Citation: | LAN Huaping, REN Zhanli, ZHANG Ying, QI Kai, XING Guangyuan, XIA Yan, FENG Mengyuan. 2024. Geochemical characteristics of Neogene mudstone in Guanzhong Basin: Provenance and paleosedimentary environment restoration. Geological Bulletin of China, 43(10): 1801-1817. doi: 10.12097/gbc.2023.05.010 |
At present, the geothermal resources developed and utilized in the Guanzhong Basin are mainly Cenozoic sandstone and glutenite pore−fissure geothermal resources. The development and utilization horizons are mainly Neogene thermal reservoirs. The occurrence characteristics of geothermal resources, the distribution of favorable areas for geothermal resources development, and the amount of geothermal resources are closely related to the provenance and paleosedimentary environment. Identifying the characteristics of Neogene mudstone provenance and paleosedimentary environment is conducive to indicating the characteristics of sandstone provenance and paleosedimentary environment in the same sedimentary period. It has practical guiding significance for the determination of key horizons for the development and utilization of geothermal resources in the Guanzhong Basin, the prediction of favorable areas, and the calculation of resources. The geochemical characteristics of elements in sedimentary rocks record important provenance and sedimentary environment information. According to the characteristics of major, trace and rare earth elements of Neogene mudstone core samples in Guanzhong Basin, the provenance and sedimentary environment were comprehensively studied. The results show that the tectonic background of the source area of Neogene mudstone in Guanzhong Basin is mainly active continental margin, and the source rocks are mainly syenogranite of Taibai rock mass and biotite monzonitic granite of Huashan rock mass in the southern margin of Guanzhong Basin, which contain some intermediate−basic igneous rocks. The chemical alteration index (CIA) ranges from 61.34 to 76.78, with an average value of 70.78, reflecting that the Neogene mudstone has experienced moderate weathering, indicating that the Gaoling Group and the Lantian−Bahe Formation were in a warm and humid climate during the deposition period, and the Zhangjiapo Formation was deposited. The climate changed from warm and humid climate to cold and dry climate; geochemical indicators comprehensively reflect that the Neogene mudstone deposition period is mainly in a reducing environment, and the paleosalinity of the water body is generally in a freshwater and brackish water environment.
[1] | Bhatia R M, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy & Petrology, 92(2): 181−193. |
[2] | Boynton W V. 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies[J]. Developments in Geochemistry, 2(2): 63−114. |
[3] | Cao H X, Li W H, Chen Q H, et al. 2008. Center of Late Triassic Subsidence and depocenter for the Southern Ordos Basin[J]. Geotectonica et Metallogenia, 32(2): 159−164 (in Chinese with English abstract). |
