2024 Vol. 43, No. 10
Article Contents

DONG Guoqiang, YU Junpeng, WU Yibu, LIU Tao, ZHANG Wei. 2024. Zircon U−Pb age, petrogeochemical characteristics of Paleoproterozoic granite in the Helishan area, Gansu Province, and its constraints for tectonic environment of the southern Alxa block. Geological Bulletin of China, 43(10): 1830-1840. doi: 10.12097/gbc.2022.03.033
Citation: DONG Guoqiang, YU Junpeng, WU Yibu, LIU Tao, ZHANG Wei. 2024. Zircon U−Pb age, petrogeochemical characteristics of Paleoproterozoic granite in the Helishan area, Gansu Province, and its constraints for tectonic environment of the southern Alxa block. Geological Bulletin of China, 43(10): 1830-1840. doi: 10.12097/gbc.2022.03.033

Zircon U−Pb age, petrogeochemical characteristics of Paleoproterozoic granite in the Helishan area, Gansu Province, and its constraints for tectonic environment of the southern Alxa block

More Information
  • As the direct surrounding rock of Jinchuan nickel mine, the Longshoushan rock group distributed in the southern margin of Alxa block has great controversy on its formation age and tectonic background.This paper reports that the Paleoproterozoic granite body of Helishan, which intrudes into Longshoushan rock group, is newly discovered in the southern margin of Alxa block, which lithology is monzogranite, syenogranite and syenite. According to the petrogeochemical analysis, the Al2O3 / (CaO + Na2O + K2O) of Helishan granite is 0.91~1.06 and K2O/Na2O is 1.10~1.44, it belongs to potassium alkali calcium granite. The rock is relatively rich in large ion lithophile elements such as Rb, Ba, Th, K, etc., and lack in high field strength elements such as Ta, Nb, P, Zr, Hf, Ti, etc., which has the geochemical characteristics of arc magma and is formed in the magmatic arc tectonic environment of subduction zone. The zircon U−Pb dating result of LA−ICP−MS shows that the formation age of Helishan monzogranite is 1859±12 Ma and the intrusion occurred in the Late Paleoproterozoic, it reveals that the formation age of metamorphic strata of Longshoushan group is greater than 1.85 Ga, reflecting that the southern margin of Alxa block may be in the process of subduction in the Late Paleoproterozoic.

  • 加载中
  • [1] Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 46(3): 605−626.

    Google Scholar

    [2] Briqueu L, Bougault H, Joron J L. 1984. Quantification of Nb, Ta, Ti and V anomalies in magmas associated with subduction zones: Petrogenetic implications[J]. Earth and Planetary Science Letters, 68(2): 297−308.

    Google Scholar

    [3] Diwu C R, Sun Y, Wang Q. 2012. The crustal growth and evolution of North China Craton: Revealed by Hf isotopes in detrital zircons from modern rivers[J]. Acta Petrologica Sinica, 28(11): 3520−3530 (in Chinese with English abstract).

    Google Scholar

    [4] Dong G A, Yang H Y, Liu D Y, et al. 2007. Detrital zircon SHRIMP U−Pb chronology of the Longshoushan Group and its geological significance[J]. Chinese Science Bulletin, 52(6): 688−696(in Chinese with English abstract). doi: 10.1360/csb2007-52-6-688

    CrossRef Google Scholar

    [5] Duan J, Li C, Qian Z Z, et al. 2015. Geochronological and geochemical constraints on the petrogenesis and tectonic significance of Paleozoic dolerite dykes in the southern margin of Alxa Block, North China Craton[J]. Journal of Asian Earth Sciences, 111: 244−253. doi: 10.1016/j.jseaes.2015.07.012

    CrossRef Google Scholar

    [6] Geng Y S, Shen Q H, Ren L D. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton[J]. Acta Petrologica Sinica, 26(7): 1945−1966(in Chinese with English abstract).

    Google Scholar

    [7] Geng Y S, Du L L, Ren L D. 2012. Growth and reworking of the early Precambrian continrntal crust in the North China Craton: Constraints from zircon Hf isotopes[J]. Gondwana Research, 21(2/3): 517−529. doi: 10.1016/j.gr.2011.07.006

    CrossRef Google Scholar

    [8] Geological Survey of Gansu Province. 2024. Investigation of three 1: 50000 mineral prospects in Chounidun−Xixiaokouzi area, Gaotai County, Gansu Province[R] (in Chinese with English abstract).

    Google Scholar

    [9] Gong J H, Zhang J X, Yu S Y. 2011. The origin of Longshoushan Group and associated rocks in the southern part of the Alxa block: constraint from LA−ICP−MS U−Pb zircon dating[J]. Acta Petrologica Et Mineralogica, 30(5): 795−818(in Chinese with English abstract).

