Citation: | XU Xinning, WANG Shuo, XU Juan, LIU Pengfei, YANG Shouye. Research Progress on the Geological Application of a Flow-Through Time-Resolved Analysis System[J]. Rock and Mineral Analysis, 2025, 44(1): 1-18. doi: 10.15898/j.ykcs.202304130048 |
FT-TRA is a rapid reaction (dissolution)-on-line analysis system newly developed in the early 21st century. It consists of an eluent mixing unit, a reaction unit and an analysis unit. Its core function is to wash trace samples in the sample reactor with a specific mobile phase, separate or remove specific components in the sample, and monitor the exsolution characteristics of different elements and mineral components of the sample to achieve high resolution online process analysis. In this article, the technical principle, hardware and software composition, experimental method, operation key points and geological application development process of the FT-TRA system are reviewed. The controversial points in the geological application of the system are explained and analyzed, and its future development direction and potential are forecasted based on its development status. At present, the main geological applications of this system include the verification of proxy indicators for paleoceanography and paleo-environment research (such as foraminifera and ostracod leaching), the study of the mineral dissolution process and reaction kinetics, and the analysis of the elemental phase of environmental samples. The dissolution mechanism of different components involved in the operation of the FT-TRA system is an important problem to be solved in its application process. Further improvement of its dissolution dynamics principle will inevitably provide more new ideas for the future development of the system, such as multi-type geological sample dissolution and mineral simulation synthesis. The BRIEF REPORT is available for this paper at
[1] | Haley B A, Klinkhammer G P. Development of a flow-through system for cleaning and dissolving foraminiferal tests[J]. Chemical Geology, 2002, 185(1): 51−69. doi: 10.1016/S0009-2541(01)00399-0 |
[2] | de Baere B. Investigating mineral dissolution kinetics by flow-through time-resolved analysis (FT-TRA)[D]. Vancouver: The University of British Columbia, 2015: 294. |
[3] | de Baere B, François R, Mayer K U. Measuring mineral dissolution kinetics using on-line flow-through time resolved analysis (FT-TRA): An exploratory study with forsterite[J]. Chemical Geology, 2015, 413: 107−118. doi: 10.1016/j.chemgeo.2015.08.024 |
[4] | de Baere B, Molins S, Mayer K U, et al. Determination of mineral dissolution regimes using flow-through time-resolved analysis (FT-TRA) and numerical simulation[J]. Chemical Geology, 2016, 430: 1−12. doi: 10.1016/j.chemgeo.2016.03.014 |
[5] | Power I M, Dipple G M, Bradshaw P M D, et al. Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada[J]. International Journal of Greenhouse Gas Control, 2020, 94: 102895. doi: 10.1016/j.ijggc.2019.102895 |
[6] | Haley B A, Klinkhammer G P, Mix A C. Revisiting the rare earth elements in foraminiferal tests[J]. Earth and Planetary Science Letters, 2005, 239(1): 79−97. doi: 10.1016/j.jpgl.2005.08.014 |
[7] | Benway H M, Haley B A, Klinkhammer G P, et al. Adaptation of a flow-through leaching procedure for Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(2): 15. doi: 10.1029/2002GC000312 |
[8] | Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 803−814. doi: 10.1016/0016-7037(95)00446-7 |
[9] | Lea D W, Pak D K, Spero H J. Climate impact of late Quaternary equatorial Pacific Sea surface temperature variations[J]. Science, 2000, 289(5485): 1719−1724. doi: 10.1126/science.289.5485.1719 |
[10] | 王朔. 新型FT-TRA系统研制及其对有孔虫元素分析的古环境意义初探[D]. 上海: 同济大学, 2022. Wang S. An improved FT-TRA system and its paleoenvironmental implications for elemental analysis of foraminifera[D]. Shanghai: Tongji University, 2022. |
[11] | 王天锋. 制备液相色谱仪自动控制系统的研究与设计[D]. 苏州: 苏州大学, 2012. Wang T F. Study and design of automatic control system based on preparative liquid chromatographic instrument[D]. Suzhou: Suzhou University, 2012. |
[12] | 江林, 周建, 张晓辉, 等. 三维全自动馏分收集器的研制[J]. 现代科学仪器, 2008(2): 8−9, 20. Jiang L, Zhou J, Zhang X H, et al. Development of three dimensions automatic fraction collector[J]. Modern Scientific Instruments, 2008(2): 8−9, 20. |
[13] | 魏莉, 张焜, 方岩雄, 等. 制备型高效液相色谱技术的研究进展[J]. 广东化工, 2005(11): 5−7. doi: 10.3969/j.issn.1007-1865.2005.11.002 Wei L, Zhang K, Fang Y X, et al. The development of preparative high performance liquid chromatography[J]. Guangdong Chemical Industry, 2005(11): 5−7. doi: 10.3969/j.issn.1007-1865.2005.11.002 |
[14] | Siewers U. Inductively coupled plasma/mass spectrometry in geochemistry[J]. Microchimica Acta, 1989, 99(3): 365−372. doi: 10.1007/BF01244692 |
[15] | 吴石头, 黄超, 谢烈文, 等. Iolite软件和基体归一化100%(m/m)定量校准策略处理激光剥蚀-电感耦合等离子体质谱元素含量信号[J]. 分析化学, 2018, 46(10): 1628−1636. doi: 10.11895/j.issn.0253-3820.181291 Wu S T, Huang C, Xie L W, et al. Iolite based bulk normalization as 100% m/m quantification strategy for reduction of laser ablation-inductively coupled plasma mass spectrometry transient signal[J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1628−1636. doi: 10.11895/j.issn.0253-3820.181291 |
[16] | 吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试, 2015, 34(5): 503−511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002 Wu S T, Wang Y P, Xu C X. Research progress on reference materials for in situ elemental analysis by laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(5): 503−511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002 |
[17] | 杜宝华, 盛迪波, 罗志翔, 等. 低压密闭消解-电感耦合等离子体发射光谱法测定地质样品中的硼[J]. 岩矿测试, 2020, 39(5): 690−698. doi: 10.15898/j.cnki.11-2131/td.201909250139 Du B H, Sheng D B, Luo Z X, et al. Determination of boron in geological samples by ICP-OES with low-pressure closed digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 690−698. doi: 10.15898/j.cnki.11-2131/td.201909250139 |
[18] | Klinkhammer G P, Haley B A, Mix A C, et al. Evaluation of automated flow-through time-resolved analysis of foraminifera for Mg/Ca paleothermometry[J]. Paleoceanography, 2004, 19: 4030. doi: 10.1029/2004PA001050 |
[19] | Klinkhammer G P, Mix A C, Haley B A. Increased dissolved terrestrial input to the coastal ocean during the last deglaciation[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3): 1−11. doi: 10.1029/2008GC002219 |
[20] | Mckay C L, Groeneveld J, Filipsson H L, et al. A comparison of benthic foraminiferal Mn/Ca and sedimentary Mn/Al as proxies of relative bottom-water oxygenation in the low-latitude NE Atlantic upwelling system[J]. Biogeosciences, 2015, 12: 5415−5428. doi: 10.5194/bg-12-5415-2015 |
[21] | Haarmann T, Hathorne E C, Mohtadi M, et al. Mg/Ca ratios of single planktonic foraminifer shells and the potential to reconstruct the thermal seasonality of the water column[J]. Paleoceanography, 2011, 26(3): 1−14. doi: 10.1029/2010PA002091 |
[22] | Börner N, de Baere B, Francois R, et al. Application of flow-through time-resolved analysis (FT-TRA) to isolate the elemental composition in ostracod calcite[J]. Chemical Geology, 2017, 467: 53−63. doi: 10.1016/j.chemgeo.2017.07.019 |
[23] | Torres M E, Martin R A, Klinkhammer G P, et al. Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates[J]. Earth and Planetary Science Letters, 2010, 299(1): 10−22. doi: 10.1016/j.jpgl.2010.07.048 |
[24] | Guo X, Xu B, Burnett W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary[J]. Geochimica et Cosmochimica Acta, 2018, 245: 290−303. doi: 10.1016/j.gca.2018.11.007 |
[25] | Koho K A, de Nooijer L J, Reichart G J. Combining benthic foraminiferal ecology and shell Mn/Ca to deconvolve past bottom water oxygenation and paleoproductivity[J]. Geochimica et Cosmochimica Acta, 2015, 165: 294−306. doi: 10.1016/j.gca.2015.06.003 |
[26] | Kraft S, Frank M, Hathorne E C, et al. Assessment of seawater Nd isotope signatures extracted from foraminiferal shells and authigenic phases of gulf of Guinea sediments[J]. Geochimica et Cosmochimica Acta, 2013, 121: 414−435. doi: 10.1016/j.gca.2013.07.029 |
[27] | Parkhurst D L, Appelo C A J. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R].U. S. Geological Survey, 2013. |
[28] | Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899−904. doi: 10.1039/JA9961100899 |
[29] | Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1−20. doi: 10.1029/2003GC000559 |
[30] | Rosenthal Y, Lear C H, Oppo D W, et al. Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans[J]. Paleoceanography, 2006, 21(1): 1−14. doi: 10.1029/2005pa001158 |
[31] | Rona P A, McGregor B A, Betzer P R, et al. Anomalous water temperatures over Mid-Atlantic Ridge crest at 26° north latitude[J]. Deep Sea Research and Oceanographic Abstracts, 1975, 22(9): 611−618. doi: 10.1016/0011-7471(75)90048-0 |
[32] | Elderfield H, Ganssen G. Past temperature and 18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405: 442−445. doi: 10.1038/35013033 |
[33] | Hastings D W, Russell A D, Emerson S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy[J]. Paleoceanography, 1998, 13(2): 161−169. doi: 10.1029/97PA03147 |
[34] | Reichart G J, Jorissen F, Anschutz P, et al. Single foraminiferal test chemistry records the marine environment[J]. Geology, 2003, 31(4): 355−358. doi: 10.1130/0091-7613(2003)031<0355:SFTCRT>2.0.CO;2 |
[35] | Bender M L, Lorens R B, Williams D F. Sodium, magnesium and strontium in the tests of planktonic foraminifera[J]. Micropaleontology, 1975, 21(4): 448−459. doi: 10.2307/1485293 |
[36] | Russell A D, Honisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4347−4361. doi: 10.1016/j.gca.2004.03.013 |
[37] | Yu J M, Elderfield H, Honisch B. B/Ca in planktonic foraminifera as a proxy for surface seawater pH[J]. Paleoceanography, 2007, 22(2): 1−17. doi: 10.1029/2006pa001347 |
[38] | Russell A D, Emerson S, Nelson B K, et al. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 671−681. doi: 10.1016/0016-7037(94)90497-9 |
[39] | Hastings D W, Emerson S R, Erez J, et al. Vanadium in foraminiferal calcite: Evaluation of a method to determine paleo-seawater vanadium concentrations[J]. Geochimica et Cosmochimica Acta, 1996, 60(19): 3701−3715. doi: 10.1016/0016-7037(96)00196-2 |
[40] | Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: Changes in silicate weathering and reverse weathering[J]. Science, 2012, 335: 818−823. doi: 10.1126/science.1214697 |
[41] | Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution[J]. Paleoceanography, 1996, 11(5): 543−551. doi: 10.1029/96PA01491 |
[42] | Boyle E A. Manganese carbonate overgrowths on foraminifera tests[J]. Geochimica et Cosmochimica Acta, 1983, 47(10): 1815−1819. doi: 10.1016/0016-7037(83)90029-7 |
[43] | Boyle E A. Cadmium, zinc, copper, and barium in foraminifera tests[J]. Earth & Planetary Science Letters, 1981, 53(1): 11−35. doi: 10.1016/0012-821X(81)90022-4 |
[44] | Rosenthal Y, Boyle E A, Slowey N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3633−3643. doi: 10.1016/S0016-7037(97)00181-6 |
[45] | Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369−2379. doi: 10.1016/S0016-7037(99)00197-0 |
[46] | Palmer M. Rare earth elements in foraminifera tests[J]. Earth and Planetary Science Letters, 1985, 73(2−4): 285−298. doi: 10.1016/0012-821X(85)90077-9 |
[47] | Delaney M L, Bé A W, Boyle E A. Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[J]. Geochimica et Cosmochimica Acta, 1985, 49(6): 1327−1341. doi: 10.1016/0016-7037(85)90284-4 |
[48] | Goldstein S, O’nions R, Hamilton P. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems[J]. Earth and Planetary Science Letters, 1984, 70(2): 221−236. doi: 10.1016/0012-821X(84)90007-4 |
[49] | Weldeab S, Frank M, Stichel T, et al. Spatio-temporal evolution of the West African monsoon during the last deglaciation[J]. Geophysical Research Letters, 2011, 38(13): 1−5. doi: 10.1029/2011GL047805 |
[50] | Rickli J, Frank M, Halliday A N. The hafnium–neodymium isotopic composition of Atlantic seawater[J]. Earth and Planetary Science Letters, 2009, 280(1−4): 118−127. doi: 10.1016/j.jpgl.2009.01.026 |
[51] | Bayon G, Birot D, Ruffine L, et al. Evidence for intense REE scavenging at cold seeps from the Niger Delta margin[J]. Earth and Planetary Science Letters, 2011, 312(3−4): 443−452. doi: 10.1016/j.jpgl.2011.10.008 |
[52] | Hoogakker B A A, Klinkhammer G P, Elderfield H, et al. Mg/Ca paleothermometry in high salinity environments[J]. Earth and Planetary Science Letters, 2009, 284(3): 583−589. doi: 10.1016/j.jpgl.2009.05.027 |
[53] | Boussetta S, Bassinot F, Sabbatini A, et al. Diagenetic Mg-rich calcite in Mediterranean sediments: Quanti-fication and impact on foraminiferal Mg/Ca thermometry[J]. Marine Geology, 2011, 280(1): 195−204. doi: 10.1016/j.margeo.2010.12.011 |
[54] | Kısakürek B, Eisenhauer A, Böhm F, et al. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white)[J]. Earth and Planetary Science Letters, 2008, 273(3−4): 260−269. doi: 10.1016/j.jpgl.2008.06.026 |
[55] | Sadekov A, Eggins S M, de Deckker P, et al. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata[J]. Paleoceanography, 2009, 24(3): 1−17. doi: 10.1029/2008PA001664 |
[56] | Ferguson J, Henderson G, Kucera M, et al. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient[J]. Earth and Planetary Science Letters, 2008, 265(1−2): 153−166. doi: 10.1016/j.jpgl.2007.10.011 |
[57] | Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2): 1−28. doi: 10.1029/2002PA000846 |
[58] | Pearson P N, Ditchfield P W, Singano J, et al. Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs[J]. Nature, 2001, 413(6855): 481−487. doi: 10.1038/35097000 |
[59] | Sadekov A Y, Eggins S M, Klinkhammer G P, et al. Effects of seafloor and laboratory dissolution on the Mg/Ca composition of Globigerinoides sacculifer and Orbulina universa tests—A laser ablation ICPMS microanalysis perspective[J]. Earth and Planetary Science Letters, 2010, 292(3): 312−324. doi: 10.1016/j.jpgl.2010.01.039 |
[60] | Murphy W M, Oelkers E H, Lichtner P C. Surface reaction versus diffusion control of mineral dissolution and growth rates in geochemical processes[J]. Chemical Geology, 1989, 78(3−4): 357−380. doi: 10.1016/0009-2541(89)90069-7 |
[61] | Berner R A. Rate control of mineral dissolution under Earth surface conditions[J]. American Journal of Science, 1978, 278(9): 1235−1252. doi: 10.2475/ajs.278.9.1235 |
[62] | Morse J W, Arvidson R S. The dissolution kinetics of major sedimentary carbonate minerals[J]. Earth-Science Reviews, 2002, 58(1−2): 51−84. doi: 10.1016/S0012-8252(1)00083-6 |
[63] | Sjoberg E. Kinetics and mechanism of calcite dissolution in aqueous solutions at low temperature temperatures[J]. Scottish Journal of Geology, 1978, 32: 1−92. |
[64] | Plummer L N, Parkhurst D L, Wigley T M L. Critical review of the kinetics of calcite dissolution and precipitation[J]. ACS Symposium Series, 1979, 25: 537−573. doi: 10.1021/bk-1979-0093.ch025 |
[65] | Busenberg E, Plummer L, Mumpton F. A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite[J]. Studies in Diagenesis, 1986, 1578: 139−168. |
[66] | Giudici G D. Surface control vs. diffusion control during calcite dissolution: Dependence of step-edge velocity upon solution pH[J]. American Mineralogist, 2002, 87(10): 1279−1285. doi: 10.2138/am-2002-1002 |
[67] | Chou L, Garrels R M, Wollast R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals[J]. Chemical Geology, 1989, 78(3−4): 269−282. doi: 10.1016/0009-2541(89)90063-6 |
[68] | Sjoeberg E L, Rickard D T. Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence[J]. Chemical Geology, 1984, 42(1−4): 119−136. doi: 10.1016/0009-2541(84)90009-3 |
[69] | Holmes J A. Nonmarine ostracods as Quaternary palaeoenvironmental indicators[J]. Progress in Physical Geography, 1992, 16(4): 405−431. doi: 10.1177/030913339201600402 |
[70] | Holmes J A. Trace-element and stable-isotope geochemistry of non-marine ostracod shells in Quaternary palaeoenvironmental reconstruction[J]. Journal of Paleolimnology, 1996, 15: 223−235. doi: 10.1007/BF00213042 |
[71] | Börner N, de Baere B, Akita L G, et al. Stable isotopes and trace elements in modern ostracod shells: Implications for reconstructing past environments on the Tibetan Plateau, China[J]. Journal of Paleolimnology, 2017, 58(2): 191−211. doi: 10.1007/s10933-017-9971-1 |
[72] | Rodríguez M, de Baere B, François R, et al. An evaluation of cleaning methods, preservation and specimen stages on trace elements in modern shallow marine ostracod shells of Sinocytheridea impress and their implications as proxies[J]. Chemical Geology, 2021, 579: 120316. doi: 10.1016/j.chemgeo.2021.120316 |
[73] | Yang Q, Jochum K P, Stoll B, et al. Trace element variability in single ostracod valves as a proxy for hydrochemical change in Nam Co, Central Tibet, during the Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 225−235. doi: 10.1016/j.palaeo.2014.01.014 |
Schematic diagram of flow-through time-resolved analysis system (Modified from Wang[10])
Design examples of FT-TRA reactor: (a) 25−50μL small capacity reactor; (b) 50mL big capacity reactor. Modified from de Baere[2].
Flow chart of establishing a standard curve of FT-TRA system: (a) Establish a curve of different concentrations of standard solution; (b) Make the correlation diagram of cps and concentration after correction by internal standard.
Changes of leached element concentration in a single foraminifera sample with different flow gradients
The evidence of the steady state in FT-TRA system. Although the samples vary an order of magnitude in size, they all dissolve in the same window of time. Modified from Haley, et al[1].
Differential solution of foraminifera shells in FT-TRA system (Modified from Klinkhammer, et al[18])
FT-TRA system and batch method extracting Mg/Ca of different foraminifera shells to reestablish paleo-ocean temperature. Figure a shows how to use FT-TRA dissolution curve to selectively extract the foraminifera shell biological calcite signal; Figure b shows Mg/Ca of foraminifera shells obtained by the two methods; Figure c shows the corresponding surface seawater temperature calculated using the data in Figure b. Modified from Benway, et al[7].
Comparison of LA-ICP-MS and FT-TRA tests on Mg/Ca of foraminifera shells of different species: (a) LA-ICP-MS analysis of Mg/Ca changes from inside to outside of three foraminifera shells; (b) FT-TRA analysis of Mg/Ca changes from inside to outside of three foraminifera shells. Modified from Sadekov, et al[59].
Comparison of calcite/aragonite solubility obtained by FT-TRA system and other test results at different pH values[2]