Citation: | MAO Kang, XUE Jiaqi, CHEN Zhuo, ZHANG Hua. Laser Induced Fluorescence for In Situ Detection of Typical Heavy Metals in Groundwater[J]. Rock and Mineral Analysis, 2025, 44(1): 19-34. doi: 10.15898/j.ykcs.202402230018 |
On-site detection of heavy metals in groundwater is important to quickly evaluate pollution. Laser induced fluorescence (LIF) utilizes specific fluorescent probes to generate/quench fluorescence in the presence of heavy metals, thereby achieving heavy metals detection, which can quickly identify heavy metals and non-destructively obtain their valence states. This work summarizes the principle and equipment of, and its application for, in situ detection of typical heavy metals in groundwater. At present, LIF probes used for heavy metal detection include organic fluorescent probes mainly composed of small molecule probes, macromolecules, and AIE probes, as well as nanomaterial probes represented by gold nanoclusters, QDs, and MOFs. These synthesized probes and the corresponding constructed sensors indicate that LIF holds significant advantages in heavy metal detection in groundwater. Although the achievements in the development of LIF equipment for heavy metal detection in groundwater are not as rich as those in sensing methods, LIF equipment for several heavy metals have been developed, demonstrating good application prospects. Future research will focus on identifying the controlling factors of heavy metals in groundwater and developing anti-interference techniques, synthesizing novel fluorescent probes for LIF sensor, integrating sensing components into LIF equipment, and standardizing the LIF detection process. The BRIEF REPORT is available for this paper at
[1] | 杨梦楠, 孙晗, 曹海龙, 等. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155 Yang M N, Sun H, Cao H L, et al. Preparation and application of biochar-chitosan magnetic composite adsorbent for removal of lead and copper from groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155 |
[2] | 刘斯文, 黄园英, 赵文博, 等. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价[J]. 岩矿测试, 2022, 41(3): 488−498. doi: 10.15898/j.cnki.112131/td.202111080170 Liu S W, Huang Y Y, Zhao W B, et al. Water quality and health risk assessment of ion type rare earth deposits in the Huangpi River Basin of Northern Jiangxi Province[J]. Rock and Mineral Analysis, 2022, 41(3): 488−498. doi: 10.15898/j.cnki.112131/td.202111080170 |
[3] | Huang C, Guo Z, Li T, et al. Source identification and migration fate of metal(loid)s in soil and groundwater from an abandoned Pb/Zn mine[J]. Science of the Total Environment, 2023, 895: 165037. doi: 10.1016/j.scitotenv.2023.165037 |
[4] | Xu M, Zhang K, Wang Y, et al. Health risk assessments and microbial community analyses of groundwater from a heavy metal-contaminated site in Hezhou City, Southwest China[J]. International Journal of Environmental Research and Public Health, 2023, 20(1): 604. doi: 10.3390/ijerph20010604 |
[5] | 钟林健. 铅锌矿区地下水位对尾矿中重金属在土壤中吸附与迁移的影响研究[D]. 长沙: 中南大学, 2023. Zhong L J. Study on the influence of groundwater level on the adsorption and migration of heavy metals from tailings in soil in lead-zinc mining area[D]. Changsha: Central South University, 2023. |
[6] | Lei K, Giubilato E, Critto A, et al. Contamination and human health risk of lead in soils around lead/zinc smelting areas in China[J]. Environmental Science and Pollution Research, 2016, 23: 13128−13136. doi: 10.1007/s11356-016-6473-z |
[7] | 李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140 Li J C, Cao W G, Pan D, et al. The impact of nitrogen cycling on arsenic migration and enrichment in shallow groundwater of the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132. doi: 10.15898/j.cnki.11-2131/td.202110080140 |
[8] | 周兴辉, 胡敬芳, 宋钰, 等. 便携式水质重金属电化学检测仪的研究进展[J]. 传感器世界, 2020, 26(3): 7−13. doi: 10.16204/j.cnki.sw.2020.03.001 Zhou X H, Hu J F, Song Y, et al. Research progress on portable electrochemical detection instruments for heavy metals in water quality[J]. Sensor World, 2020, 26(3): 7−13. doi: 10.16204/j.cnki.sw.2020.03.001 |
[9] | Yu L, Pang Y, Mo Z, et al. Coordination array for accurate colorimetric sensing of multiple heavy metal ions[J]. Talanta, 2021, 231: 122357. doi: 10.1016/j.talanta.2021.122357 |
[10] | Meng D, Zhao N, Wang Y, et al. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 137: 39−45. doi: 10.1016/j.sab.2017.09.011 |
[11] | Yang Z, Ren J, Du M, et al. Enhanced laser-induced breakdown spectroscopy for heavy metal detection in agriculture: A review[J]. Sensors, 2022, 22(15): 5679. doi: 10.3390/s22155679 |
[12] | 孔维恒, 曾令伟, 饶宇, 等. 基于预分类策略的激光诱导击穿光谱技术用于岩石样品定量分析[J]. 岩矿测试, 2023, 42(4): 760−770. doi: 10.15898/j.ykcs.202212190234 Kong W H, Zeng L W, Rao Y, et al. Laser induced breakdown spectroscopy technology based on pre classification strategy for quantitative analysis of rock samples[J]. Rock and Mineral Analysis, 2023, 42(4): 760−770. doi: 10.15898/j.ykcs.202212190234 |
[13] | 文志明. 荧光光度法及其在环境分析化学中的应用[J]. 中国环境监测, 1992, 8(2): 45−55. doi: 10.19316/j.issn.1002-6002.1992.02.018 Wen Z M. Fluorescence spectrophotometry and its application in environmental analytical chemistry[J]. Environmental Monitoring in China, 1992, 8(2): 45−55. doi: 10.19316/j.issn.1002-6002.1992.02.018 |
[14] | 李卿硕. 荧光光谱检测设计与研究[D]. 长春: 长春理工大学, 2008. Li Q S. Design and research of fluorescence spectroscopy detection[D]. Changchun: Changchun University of Technology, 2008. |
[15] | 梁锡辉, 区伟能, 任豪, 等. 激光诱导荧光检测技术[J]. 激光与光电子学进展, 2008(1): 65−72. Liang X H, Qu W N, Ren H, et al. Laser induced fluorescence detection technology[J]. Laser & Optoelectronics Progress, 2008(1): 65−72. |
[16] | 杨仁杰, 尚丽平, 鲍振博, 等. 激光诱导荧光快速直接检测土壤中多环芳烃污染物的可行性研究[J]. 光谱学与光谱分析, 2011, 31(8): 2148−2150. doi: 10.3964/j.issn.1000-0593(2011)08-2148-03 Yang R J, Shang L P, Bao Z B, et al. Feasibility study on laser induced fluorescence for rapid and direct detection of polycyclic aromatic hydrocarbon pollutants in soil[J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2148−2150. doi: 10.3964/j.issn.1000-0593(2011)08-2148-03 |
[17] | 王宁. 定量测量OH基浓度的PLIF技术研究及应用[D]. 北京: 国防科学技术大学, 2009. Wang N. Research and application of PLIF technology for quantitative measurement of hydroxyl radical concentration[D]. Beijing: National University of Defense Technology, 2009. |
[18] | Zacharioudaki D E, Fitlis I, Kotti M. Review of fluorescence spectroscopy in environmental quality applications[J]. Molecules, 2022, 27(15): 4801. doi: 10.3390/molecules27154801 |
[19] | Li B, Zhang D, Liu J, et al. A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics[J]. Applied Sciences, 2019, 9(9): 1906. doi: 10.3390/app9091906 |
[20] | Radiul S M, Hazarika S. Variation of stokes shift and peak wavelength shift as a sensing probe for detection of lead in water using laser induced fluorescence resonance energy transfer[J]. Journal of Fluorescence, 2021, 31(3): 889−896. doi: 10.1007/s10895-021-02689-1 |
[21] | 汪宝堆, 李欣悦, 张华, 等. 一种近红外二区甲基汞离子检测探针及其制备方法和应用: CN202210944448.3[P]. 2022-09-16. |
[22] | 朱鑫琦, 张佩, 王光辉, 等. 一种激光诱导荧光的地下水重金属原位检测装置: CN202122186045.0[P]. 2022-04-01. |
[23] | 汪宝堆, 常新月, 张华, 等. 一种超灵敏检测水中Cr(Ⅵ)离子敏感膜及其制备方法: CN202111157635.9[P]. 2021-11-19. |
[24] | 谢胜, 杨羽娇, 吴淑军, 等. 检测汞离子的荧光探针、固态传感薄膜及其制备和应用: CN20211127665.5[P]. 2021-09-26. |
[25] | Wan J, Zhang K, Li C, et al. A novel fluorescent chemosensor based on a rhodamine 6G derivative for the detection of Pb2+ ion[J]. Sensors and Actuators B: Chemical, 2017, 246: 696−702. doi: 10.1016/j.snb.2017.02.126 |
[26] | Dai Y, Yao K, Fu J, et al. A novel 2-(hydroxymethyl)quinolin-8-ol-based selective and sensitive fluorescence probe for Cd2+ ion in water and living cells[J]. Sensors and Actuators B: Chemical, 2017, 251: 877−884. doi: 10.1016/j.snb.2017.05.103 |
[27] | Pang B J, Li Q, Li C R, et al. A highly selective and sensitive coumarin derived fluorescent probe for detecting Hg2+ in 100% aqueous solutions[J]. Journal of Luminescence, 2019, 205: 446−450. doi: 10.1016/j.jlumin.2018.09.042 |
[28] | Pan J, Li Q, Zhou D, et al. Ultrasensitive aptamer biosensor for arsenic(Ⅲ) detection based on label-free triple-helix molecular switch and fluorescence sensing platform[J]. Talanta, 2018, 189: 370−376. doi: 10.1016/j.talanta.2018.07.024 |
[29] | Wu Y, Shi Y, Deng S, et al. Metal-induced G-quadruplex polymorphism for ratiometric and label-free detection of lead pollution in tea[J]. Food Chemistry, 2020, 343: 128425. doi: 10.1016/j.foodchem.2020.128425 |
[30] | Su M, Liu C, Zhang Y, et al. Rational design of a water-soluble TICT-AIEE-active fluorescent probe for mercury ion detection[J]. Analytica Chimica Acta, 2022, 1230: 340337. doi: 10.1016/j.aca.2022.340337 |
[31] | Wu S, Yang Y, Cheng Y, et al. Fluorogenic detection of mercury ion in aqueous environment using hydrogel-based AIE sensing films[J]. Aggregate, 2022, 4: e287. doi: 10.1002/agt2.287 |
[32] | He J, Yun L, Cheng X. Organic-soluble chitosan-g-PHMA (PEMA/PBMA)-bodipy fluorescent probes and film by RAFT method for selective detection of Hg2+/Hg+ ions[J]. International Journal of Biological Macromolecules, 2023, 237: 124255. doi: 10.1016/j.ijbiomac.2023.124255 |
[33] | Yuan H, Ren T, Luo Q, et al. Fluorescent wood with non-cytotoxicity for effective adsorption and sensitive detection of heavy metals[J]. Journal of Hazardous Materials, 2021, 416: 126166. doi: 10.1016/j.jhazmat.2021.126166 |
[34] | Shi Y, Li W, Feng X, et al. Sensing of mercury ions in porphyra by copper@gold nanoclusters based ratiometric fluorescent aptasensor[J]. Food Chemistry, 2020, 344(5): 128694. doi: 10.1016/j.foodchem.2020.128694 |
[35] | Yao J, He Y, Li P Y, et al. Magnified fluorescent aptasensors based on a gold nanoparticle-DNA hybrid and DNase Ⅰ for the cycling detection of mercury(Ⅱ) ions in aqueous solution[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21201−21207. doi: 10.1021/acs.iecr.9b03622 |
[36] | Wang Y, Lv M, Chen Z, et al. A fluorescence resonance energy transfer probe based on DNA-modified upconversion and gold nanoparticles for detection of lead ions[J]. Frontiers in Chemistry, 2020, 8: 238. DOI: 10.3389/fchem.2020.00238.eCollection 2020. |
[37] | Liu R, He B, Jin H, et al. A fluorescent aptasensor for Pb2+ detection based on gold nanoflowers and RecJf exonuclease-induced signal amplification[J]. Analytica Chimica Acta, 2022, 1192: 339329. doi: 10.1016/j.aca.2021.339329 |
[38] | Yang Y, Yang Y, Xiao X, et al. One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions[J]. Materials Research Express, 2019, 6(9): 095615. doi: 10.1088/2053-1591/ab3006 |
[39] | Abdolmohammad-Zadeh H, Azari Z, Pourbasheer E. Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 245: 118924. doi: 10.1016/j.saa.2020.118924 |
[40] | Zhou J, Li B, Qi A, et al. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip[J]. Sensors and Actuators B: Chemical, 2019, 305: 127462. doi: 10.1016/j.snb.2019.127462 |
[41] | Bandia R, Dadigalaa R, Gangapuram B R, et al. Green synthesis of highly fluorescent nitrogen-doped carbon dots from Lantana camara berries for effective detection of lead(Ⅱ) and bioimaging[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 178: 330−338. doi: 10.1016/j.jphotobiol.2017.11.010 |