    Google Scholar

    [10] Gong J H, Zhang J X, Yu S Y, et al. 2012. Ca. 2.5 Ga TTG rocks in the western Alxa Block and their implications[J]. Chinese Science Bulletin, 57: 4064−4076. doi: 10.1007/s11434-012-5315-8

    CrossRef Google Scholar

    [11] Gong J H. 2013. Compositions, characteristics, chronological framework and origin of Early−Precambrian metamorphic basement in western Alxa block[D]. Doctoral Thesis of Chinese Academy of Geological Sciences: 1−196(in Chinese with English abstract).

    Google Scholar

    [12] Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism[J]. Geological Society, London, Special Publications, 19(1): 67−81.

    Google Scholar

    [13] Hu J, Gong W, Wu S, et al. 2014. LA−ICP−MS zircon U−Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255(2): 756−770.

    Google Scholar

    [14] Hu Z C, Zhang W, Liu Y S, et al. 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP−MS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 87(2): 1152−1157. doi: 10.1021/ac503749k

    CrossRef Google Scholar

    [15] Li J J. 2006. Regional metallogenic system of Alxa Block in Inner Mongolia autonomous region[D]. Doctoral Thesis of China University of Geosciences (Beijing): 1−177(in Chinese with English abstract).

    Google Scholar

    [16] Li J Y, Zhang J, Yang T N, et al. 2009. Crustal tectonic division and evolution of the southern part of the north Asian orogenic region and its adjacent areas[J]. Journal of Jilin University (Earth Science Edition), 39(4): 584−605(in Chinese with English abstract).

    Google Scholar

    [17] Liu D Y, Nutman A P W, Compston W, et al. 1992. Remmants of ≥3800 Ma crust in the Chinese part of the Sino−Korean Craton[J]. Geology, 20: 339−342.

    Google Scholar

    [18] Liu F, Guo J H, Lu X P, et al. 2009. Crustal growth at 2.5 Ga in the North China Craton: evidence from whole−rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane[J]. Chinese Sci Bull, 54(17): 2517−2526(in Chinese with English abstract). doi: 10.1360/csb2009-54-17-2517

    CrossRef Google Scholar

    [19] Liu Y. 2008. Characteristics and their geological significance of Paleoproterozoic granite in Jinchuan, Gansu Province[D]. Master's Thesis of China University of Geosciences (Beijing): 1−64(in Chinese with English abstract).

    Google Scholar

    [20] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [21] Liu Y S, Gao S, Hu Z C, et al. 2010. Continental and oceanic crust recycling−induced melt−peridotite interactions in the Trans−North China Orogen: U−Pb dating, Hf isotopes and trace elements in zircons of mantle xenoli[J]. Journal of Petrology, 51(1/2): 537−571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [22] Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 4: 25−34.

    Google Scholar

    [23] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretat of granitic rocks[J]. Journal of Petrology, 25(4): 956−983.

    Google Scholar

    [24] Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 33(3): 267−309. doi: 10.1029/95RG01302

    CrossRef Google Scholar

    [25] Shi J P, Yang D B, Huo T F, et al. 2017. The geochronology and Nd−Hf isotope compositions of A−type granites on the southern margin of North China Craton: Constraints on the Late Paleoproterozoic extensional events[J]. Acta Petrologica Sinica, 33(10): 3042−3056(in Chinese with English abstract).

    Google Scholar

    [26] Song B, Nutman A P, Liu D Y, et al. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China[J]. Precambrian Research, 78: 79−94. doi: 10.1016/0301-9268(95)00070-4

    CrossRef Google Scholar

    [27] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society of London, Special Publications, 42(1): 313−345.

    Google Scholar

    [28] Tang Z L, Bai Y L. 2002. Metallogenic system and metallogenic tectonic dynamics of the southwestern margin of the North China Plate (Longshoushan−Qilianshan)[M]. Beijing: Geology Press: 1−393(in Chinese).

    Google Scholar

    [29] Wan Y S, Liu D Y, Song B. 2005. Geochemical and Nd isotopic composition of 3.8 Ga meta−quartz dioritic and trondh jemitic rocks from the Archean area and their geological significance[J]. Journal of Asian Earth Sciences, 24: 563−575. doi: 10.1016/j.jseaes.2004.02.009

    CrossRef Google Scholar

    [30] Wang H C, Lu S N, Zhao F Q, et al. 2005. The Paleoproterozoic geological records in North China Craton and their tectonic significance[J]. Geological Survey and Research, 28(3): 129−143(in Chinese with English abstract).

    Google Scholar

    [31] Wang M M, Zhang L, Huo Y J, et al. 2019. Tectonic affinity of the northern Longshoushan−Beidashan: Constraints from the zircon U−Pb age and Hf isotopic compositions of the Haisen Chulu gneiss[J]. Acta Petrologica Et Mineralogica, 35(5): 631−645(in Chinese with English abstract).