[4] | Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 59(14): 2919−2940. doi: 10.1016/0016-7037(95)00185-9 |
[5] | Girty G H, Ridge D L, Knaack C, et al. 1996. Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California[J]. Journal of Sedimentary Research, 66(1): 107−118. |
[6] | Gu X X, Liu J M, Zheng M H, et al. 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence[J]. Journal of Sedimentary Research, 72(3): 393−407. doi: 10.1306/081601720393 |
[7] | Guo B, Zhu L M, Li B, et al. 2009. Zircon U–Pb age and Hf isotopic composition of the Huashan and Heyu granites plutons at the southern margin of North China Craton: Implications for geodynamic setting[J]. Petrological Journal, 25(2): 265−281 (in Chinese with English abstract). |
[8] | Guo W, Zhang W G, Li Y H, et al. 2020. Geochemistry of 7 member shale of the dameigou formation in the Northern Qaidam Basin, China: significance and implication for provenance and source weathering in the late Middle Jurassic[J]. Acta Sedimentologica Sinica, 38(3): 676−686 (in Chinese with English abstract). |
[9] | Han H Y, Zhang Y, Yuan Z X. 2002. The evolution of Weihe down−faulted basin and the movement of the fault blocks[J]. Journal of Seismological Research, 25(4): 362−368 (in Chinese with English abstract). |
[10] | Hayashi K I, Fujisawa H, Holland H D, et al. 1997. Geochemistry of~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 61(19): 4115−4137. doi: 10.1016/S0016-7037(97)00214-7 |
[11] | Hofer G, Wagreich M, Neuhuber S. 2013. Geochemistry of fine−grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies[J]. Geoscience Frontiers, 4(4): 449−468. doi: 10.1016/j.gsf.2012.11.009 |
[12] | Hong Z L, Zhang Y L, Zhou Y. 2019. Research on the models of occurrence and application of geothermal resources in the middle and deep layers of the piedmont area in southern Guanzhong Basin[J]. Geology in China, 46(5): 1224−1235 (in Chinese with English abstract). |
[13] | Jia J L, Bechtel A, Liu Z, et al. 2013. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses[J]. International Journal of Coal Geology, 113(4): 11−26. |
[14] | Kaakinen A, Lunkka P J. 2003. Sedimentation of the Late Miocene Bahe Formation and its implications for stable environments adjacent to Qinling mountains in Shaanxi, China[J]. Journal of Asian Earth Sciences, 22(1): 67−78. |
[15] | Kamp D V C P, Leake B E. 1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin[J]. Transactions of the Royal Society of Edinburgh: Earth Science, 76(4): 411−449. doi: 10.1017/S0263593300010646 |
[16] | Kröner A, Compston W, Zhang G W, et al. 1988. Age and tectonic setting of Late Archean greenstone−gneiss terrain in Henan Province, China, as revealed by single−grain zircon dating[J]. Geology, 16(3): 211−215. doi: 10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2 |
[17] | Lee Y I. 2002. Provenance derived from the geochemistry of late Paleozoic–early Mesozoic mudrocks of the Pyeongan Supergroup, Korea[J]. Sedimentary Geology, 149(4): 219−235. doi: 10.1016/S0037-0738(01)00174-9 |
[18] | Lei K Y, Liu C Y, Zhang L, et al. 2017. Element Geochemical characteristics of the Jurassic mudstone in the Northern Ordos Basin: implicaitons for tracing sediment sources and paleo−environment restoration[J]. Acta Sedimentologica Sinica, 35(3): 621−636 (in Chinese with English abstract). |
[19] | Li C K, Wu W Y, Qiu Z D. 1984. Chinese neogene: subdivision and correlation[J]. Vertebrata Palasiatica, 22(3): 163−178, 257−258 (in Chinese with English abstract). |
[20] | Li K Y, Xu S K, Li W H, et al. 2021. Restoration of Neogene sedimentary paleoenvironment in Gushi Sag, Weihe Basin[J]. Chinese Journal of Geology, 56(4): 1134−1146 (in Chinese with English abstract). |
[21] | Li Q, Xu S L, Chen H D, et al. 2018. Geochemical characteristics and paleo−environmental implication of Middle Permian Maokou Formation in Wangcang region, Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 45(3): 268−281 (in Chinese with English abstract). |
[22] | Li Z C. 2017. The lithofacies paleogeography and paleoenvironmental evolution of the cenozoic in the Weihe Basin, China[D]. Doctoral Dissertation of Northwest University (in Chinese with English abstract). |
[23] | Li Z C, Li W h, Li Y X, et al. 2016. Cenozoic stratigraphy and paleoenvironment in the Weihe area, Shaanxi Province[J]. Journal of Stratigraphy, 40(2): 168−178 (in Chinese with English abstract). |
[24] | Li Z Y, Li Y X, Li W H, et al. 2021. Sedimentary characteristics of Paleogene−Neogene in Fenwei Basin[J]. Chinese Journal of Geology, 56(4): 1120−1133 (in Chinese with English abstract). |
[25] | Liu D S, Ding M L, Gao F Q. 1960. Cenozoic stratigraphic profiles of Lantian, Xi’an[J]. Scientia Geologica Sinica, 35(4): 199−208 (in Chinese with English abstract). |
[26] | Liu G. 2007. The application of geochemical analysis to study of sedimentary environment of Qianjiang Formation in Qianjiang Depression[J]. Acta Geoscientica Sinica, 28(4): 335−340 (in Chinese with English abstract). |
[27] | Liu H J, Xue X X. 2004. Discussion on the Cenozoic and its chronology in the Weihe River Basin[J]. Journal of Earth Sciences and Environment, 26(4): 1−5 (in Chinese with English abstract). |
[28] | Liu R, Chen M, Tian X S, et al. 2014. Geochemical, zircon SIMS U–Pb geochronological and Hf isotope study on Lantian and Muhuguan plutons in Eastern Qinling, China: petrogenesis and tectonic implications[J]. Acta Mieralogica Sinica, 34(4): 469−480 (in Chinese with English abstract). |
[29] | Luo Q Y, Zhong N N, Wang Y N, et al. 2013. Geochemistry of mesoproterozoic Hongshuizhuang Formation shales in Northern North China: implications for provenance and source weathering[J]. Acta Geologica Sinica, 87(12): 1913−1921 (in Chinese with English abstract). |
[30] | Mao G Z, Liu C Y. 2011. Application of geochemistry in provenance and depositional setting Analysis[J]. Journal of Earth Science and Environment, 33(4): 337−348 (in Chinese with English abstract). |
[31] | Mao J W, Xie G Q, Zhang Z H, et al. 2005. Mesozoic large−scale metallogenic pulses in Northern China and corresponding geodynamic setting[J]. Acta Petrologica Sinica, 21(1): 171−190 (in Chinese with English abstract). |
[32] | Mattauer M, Matte P, MalavieilleAL J, et al. 1985. Tectonics of the Qinling Belt: build−up and evolution of eastern Asia[J]. Nature, 317(6037): 496−500. doi: 10.1038/317496a0 |
[33] | Mclennan S M. 1993. Weathering and global denudation[J]. The Journal of Geology, 101(2): 295−303. doi: 10.1086/648222 |
[34] | Mclennan S M, Hemming S, Mcdaniel D K, et al. 1993. Geochemical approaches to sedimentation, provenance, and tectonics[J]. Special Paper of the Geological Society America, 284(2): 21−40. |
[35] | Moosavirad S M, Janardhana M R, Sethumadhav M S, et al. 2011. Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting[J]. Chemie der Erde−Geochemistry, 71(3): 279−288. doi: 10.1016/j.chemer.2010.10.001 |
[36] | Mu G X, Li F, Yan W Z, et al. 2014. The occurrence regularity and key technology of development and utilization of geothermal resources in Guanzhong Basin[M]. Beijing: Geological Publishing House (in Chinese). |
[37] | Murray R W, Buchholtz T B M R, Jones L D, et al. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale[J]. Geology, 18(3): 268−271. doi: 10.1130/0091-7613(1990)018<0268:REEAIO>2.3.CO;2 |
[38] | Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0 |
[39] | Paikaray S, Banerjee S, Mukherji S. 2007. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering[J]. Journal of Asian Earth Sciences, 32(1): 34−48. |
[40] | Passchier S, Krissek L A. 2008. Oligocene−Miocene Antarctic continental weathering record and paleoclimatic implications, Cape Roberts drilling Project, Ross Sea, Antarctica[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(1/2): 30−40. doi: 10.1016/j.palaeo.2007.08.012 |
[41] | Prego R, Caetano M, Vale C, et al. 2009. Rare earth elements in sediments of the Vigo Ria, NW Iberian Peninsula[J]. Continental Shelf Research, 29(7): 896−902. doi: 10.1016/j.csr.2009.01.009 |
[42] | Qi Q J, Wang X X, Ke C H, et al. 2012. Geochronology and origin of the Laoniushan complex in the southern margin of North China Block and their implications: new evidences from zircon dating, Hf isotope and geochemistry[J]. Acta Petrologica Sinica, 28(1): 279−301 (in Chinese with English abstract). |
[43] | Rao S, Jiang G Z, Gao Y J, et al. 2016. The thermal structure of lithosphere and heat source mechanism of geothermal field in Weihe Basin[J]. Chinese Journal of Geophysics, 59(6): 2176−2190 (in Chinese with English abstract). |
[44] | Ren Z L, Liu R C, Ren W B, et al. 2020. Distribution of geothermal field and its controlling factors in Weihe Basin[J]. Acta Geologica Sinica, 94(7): 1938−1949 (in Chinese with English abstract). |
[45] | Rimmer M S, Thompson A J, Goodnight A S, et al. 2004. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1/2): 125−154. |
[46] | Shao Y B, Guo Y H, Qin Y, et al. 2011. Distribution characteristic and geological significance of rare earth elements in Lopingian mudstone of Permian, Panxian county, Guizhou province[J]. Mining Science and Technology (China), 21(4): 469−476. doi: 10.1016/j.mstc.2011.06.002 |
[47] | Shi C H, Hu R Z, Yan J X. 2004. Sedimentary geochemistry of the Qixia Formation and its environmental implication[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 23(2): 144−148 (in Chinese with English abstract). |
[48] | Sun H L. 2015. The bearing features and genetic model for geothermal resources in Guanzhong Basin[D]. Dctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract). |
[49] | Taylor S R, Mclennan S M. 1985. The continental crust: its composition and evolution[J]. The Journal of Geology, 94(4): 57−72. |
[50] | Wang B, Zheng H B, He Z, et al. 2014. Middle Miocene eolian sediments on the southern Chinese Loess Plateau dated by magnetostratigraphy[J]. Palaeogeography Palaeoclimatology Palaeoecology, 411(1): 257−266. |
[51] | Wang G L, Liu Z M, Lin W J. 2004. Tectonic control of geothermal resources in the peripheral of Ordos Basin[J]. Acta Geologica Sinica, 78(1): 44−51 (in Chinese with English abstract). |
[52] | Wang J Q, Liu C Y, Gao F, et al. 2015. Pre–Cenozoic geological characteristics and oil–gas significance in Weihe Basin, Shaanxi Province[J]. Geological Bulletin of China, 34(10): 1981−1991 (in Chinese with English abstract). |
[53] | Wang J Q, Zhu L M, Guo B, et al. 2015. Characteristics of Sr–Nd and Pb isotopic composition and its geological significance of granitic plutons in the Huashan, Laoniushan and Heyu area at the southern margin of North China Craton[J]. Mineralogy and Petrology, 35(1): 63−72 (in Chinese with English abstract). |
[54] | Wang W, Zhou M, Yan D, et al. 2012. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 192(1): 107−124. |
[55] | Wu F F. 2013. Research on magmatite and its metallogenic tectonic setting in the Shanyang–Zhashui area, Middle Qinling Orogenic Balt[D]. Dctoral Dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract). |
[56] | Xue X X. 1981. An early pleistocene mammalian fauna and its stratigraphy of The River You, Weinan Shensi[J]. Vertebrate Palasiatica, 19(1): 35−44, 103−104 (in Chinese with English abstract). |
[57] | Yang X F, He D F, Wang Q C, et al. 2012. Provenance and tectonic setting of the Carboniferous sedimentary rocks of the East Junggar Basin, China: Evidence from geochemistry and U–Pb zircon geochronology[J]. Gondwana Research, 22(2): 567−584. doi: 10.1016/j.gr.2011.11.001 |
[58] | Ye H, Zhang K X, Ji J L, et al. 2010. Major and elemant characters of the sediments paleoclimatic evolvement during about 23.1~5.0 Ma in Xunhua Basin, Qinghai[J]. Earth Science–Journal of China University of Geosciences, 35(5): 811−820 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.094 |
[59] | Zhai M G, Meng Q R, Liu J M, et al. 2004. Geological features of Mesozoic tectonic regime inversion in Eastern North China and implication for geodynamics[J]. Earth Science Frontiers (China University of Geosciences, Beijing), 11(3): 285−297 (in Chinese with English abstract). |
[60] | Zhang G W, Meng Q R, Yu Z P, et al. 1996. Orogenic process and dynamic characteristics of Qinling orogenic belt[J]. Science in China (Series D), 26(3): 193−200 (in Chinese with English abstract). |
[61] | Zhang S Q, Wu L J, Guo J M, et al. 1985. An interpretation of the Dss Date on Menyuan–Pingliang–Weinan profile in west China[J]. Acta Geophysica Sinica, 28(5): 460−472 (in Chinese with English abstract). |
[62] | Zhang X K, Ye H S, Li Z Y, et al. 2015. Zircon U–Pb ages, Hf isotopic and geochemistry of Dafuyu granitoid poluton from Huashan complex batholith in Xiaoqinling[J]. Mineral Deposits, 34(2): 235−260 (in Chinese with English abstract). |
[63] | Zhang Y X, Sun D H, An Z S, et al. 1999. Mammalian fossils from late pliocene (lower mn 16) of Lingtai, Gansu Province[J]. Vertebrata Palasiatica, 37(3): 190−199 (in Chinese with English abstract). |
[64] | Zhang Y X, Xue X X. 1996. Discussus on subdivision of late miocene in Lantian area, Middle of Shaanxi[J]. Northwest Geoscience, 17(1): 59−62 (in Chinese with English abstract). |
[65] | Zhang Z H, Lai S C, Qin J F. 2014. Petrogenesis and its geological significance of the Late Mesozoic syenogranite from the Taibai Mountain, North Qinling[J]. Acta Petrologica Sinica, 30(11): 3242−3254 (in Chinese with English abstract). |
[66] | Zheng R C, Liu M Q. 1999. Study on paleosalinity of Chang 6 oil reservoir set in Ordos Basin[J]. Oil & Gas Geology, 20(1): 22−27 (in Chinese with English abstract). |
[67] | Zhou Y, Hong Z L, Zhang H, et al. 2020. Occurrence rules and resource estimation of shallow geothermal energy in Guanzhong Basin[J]. Geological Survey of China, 7(2): 21−29 (in Chinese with English abstract). |
[68] | 曹红霞, 李文厚, 陈全红, 等. 2008. 鄂尔多斯盆地南部晚三叠世沉降与沉积中心研究[J]. 大地构造与成矿学, 32(2): 159−164. doi: 10.3969/j.issn.1001-1552.2008.02.004 |
[69] | 郭波, 朱赖民, 李犇, 等. 2009. 华北陆块南缘华山和合峪花岗岩岩体锆石U–Pb年龄、Hf同位素组成与成岩动力学背景[J]. 岩石学报, 25(2): 265−281. |
[70] | 郭望, 张卫刚, 李玉宏, 等. 2020. 柴北缘大煤沟组七段页岩地球化学特征–对中侏罗世晚期物源及风化作用的指示及意义[J]. 沉积学报, 38(3): 676−686. |
[71] | 韩恒悦, 张逸, 袁志祥. 2002. 渭河断陷盆地带的形成演化及断块运动[J]. 地震研究, 25(4): 362−368. doi: 10.3969/j.issn.1000-0666.2002.04.010 |
[72] | 洪增林, 张银龙, 周阳. 2019. 关中盆地南部山前中深层地热资源赋存特征及应用[J]. 中国地质, 46(5): 1224−1235. doi: 10.12029/gc20190522 |
[73] | 李传夔, 吴文裕, 邱铸鼎. 1984. 中国陆相新第三系的初步划分与对比[J]. 古脊椎动物学报, 22(3): 163−178, 257−258. |
[74] | 李智超, 李文厚, 李永项, 等. 2016. 陕西渭河地区新生代地层及沉积环境演化[J]. 地层学杂志, 40(2): 168−178. |
[75] | 李智超. 2017. 渭河盆地新生代岩相古地理及环境演化[D]. 西北大学博士学位论文. |
[76] | 李乾, 徐胜林, 陈洪德, 等. 2018. 川北旺苍地区茅口组地球化学特征及古环境记录[J]. 成都理工大学学报(自然科学版), 45(3): 268−281. |
[77] | 李兆雨, 李永项, 李文厚, 等. 2021. 汾渭盆地古近系–新近系沉积特征[J]. 地质科学, 56(4): 1120−1133. doi: 10.12017/dzkx.2021.060 |
[78] | 李克永, 徐帅康, 李文厚, 等. 2021. 渭河盆地固市凹陷新近系沉积古环境恢复[J]. 地质科学, 56(4): 1134−1146. doi: 10.12017/dzkx.2021.061 |
[79] | 刘护军, 薛祥煦. 2004. 对渭河盆地新生界及其年代的讨论[J]. 地球科学与环境学报, 26(4): 1−5. doi: 10.3969/j.issn.1672-6561.2004.04.001 |
[80] | 刘刚. 2007. 运用地球化学分析研究潜江凹陷潜江组沉积环境[J]. 地球学报, 28(4): 335−340. doi: 10.3321/j.issn:1006-3021.2007.04.003 |
[81] | 刘锐, 陈觅, 田向盛, 等. 2014. 东秦岭蓝田和牧护关岩体地球化学、锆石SIMS U–Pb年龄及Hf同位素特征: 岩石成因及构造意义[J]. 矿物学报, 34(4): 469−480. |
[82] | 刘东生, 丁梦麟, 高福清. 1960. 西安蓝田间新生界地层剖面[J]. 地质科学, 35(4): 199−208. |
[83] | 雷开宇, 刘池洋, 张龙, 等. 2017. 鄂尔多斯盆地北部侏罗系泥岩地球化学特征: 物源与古沉积环境恢复[J]. 沉积学报, 35(3): 621−636. |
[84] | 罗情勇, 钟宁宁, 王延年, 等. 2013. 华北北部中元古界洪水庄组页岩地球化学特征: 物源及其风化作用[J]. 地质学报, 87(12): 1913−1921. |
[85] | 毛景文, 谢桂青, 张作衡, 等. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背景[J]. 岩石学报, 21(1): 171−190. doi: 10.3321/j.issn:1000-0569.2005.01.017 |
[86] | 毛光周, 刘池洋. 2011. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 33(4): 337−348. doi: 10.3969/j.issn.1672-6561.2011.04.002 |
[87] | 穆根胥, 李锋, 闫文中, 等. 2014. 关中盆地地热资源赋存规律及开发利用关键技术[M]. 北京: 地质出版社. |
[88] | 齐秋菊, 王晓霞, 柯昌辉, 等. 2012. 华北地块南缘老牛山杂岩体时代、成因及地质意义——锆石年龄、Hf同位素和地球化学新证据[J]. 岩石学报, 28(1): 279−301. |
[89] | 饶松, 姜光政, 高雅洁, 等. 2016. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 59(6): 2176−2190. doi: 10.6038/cjg20160622 |
[90] | 任战利, 刘润川, 任文波, 等. 2020. 渭河盆地地温场分布规律及其控制因素[J]. 地质学报, 94(7): 1938−1949. doi: 10.3969/j.issn.0001-5717.2020.07.003 |
[91] | 施春华, 胡瑞忠, 颜佳新. 2004. 栖霞组沉积地球化学特征及其环境意义[J]. 矿物岩石地球化学通报, 23(2): 144−148. doi: 10.3969/j.issn.1007-2802.2004.02.011 |
[92] | 孙红丽. 2015. 关中盆地地热资源赋存特征及成因模式研究[D]. 中国地质大学(北京)博士学位论文. |
[93] | 王贵玲, 刘志明, 蔺文静. 2004. 鄂尔多斯周缘地质构造对地热资源形成的控制作用[J]. 地质学报, 78(1): 44−51. doi: 10.3321/j.issn:0001-5717.2004.01.006 |
[94] | 王建强, 刘池洋, 高飞, 等. 2015. 陕西渭河盆地前新生界地质特征及其油气意义[J]. 地质通报, 34(10): 1981−1991. doi: 10.3969/j.issn.1671-2552.2015.10.024 |
[95] | 王建其, 朱赖民, 郭波, 等. 2015. 华北陆块南缘华山、老牛山及合峪花岗岩体Sr–Nd, Pb同位素组成特征及其地质意义[J]. 矿物岩石, 35(1): 63−72. |
[96] | 吴发富. 2013. 中秦岭山阳—柞水地区岩浆岩及其成矿构造环境研究[D]. 中国地质科学院博士学位论文. |
[97] | 薛祥煦. 1981. 陕西渭南早更新世哺乳动物群及其层位[J]. 古脊椎动物与古人类, 19(1): 35−44, 103−104. |
[98] | 叶荷, 张克信, 季军良, 等. 2010. 青海循化盆地23.1~5.0 Ma沉积地层中常量、微量元素组成特征及其古气候演变[J]. 地球科学(中国地质大学学报), 35(5): 811−820. |
[99] | 张少泉, 武利均, 郭建明, 等. 1985. 中国西部地区门源—平凉—渭南地震测深剖面资料的分析解释[J]. 地球物理学报, 28(5): 460−472. doi: 10.3321/j.issn:0001-5733.1985.05.003 |
[100] | 张国伟, 孟庆任, 于在平, 等. 1996. 秦岭造山带的造山过程及其动力学特征[J]. 中国科学(D辑), 26(3): 193−200. |
[101] | 张云翔, 薛祥煦. 1996. 陕西蓝田地区新第三纪地层划分的几点讨论[J]. 西北地质科学, 17(1): 59−62. |
[102] | 郑荣才, 柳梅青. 1999. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 20(1): 22−27. doi: 10.11743/ogg19990105 |
[103] | 张云翔, 孙东怀, 安芷生, 等. 1999. 甘肃灵台上新世晚期红粘土中的哺乳动物化石[J]. 古脊椎动物学报, 37(3): 190−199. |
[104] | 翟明国, 孟庆任, 刘建明, 等. 2004. 华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J]. 地学前缘, 11(3): 285−297. doi: 10.3321/j.issn:1005-2321.2004.03.027 |
[105] | 张志华, 赖绍聪, 秦江锋. 2014. 北秦岭太白山晚中生代正长花岗岩成因及其地质意义[J]. 岩石学报, 30(11): 3242−3254. |
[106] | 张兴康, 叶会寿, 李正远, 等. 2015. 小秦岭华山复式岩基大夫峪岩体锆石U–Pb年龄、Hf同位素和地球化学特征[J]. 矿床地质, 34(2): 235−260. |
[107] | 周阳, 洪增林, 张卉, 等. 2020. 关中盆地浅层地热能赋存规律及资源量估算[J]. 中国地质调查, 7(2): 21−29. |
Tectonic location and distribution map of tectonic units in Guanzhong Basin
Neogene lithologic column diagram and mudstone sample location in Guanzhong Basin
Trace element partitioning model of Neogene mudstone in Guanzhong Basin
Distribution patterns of rare earth elements in Neogene mudstone and adjacent rock mass in Guanzhong Basin
Attributes of Neogene mudstone source rocks in Guanzhong Basin La/Sc−Co/Th diagram (a) and Hf−La/Th diagram (b)
K2O/Na2O−SiO2/Al2O3 diagram (a) and La/Sc−Ti/Zr diagram (b) of tectonic background of Neogene mudstone source area in Guanzhong Basin
A−CN−K diagram of Neogene mudstone in Guanzhong Basin