[42] | Khoshbin Z, Moeenfard M, Zahraee H, et al. A fluorescence imaging-supported aptasensor for sensitive monitoring of cadmium pollutant in diverse samples: A critical role of metal organic frameworks[J]. Talanta, 2022, 246: 123514. doi: 10.1016/j.talanta.2022.123514 |
[43] | Chen G, Bai W, Jin Y, et al. Fluorescence and electrochemical assay for bimodal detection of lead ions based on metal-organic framework nanosheets[J]. Talanta, 2021, 232: 122405. doi: 10.1016/j.talanta.2021.122405 |
[44] | Hou L, Song Y, Xiao Y, et al. ZnMOF-74 responsive fluorescence sensing platform for detection of Fe3+[J]. Microchemical Journal, 2019, 150: 104154. doi: 10.1016/j.microc.2019.104154 |
[45] | Zhang X X, Zhang W J, Li C L, et al. Eu3+-postdoped UIO-66-type metal-organic framework as a luminescent sensor for Hg2+ detection in aqueous media[J]. Inorganic Chemistry, 2019, 58(6): 3910−3915. doi: 10.1021/acs.inorgchem.8b03555 |
[46] | Valeur B. Design principles of fluorescent molecular sensors for cation recognition[J]. Coordination Chemistry Reviews, 2000, 205: 3−40. doi: 10.1016/s0010-8545(00)00246-0 |
[47] | Fan Y, Li J, Amin K, et al. Advances in aptamers, and application of mycotoxins detection: A review[J]. Food Research International, 2023, 170: 113022. doi: 10.1016/j.foodres.2023.113022 |
[48] | Wu L, Wang Y, Xu X, et al. Aptamer-based detection of circulating targets for precision medicine[J]. Chemical Reviews, 2021, 121: 12035−12105. doi: 10.1021/acs.chemrev.0c01140 |
[49] | Luo J D, Xie Z L, Lam W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 2001, 18: 1740−1741. doi: 10.1039/B105159H |
[50] | Liu B, Zhuang J Y, Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring[J]. Environmental Science: Nano, 2020, 7(8): 2195−2213. doi: 10.1039/d0en00449a |
[51] | Lei X, Li H, Luo Y, et al. Novel fluorescent nanocellulose hydrogel based on gold nanoclusters for the effective adsorption and sensitive detection of mercury ions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123: 79−86. doi: 10.1016/j.jtice.2021.05.044 |
[52] | Ren J, Ledwaba M, Musyoka N M, et al. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests[J]. Coordination Chemistry Reviews, 2017, 349: 169−197. doi: 10.1016/j.ccr.2017.08.017 |
[53] | Ghosh S, Steinke F, Rana A, et al. A fluorescent zirconium organic framework displaying rapid and nanomolar level detection of Hg(Ⅱ) and nitroantibiotics[J]. Inorganic Chemistry Frontiers, 2022, 9: 859−869. doi: 10.1039/D1QI01190A |
[54] | Guo X R, Wei Y, Zeng Q, et al. Fast and selective detection of mercury ions in environmental water by paper-based fluorescent sensor using boronic acid functionalized MoS2 quantum dots[J]. Journal of Hazardous Materials, 2020, 381: 120969. doi: 10.1016/j.jhazmat.2019.120969 |
[55] | Wu F N, Zhu J, Weng G J, et al. Gold nanocluster composites: Preparation strategies, optical and catalytic properties, and applications[J]. Journal of Materials Chemistry C, 2022, 10: 14812−14833. doi: 10.1039/D2TC02095E |
[56] | Dai R, Zhang Y, Huang K, et al. Recent advances in the visual detection of ions and molecules based on gold and silver nanoclusters[J]. Analytical Methods, 2022, 14(29): 2820−2832. doi: 10.1039/d2ay00618a |
[57] | Shang L, Xu J, Nienhaus G U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis[J]. Nano Today, 2019, 28: 100767 . doi: 10.1016/j.nantod.2019.100767 |
[58] | Yan Y, Yu H, Zhang K, et al. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions[J]. Nano Research, 2016, 9(7): 2088−2096. doi: 10.1007/s12274-016-1099-5 |
[59] | Kirkwood N, Monchen J O V, Crisp R W, et al. Finding and fixing traps in Ⅱ–Ⅵ and Ⅲ–Ⅴ colloidal quantum Dots: The importance of Z-type ligand passivation[J]. Journal of the American Chemical Society, 2018, 140(46): 15712−15723. doi: 10.1021/jacs.8b07783 |
[60] | Roghabadi F A, Aghmiuni K O, Ahmadi V, et al. Optical and electrical simulation of hybrid solar cell based on conjugated polymer and size-tunable CdSe quantum dots: Influence of the QDs size[J]. Organic Electronics, 2016, 34: 164−171. doi: 10.1016/j.orgel.2016.04.013 |
[61] | Drummen G. Fluorescent probes and fluorescence (microscopy) techniques—Illuminating biological and biomedical research[J]. Molecules, 2012, 17(12): 14067−14090. doi: 10.3390/molecules171214067 |
[62] | Zhang L, Li P, Feng L, et al. Synergetic Ag2S and ZnS quantum dots as the sensitizer and recognition probe: A visible light-driven photoelectrochemical sensor for the “signal-on” analysis of mercury(Ⅱ)[J]. Journal of Hazardous Materials, 2020, 387: 121715. doi: 10.1016/j.jhazmat.2019.121715 |
[63] | Patir K, Gogoi S K. Facile synthesis of photoluminescent graphitic carbon nitride quantum dots for Hg2+ detection and room temperature phosphorescence[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(2): 1732−1743. doi: 10.1021/acssuschemeng.7b03008 |
[64] | Razavi S A A, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap[J]. Coordination Chemistry Reviews, 2020, 415: 213299. doi: 10.1016/j.ccr.2020.213299 |
[65] | Wu T, Gao X J, Ge F, et al. Metal–organic frameworks (MOFs) as fluorescence sensors: Principles, development and prospects[J]. CrystEngComm, 2022, 24(45): 7881−7901. doi: 10.1039/d2ce01159j |
[66] | Wu S, Min H, Shi W, et al. Multicenter metal-organic framework-based ratiometric fluorescent sensors[J]. Advanced Materials, 2019, 32(3): 1805871. doi: 10.1002/adma.201805871 |
[67] | Zhang D S, Gao Q, Chang Z, et al. Rational construction of highly tunable donor–acceptor materials based on a crystalline host–guest platform[J]. Advanced Materials, 2018, 30(50): 1804715. doi: 10.1002/adma.201804715 |
[68] | Wang Q, Ke W, Lou H, et al. A novel fluorescent metal-organic framework based on porphyrin and AIE for ultra-high sensitivity and selectivity detection of Pb2+ ions in aqueous solution[J]. Dyes and Pigments, 2021, 196: 109802. doi: 10.1016/j.dyepig.2021.109802 |
[69] | Samanta P, Desai A V, Sharma S, et al. Selective recognition of Hg2+ ion in water by a functionalized metal–organic framework (MOF) based chemodosimeter[J]. Inorganic Chemistry, 2018, 57(5): 2360−2364. doi: 10.1021/acs.inorgchem.7b02426 |
[70] | 汪宝堆, 常新月, 张华, 等. 一种超灵敏检测水中Cr(Ⅵ)离子敏感膜及其制备方法: CN202111157635.9[P]. 2021-09-30. |
[71] | Long X T, liu F, Zhou X, et al. Estimation of spatial distribution and health risk by arsenic and heavy metals in shallow groundwater around Dongting Lake Plain using GIS mapping[J]. Chemosphere, 2020, 269: 128698. doi: 10.1016/j.chemosphere.2020.128698 |
[72] | Dong L, Zhang J, Guo Z, et al. Distributions and interactions of dissolved organic matter and heavy metals in shallow groundwater in Guanzhong Basin of China[J]. Environmental Research, 2022, 207: 112099. doi: 10.1016/j.envres.2021.112099 |
Schematic diagram of (a) the external structure, (b) the internal structure, (c) optical path, and (d) membrane structure modified with selective and sensitive materials of LIF device for on-site detection of heavy metal in groundwater [22]
Organic fluorescent probes for the detection of heavy metals (Revised from Pang et al[27], Wu et al[29], Su et al[30], He et al[32])
Nano-fluorescent probes for the detection of heavy metals (Revised from Lei et al[51], Ren et al[52], Ghosh et al[53], Guo et al[54], Wu et al[55])