    Google Scholar

    [32] Wang Z Z, Chen X H, Li B, et al. 2019. The discovery of the Paleoproterozoic syenite in Helishan, Gansu Province, and its implications for the tectonic attribution of the Alxa Block[J]. Geology in China, 46(5): 1094−1104(in Chinese with English abstract).

    Google Scholar

    [33] Xiu Q Y, Lu S N, Yu H F, et al. 2002. The isotopic age evidence for main Longshoushan Lroup contributing to Palaeoproterozoic[J]. Progress in Precambrian Research, 25(2): 93−96(in Chinese with English abstract).

    Google Scholar

    [34] Yan H Q, Liu Q F, Tang Z L, et al. 2015. Structural properties of the Longshoushan block: Constraint from LA−ICP−MS U−Pb zircon dating[J]. Strategic Study of CAE, 17(2): 59−72(in Chinese with English abstract).

    Google Scholar

    [35] Yang X, Li Y K, Wang A J. 2019. Closure time limit of the back−arc basin in the southwest of the Mongolian Ocean: constraints from geochemistry and zircon dating of rocks in the southern Alxa block[J]. Acta Geologica Sinica, 93(7): 1639−1654(in Chinese with English abstract).

    Google Scholar

    [36] Zhai M G, Guo J H, Zhao T P. 2001. Study advances of Neoarchaean−Paleoproterozoic tectonic evolution in the North China Craton[J]. Progress in Precambrian Research, 24(3): 17−27(in Chinese with English abstract).

    Google Scholar

    [37] Zhai M G, Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview[J]. Gondwana Research, 20(1): 6−25. doi: 10.1016/j.gr.2011.02.005

    CrossRef Google Scholar

    [38] Zhang J X, Gong J H. 2018. Revisiting the nature and affinity of the Alxa Block[J]. Acta Petrologica Sinica, 34(4): 940−962(in Chinese with English abstract).

    Google Scholar

    [39] Zhang K, Jiao J G, Liu Q, et al. 2023. Uplift of Paleozoic magmatic core complex in the Longshoushan area, Gansu: Evidence from geochronology and geochemistry of rock veins in the Jinchuan deposit area[J]. Geological Bulletin of China, 42(2/3): 343−362(in Chinese with English abstract).

    Google Scholar

    [40] Zhang Q, Pan G Q, Li C D, et al. 2007. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Aca Petrologica Sinica, 23(11): 2683−2698(in Chinese with English abstract).

    Google Scholar

    [41] Zhang Q, Wang Y, Pan G Q, et al. 2008. Sources of granites: some crucial questions on granite study (4)[J]. Aca Petrologica Sinica, 24(6): 1193−1204(in Chinese with English abstract).

    Google Scholar

    [42] Zhao T P, Deng X Q, Hu G H, et al. 2015. The Paleoproterozoic−Mesoproterozoic boundary of the North China Craton and the related geological issues: A review[J]. Acta Petrologica Sinica, 31(6): 1495 −1508(in Chinese with English abstract).

    Google Scholar

    [43] Zhao Z H. 2016. Principles of trace element geochemistry[M]. Beijing: Science Press: 1−548(in Chinese).

    Google Scholar

    [44] Zhou T F, Yuan F, Hou M J, et al. 2004. Genesis and geodynamic background of Yanshanian granitoids in the eastern Jiangnan Uplift in the adjecent area of Anhui and Jiangxi Provinces, China[J]. Mineral Petrol, 24(3): 65−71(in Chinese with English abstract).

    Google Scholar

    [45] Zong K Q, Klemd R, Yuan Y, et al. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high−grade metamorphism and continental arc formation in the souther Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290: 32−48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

    [46] 第五春荣, 孙勇, 王倩. 2012. 华北克拉通地壳生长和演化: 来自现代河流碎屑锆石Hf同位素组成的启示[J]. 岩石学报, 28(11): 3520−3530.

    Google Scholar

    [47] 董国安, 杨宏仪, 刘敦一, 等. 2007. 龙首山岩群碎屑锆石SHRIMP U−Pb年代学及其地质意义[J]. 科学通报, 52(6): 688−696. doi: 10.3321/j.issn:0023-074X.2007.06.014

    CrossRef Google Scholar

    [48] 甘肃省地质调查院. 2024. 甘肃省高台县臭泥墩—西小口子地区三幅1∶5万矿产远景调查[R].

    Google Scholar

    [49] 耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末—古元古代初的岩浆事件及构造热体制[J]. 岩石学报, 26(7): 1945−1966.

    Google Scholar

    [50] 宫江华, 张建新, 于胜尧. 2011. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属[J]. 岩石矿物学杂志, 30(5): 795−818. doi: 10.3969/j.issn.1000-6524.2011.05.005

    CrossRef Google Scholar

    [51] 宫江华. 2013. 西阿拉善地块早前寒武纪变质基底组成、性质、年代格架及归属[D]. 中国地质科学院博士学位论文: 1−196.

    Google Scholar

    [52] 李锦轶, 张进, 杨天南, 等. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 39(4): 584−605.

    Google Scholar

    [53] 李俊健. 2006. 内蒙古阿拉善地块区域成矿系统[D]. 中国地质大学(北京)博士学位论文: 1−177.

    Google Scholar

    [54] 刘富, 郭敬辉, 路孝平, 等. 2009. 华北克拉通2.5 Ga地壳生长事件的Nd−Hf同位素证据: 以怀安片麻岩为例[J]. 科学通报, 54: 2517−2526.

    Google Scholar

    [55] 刘勇. 2008. 甘肃金川古元古代花岗岩的特征及地质意义[D]. 中国地质大学(北京)硕士学位论文: 1−64.

    Google Scholar

    [56] 师江朋, 杨德彬, 霍腾飞, 等. 2017. 华北克拉通南缘A型花岗岩的年代学和Nd−Hf同位素组成: 对古元古代晚期伸展事件的制约[J]. 岩石学报, 33(10): 3042−3056.

    Google Scholar

    [57] 汤中立, 白云来. 2002. 华北板块西南边缘(龙首山-祁连山)成矿系统及成矿构造动力学[M]. 北京: 地质出版社: 1−393.

    Google Scholar

    [58] 王惠初, 陆松年, 赵风清, 等. 2005. 华北克拉通古元古代地质记录及其构造意义[J]. 地质调查与研究, 28(3): 129−143.

    Google Scholar

    [59] 王毛毛, 张磊, 霍雨佳, 等. 2019. 龙首山-北大山北部的属性——来自海森楚鲁片麻岩锆石U−Pb 年龄和Hf 同位素的约束[J]. 岩石矿物学杂志, 35(5): 631−645. doi: 10.3969/j.issn.1000-6524.2019.05.003

    CrossRef Google Scholar

    [60] 王增振, 陈宣华, 李冰, 等. 2019. 甘肃合黎山古元古代正长岩的发现及其对阿拉善地块大地构造属性的启示[J]. 中国地质, 46(5): 1094−1104. doi: 10.12029/gc20190510

    CrossRef Google Scholar

    [61] 修群业, 陆松年, 于海峰, 等. 2002. 龙首山岩群主体划归古元古代的同位素年龄证据[J]. 前寒武纪研究进展, 25(2): 93−96.

    Google Scholar

    [62] 闫海卿, 刘巧峰, 汤中立, 等. 2015. 龙首山地块的构造属性——来自U−Pb锆石年龄的约束[J]. 中国工程科学, 17(2): 59−72. doi: 10.3969/j.issn.1009-1742.2015.02.008

    CrossRef Google Scholar

    [63] 杨轩, 李以科, 王安建. 2019. 蒙古洋西南弧后盆地闭合时限的探讨[J]. 地质学报, 93(7): 1640−1654.

    Google Scholar

    [64] 翟明国, 郭敬辉, 赵太平. 2001. 新太古-古元古代华北陆块构造演化的研究进展[J]. 前寒武纪研究进展, 24(3): 17−27.

    Google Scholar

    [65] 张建新, 宫江华. 2018. 阿拉善地块性质和归属的再认识[J]. 岩石学报, 34(4): 940−942.

    Google Scholar

    [66] 张钶, 焦建刚, 刘琦, 等. 2023. 甘肃龙首山地区古生代岩浆核杂岩隆起: 来自金川矿区脉岩年龄与地球化学的证据[J]. 地质通报, 42(2/3): 343−362.

    Google Scholar

    [67] 张旗, 潘国强, 李承东, 等. 2007. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 23(11): 2683−2698. doi: 10.3969/j.issn.1000-0569.2007.11.002

    CrossRef Google Scholar

    [68] 张旗, 王焰, 潘国强, 等. 2008. 花岗岩源岩问题: 关于花岗岩研究的思考之四[J]. 岩石学报, 24(6): 1193−1204.

    Google Scholar

    [69] 赵太平, 邓小芹, 胡国辉, 等. 2015. 华北克拉通古/中元古代界线和相关地质问题讨论[J]. 岩石学报, 31(6): 1495−1508.

    Google Scholar

    [70] 赵振华. 2016. 微量元素地球化学原理[M]. 北京: 科学出版社: 1−548.

    Google Scholar

    [71] 周涛发, 袁峰, 侯明金, 等. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景[J]. 矿物岩石, 24(3): 65−71. doi: 10.3969/j.issn.1001-6872.2004.03.008

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(234) PDF downloads(47) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint