 金廷福, 罗伟, 李佑国, 等. 2021. 扬子西南缘大红山铁铜多金属矿床矿化方解石脉方解石Sm−Nd定年及意义[J]. 矿物学报, 41(3): 343−354.

    Google Scholar

    [46] 戚金栋. 2016. 滇中大红山地区大红山群变质火山岩岩石地球化学特征研究[D]. 昆明理工大学硕士学位论文: 1−80.

    Google Scholar

    [47] 钱锦和, 沈远仁. 1983. 云南大红山古火山铁铜矿床成因[N]. 地质专报: 矿床与矿产, 15: 12.

    Google Scholar

    [48] 王立本. 2001. 角闪石命名法—国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告[J]. 岩石矿物学杂志, 20(1): 84−100.

    Google Scholar

    [49] 吴孔文. 2008. 云南大红山层状铜矿床地球化学及成矿机制研究[D]. 中国科学学院地球化学研究所硕士学位论文: 1−113.

    Google Scholar

    [50] 杨红, 刘福来, 杜利林, 等. 2012. 扬子地块西南缘大红山群老厂河组变质火山岩的锆石U−Pb定年及其地质意义[J]. 岩石学报, 28(9): 2994−3014.

    Google Scholar

    [51] 杨红, 刘福来, 刘平华, 等. 2013. 扬子地块西南缘大红山群石榴白云母−长石石英片岩的白云母40Ar−39Ar 定年及其地质意义[J]. 岩石学报, 29(6): 2161−2170.

    Google Scholar

    [52] 杨红, 刘平华, 华孟恩, 等. 2014. 扬子地块西南缘大红山群变质基性岩的地球化学研究及构造意义[J]. 岩石学报, 30(10): 3021−3033.

    Google Scholar

    [53] 杨现力, 张立飞, 赵志丹, 等. 2014. 青藏高原拉萨地块松多蓝闪石榴辉岩的变质演化: 相平衡及变质作用P−T轨迹[J]. 岩石学报, 30(5): 1505−1519.

    Google Scholar

    [54] 云南省地质调查局. 2013. 云南省成矿地质背景研究报告[M]. 北京: 地质出版社: 1−368.

    Google Scholar

    [55] 云南省地质矿产局. 1990a. 云南大红山古火山岩铁铜矿[M]. 北京: 地质出版社: 1−236.

    Google Scholar

    [56] 云南省地质矿产局. 1990b. 云南省区域地质志[M]. 北京: 地质出版社: 1−530.

    Google Scholar

    [57] 翟庆国, 李才, 王军. 2009. 藏北羌塘中部戈木日榴辉岩的岩石学、矿物学及变质作用PTt轨迹[J]. 地质通报, 28(9): 1207−1214. doi: 10.3969/j.issn.1671-2552.2009.09.008

    CrossRef Google Scholar

    [58] 张聪, 张立飞, 张贵宾, 等. 2009. 柴北缘锡铁山一带榴辉岩的岩石学特征及其退变PT轨迹[J]. 岩石学报, 25(9): 2247−2259.

    Google Scholar

    [59] 张景森, 魏春景, 周喜文. 2006. 大别山西段含蓝闪石-蓝晶石榴辉岩的相平衡研究[J]. 岩石学报, 22(12): 2861−2874. doi: 10.3321/j.issn:1000-0569.2006.12.005

    CrossRef Google Scholar

    [60] 张泽明, 杨勇, 张建新. 1999. 阿尔金西段榴辉岩中石榴子石的成分环带及其动力学意义[J]. 科学通报, 44(16): 1769−1773. doi: 10.3321/j.issn:0023-074X.1999.16.019

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(295) PDF downloads(55) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint