Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2025 Vol. 44, No. 1
Article Contents

CHEN Junru, SHEN Yating, LIU Fei. Research Progress on Influencing Factors and Mechanisms of Chromium Valence State Transformation in Soil[J]. Rock and Mineral Analysis, 2025, 44(1): 35-50. doi: 10.15898/j.ykcs.202401180007
Citation: CHEN Junru, SHEN Yating, LIU Fei. Research Progress on Influencing Factors and Mechanisms of Chromium Valence State Transformation in Soil[J]. Rock and Mineral Analysis, 2025, 44(1): 35-50. doi: 10.15898/j.ykcs.202401180007

Research Progress on Influencing Factors and Mechanisms of Chromium Valence State Transformation in Soil

More Information
  • Chromium (Cr) pollution in soil is a global environmental problem, and hexavalent chromium [Cr(Ⅵ)] has become a focus of attention due to its high toxicity and carcinogenicity. Cr in soil mainly exists in the form of Cr(Ⅲ) and Cr(Ⅵ), and the transformation between the two is influenced by factors such as soil pH, redox potential (Eh), natural redox agents, organic matter, and microorganisms. This article provides an overview of the global pollution status and sources of Cr in soil, as well as the different valence states and toxicity characteristics of Cr in soil. It also analyzes the redox mechanisms of chromium valence state transformation in soil affected by different factors, as well as the interactions between different factors. In addition, through a deep understanding of the factors affecting the valence state of Cr, advanced remediation techniques represented by biochar and nanomaterials have emerged. These methods can effectively reduce Cr(Ⅵ) to less toxic Cr(Ⅲ), thereby reducing ecological and environmental risks. Therefore, they are a potentially valuable remediation material and technique. However, the feasibility and effectiveness of large-scale applications still need further verification. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202401180007.

  • 加载中
  • [1] Sharma A, Kapoor D, Wang J, et al. Chromium bioaccumulation and its impacts on plants: An overview[J]. Plants-Basel, 2020, 9(1): 100. doi: 10.3390/plants9010100

    CrossRef Google Scholar

    [2] Pourret O, Hursthouse A. It’s time to replace the term “Heavy Metals”with “Potentially Toxic Elements” when reporting environmental research[J]. International Journal of Environmental Research and Public Health, 2019, 16(22): 4446. doi: 10.3390/ijerph16224446

    CrossRef Google Scholar

    [3] Rashid A, Schutte B J, Ulery A, et al. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health[J]. Agronomy-Basel, 2023, 13(6): 1521. doi: 10.3390/agronomy13061521

    CrossRef Google Scholar

    [4] Rinklebe J, Antoniadis V, Shaheen S M, et al. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany[J]. Environment International, 2019, 126: 76−88. doi: 10.1016/j.envint.2019.02.011

    CrossRef Google Scholar

    [5] 林晓梅, 曹玉莹, 赵上勇, 等. 激光诱导击穿光谱技术对土壤中重金属元素Cr的定量分析[J]. 光谱学与光谱分析, 2021, 41(3): 875−879 doi: 10.3964/j.issn.1000-0593(2021)-0875-05

    CrossRef Google Scholar

    Lin X M, Cao Y Y, Zhao S Y, et al. Quantitative analysis of Cr in soil by laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 875−879. doi: 10.3964/j.issn.1000-0593(2021)-0875-05

    CrossRef Google Scholar

    [6] Mortada W I, El-Naggar A, Mosa A, et al. Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review[J]. Chemosphere, 2023, 331: 138804. doi: 10.1016/j.chemosphere.2023.138804

    CrossRef Google Scholar

    [7] Prado C, Ponce S C, Pagano E, et al. Differential physiological responses of two Salvinia species to hexavalent chromium at a glance[J]. Aquatic Toxicology, 2016, 175: 213−221. doi: 10.1016/j.aquatox.2016.03.027

    CrossRef Google Scholar

    [8] Wei Y, Usman M, Farooq M, et al. Removing hexavalent chromium by nano zero-valent iron loaded on attapulgite[J]. Water Air and Soil Pollution, 2022, 233(2): 48. doi: 10.1007/s11270-022-05513-z

    CrossRef Google Scholar

    [9] Mongaa A, Fulkea A B, Dasguptab D. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies[J]. Journal of Hazardous Materials Advances, 2022, 7: 100113. doi: 10.1016/j.hazadv.2022.100113

    CrossRef Google Scholar

    [10] den Braver-Sewradj S P, van Benthem J, Staal Y C M, et al. Occupational exposure to hexavalent chromium. Part Ⅱ. Hazard assessment of carcinogenic effects[J]. Regulatory Toxicology and Pharmacology, 2021, 126: 105045. doi: 10.1016/j.yrtph.2021.105045

    CrossRef Google Scholar

    [11] Yan X, Yan Z H, Zhu X Z, et al. Comparing different strategies for Cr(Ⅵ) bioremediation: Bioaugmentation, biostimulation, and bioenhancement[J]. Sustainability, 2023, 15(16): 12522. doi: 10.3390/su151612522

    CrossRef Google Scholar

    [12] Sayed D, Alturki A A, Farag H, et al. A novel rotating fixed bed batch reactor for hexavalent chromium reduction[J]. Journal of Ecological Engineering, 2022, 23(11): 273−280. doi: 10.12911/22998993/154061

    CrossRef Google Scholar

    [13] Kang Z, Gao H, Ma X, et al. Fe-Ni/MWCNTs nano-composites for hexavalent chromium reduction in aqueous environment[J]. Molecules, 2023, 28(11): 4412. doi: 10.3390/molecules28114412

    CrossRef Google Scholar

    [14] Guo H, Chen Y, Hu H, et al. High hexavalent chromium concentration in groundwater from a deep aquifer in the Baiyangdian Basin of the North China Plain[J]. Environmental Science & Technology, 2020, 54(16): 10068−10077. doi: 10.1021/acs.est.0c02357

    CrossRef Google Scholar

    [15] Deng L Y, Liu F, Ding Z C, et al. Effect of natural organic matter on Cr(Ⅵ) reduction by reduced nontronite[J]. Chemical Geology, 2023, 615: 121198. doi: 10.1016/j.chemgeo.2022.121198

    CrossRef Google Scholar

    [16] Enbaia S, Eswayah A, Hondow N, et al. Detoxification, active uptake, and intracellular accumulation of chromium species by a methane-oxidizing bacterium[J]. Applied and Environmental Microbiology, 2021, 87(2): e00947−e00920. doi: 10.1128/AEM.00947-20

    CrossRef Google Scholar

    [17] Pei Y, Yang Y, Chen L, et al. Remediation of chromium-contaminated soil in semi-arid areas by combined chemical reduction and stabilization[J]. Environmental Pollutants and Bioavailability, 2023, 35(1): 2157332. doi: 10.1080/26395940.2022.2157332

    CrossRef Google Scholar

    [18] Li S, Xie Y, Jiang S, et al. Biochar decreases Cr toxicity and accumulation in sunflower grown in Cr(Ⅵ)-polluted soil[J]. Toxics, 2023, 11(9): 787. doi: 10.3390/toxics11090787

    CrossRef Google Scholar

    [19] Gezahegn A M, Feyessa F F, Tekeste E A, et al. Chromium laden soil, water, and vegetables nearby tanning industries: Speciation and spatial distribution[J]. Journal of Chemistry, 2021, 2021: 5531349. doi: 10.1155/2021/5531349

    CrossRef Google Scholar

    [20] Caporale A G, Agrelli D, Rodríguez-González P, et al. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from South Italy[J]. Chemosphere, 2019, 233: 92−100. doi: 10.1016/j.chemosphere.2019.05.212

    CrossRef Google Scholar

    [21] Zhong W, Bai W, Li G. Reduction of hexavalent chromium from soil of the relocated factory area with rice straw hydrothermal carbon modified by nano zero-valent iron (nZVI)[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 3089. doi: 10.3390/ijerph20043089

    CrossRef Google Scholar

    [22] Liu Y, Li Y, Hu Y C, et al. Adsorption characteristics and transport behavior of Cr(Ⅵ) in shallow aquifers surrounding a chromium ore processing residue (copr) dumpsite[J]. Journal of Chemistry, 2019, 2019: 4932837. doi: 10.1155/2019/4932837

    CrossRef Google Scholar

    [23] Zhang K, Yang J, Wang Y, et al. All-region human health risk assessment of Cr(Ⅵ) in a coal chemical plant based on Kriging[J]. Polish Journal of Environmental Studies, 2020, 29(1): 429−439. doi: 10.15244/pjoes/99226

    CrossRef Google Scholar

    [24] Zhang K, Qiang C D, Liu J. Spatial distribution characteristics of heavy metals in the soil of coal chemical industrial areas[J]. Journal of Soils and Sediments, 2018, 18(5): 2044−2052. doi: 10.1007/s11368-018-1972-9

    CrossRef Google Scholar

    [25] Li Y, Pan S, Wang L, et al. Soil chromium accumulation in industrial regions across China: Pollution and health risk assessment, spatial pattern, and temporal trend (2002—2021)[J]. Toxics, 2023, 11(4): 363. doi: 10.3390/toxics11040363

    CrossRef Google Scholar

    [26] Xiang J, Xu P, Chen W, et al. Pollution characteristics and health risk assessment of heavy metals in agricultural soils over the past five years in Zhejiang, Southeast China[J]. International Journal of Environmental Research and Public Health, 2022, 19(22): 14642. doi: 10.3390/ijerph192214642

    CrossRef Google Scholar

    [27] Wu D, Liu H, Wu J, et al. Bi-directional pollution characteristics and ecological health risk assessment of heavy metals in soil and crops in Wanjiang Economic Zone, Anhui Province, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(15): 9669. doi: 10.3390/ijerph19159669

    CrossRef Google Scholar

    [28] Wu Z, Zhang D, Xia T, et al. Characteristics, sources and risk assessments of heavy metal pollution in soils of typical chlor-alkali residue storage sites in Northeastern China[J]. PLOS One, 2022, 17(9): e0273434. doi: 10.1371/journal.pone.0273434

    CrossRef Google Scholar

    [29] Li X, Zhang J, Ma J, et al. Status of chromium accumulation in agricultural soils across China (1989—2016)[J]. Chemosphere, 2020, 256: 127036. doi: 10.1016/j.chemosphere.2020.127036

    CrossRef Google Scholar

    [30] Kanagaraj G, Elango L. Chromium and fluoride contamination in groundwater around leather tanning industries in Southern India: Implications from stable isotopic ratio δ53Cr/δ52Cr, geochemical and geostatistical modelling[J]. Chemosphere, 2019, 220: 943−953. doi: 10.1016/j.chemosphere.2018.12.105

    CrossRef Google Scholar

    [31] Chrysochoou M, Theologou E, Bompoti N, et al. Occurrence, origin and transformation processes of geogenic chromium in soils and sediments[J]. Current Pollution Reports, 2016, 2(4): 224−235. doi: 10.1007/s40726-016-0044-2

    CrossRef Google Scholar

    [32] Kierczak J, Pietranik A, Pedziwiatr A. Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review[J]. Science of the Total Environment, 2021, 755: 142620. doi: 10.1016/j.scitotenv.2020.142620

    CrossRef Google Scholar

    [33] Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans[J]. Heliyon, 2020, 6(9): e04691. doi: 10.1016/j.heliyon.2020.e04691

    CrossRef Google Scholar

    [34] Coetzee J J, Bansal N, Chirwa E M N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation[J]. Exposure and Health, 2020, 12(1): 51−62. doi: 10.1007/s12403-018-0284-z

    CrossRef Google Scholar

    [35] Pushkar B, Sevak P, Parab S, et al. Chromium pollution and its bioremediation mechanisms in bacteria: A review[J]. Journal of Environmental Management, 2021, 287: 112279. doi: 10.1016/j.jenvman.2021.112279

    CrossRef Google Scholar

    [36] 贾琼琳, 韩俊艳, 何丹. 土壤中重金属铬污染及其治理方法的研究进展[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场. 北京: 中国环境科学学会, 2021: 354−357, 380.

    Google Scholar

    Jia Q L, Han J Y, He D. Research progress of heavy metal chromium pollution in soil and its control methods[C]//China Environmental Science Society 2021 Science and Technology Annual Conference—Environmental Engineering Technology Innovation and Application Sub-forum. Beijing: Chinese Society for Environmental Sciences, 2021: 354−357, 380.

    Google Scholar

    [37] Gupta D K, Chatterjee S, Datta S, et al. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals[J]. Chemosphere, 2014, 108: 134−144. doi: 10.1016/j.chemosphere.2014.01.030

    CrossRef Google Scholar

    [38] 耿源濛, 张传兵, 张勇, 等. 我国城市污泥中重金属的赋存形态与生态风险评价[J]. 环境科学, 2021, 42(10): 4834−4843. doi: 10.13227/j.hjkx.202101145

    CrossRef Google Scholar

    Geng Y M, Zhang C B, Zhang Y, et al. Speciation and ecological risk assessment of heavy metal(loid)s in the municipal sewage sludge of China[J]. Environmental Science, 2021, 42(10): 4834−4843. doi: 10.13227/j.hjkx.202101145

    CrossRef Google Scholar

    [39] 白宇明, 李永利, 周文辉, 等. 典型工业城市土壤重金属元素形态特征及生态风险评估[J]. 岩矿测试, 2022, 41(4): 632−641. doi: 10.15898/j.cnki.11-2131/td.202109030113

    CrossRef Google Scholar

    Bai Y M, Li Y L, Zhou W H, et al. Speciation characteristics and ecological risk assessment of heavy metal elements in soils of typical industrial city[J]. Rock and Mineral Analysis, 2022, 41(4): 632−641. doi: 10.15898/j.cnki.11-2131/td.202109030113

    CrossRef Google Scholar

    [40] Ali W, Mao K, Zhang H, et al. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries[J]. Journal of Hazardous Materials, 2020, 397: 122720. doi: 10.1016/j.jhazmat.2020.122720

    CrossRef Google Scholar

    [41] Bai J, Xun P, Morris S, et al. Chromium exposure and incidence of metabolic syndrome among American young adults over a 23-year follow-up: The CARDIA trace element study[J]. Scientific Reports, 2015, 5: 15606. doi: 10.1038/srep15606

    CrossRef Google Scholar

    [42] Sharma P, Singh S P, Parakh S K, et al. Health hazards of hexavalent chromium (Cr(Ⅵ)) and its microbial reduction[J]. Bioengineered, 2022, 13(3): 4923−4938. doi: 10.1080/21655979.2022.2037273

    CrossRef Google Scholar

    [43] Ulhassan Z, Gill R A, Huang H, et al. Selenium mitigates the chromium toxicityin Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system[J]. Plant Physiology and Biochemistry, 2019, 145: 142−152. doi: 10.1016/j.plaphy.2019.10.035

    CrossRef Google Scholar

    [44] Kundu D, Dey S, Raychaudhuri S S. Chromium(Ⅵ) induced stress response in the plant Plantago ovata Forsk in vitro[J]. Genes and Environment, 2018, 40: 21. doi: 10.1186/s41021-018-0109-0

    CrossRef Google Scholar

    [45] Aziz S, Altaf J, Khalil A, et al. Human cancer risk due to chromium and its bioaccumulation in physids in Central Punjab, Pakistan[J]. Environmental Science and Pollution Research, 2023, 30(29): 74223−74235. doi: 10.1007/s11356-023-27664-0

    CrossRef Google Scholar

    [46] Banu S K, Stanley J A, Taylor R J, et al. Sexually dimorphic impact of chromium accumulation on human placental oxidative stress and apoptosis[J]. Toxicological Sciences, 2018, 161(2): 375−387. doi: 10.1093/toxsci/kfx224

    CrossRef Google Scholar

    [47] Guo S, Xiao C, Zhou N, et al. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination[J]. Environmental Chemistry Letters, 2020, 19(2): 1413−1431. doi: 10.1007/s10311-020-01114-6

    CrossRef Google Scholar

    [48] Ertani A, Mietto A, Borin M, et al. Chromium in agricultural soils and crops: A review[J]. Water Air and Soil Pollution, 2017, 228(5): 190. doi: 10.1007/s11270-017-3356-y

    CrossRef Google Scholar

    [49] Wani K I, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques[J]. Environmental Pollution, 2022, 315: 120350. doi: 10.1016/j.envpol.2022.120350

    CrossRef Google Scholar

    [50] Xiao L, Guan D, Chen Y, et al. Distribution and availability of heavy metals in soils near electroplating factories[J]. Environmental Science and Pollution Research, 2019, 26(22): 22596−22610. doi: 10.1007/s11356-019-04706-0

    CrossRef Google Scholar

    [51] Xiao W, Ye X, Yang X, et al. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils[J]. Ecotoxicology and Environmental Safety, 2015, 113: 439−445. doi: 10.1016/j.ecoenv.2014.12.030

    CrossRef Google Scholar

    [52] Shahid M, Shamshad S, Rafiq M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review[J]. Chemosphere, 2017, 178: 513−533. doi: 10.1016/j.chemosphere.2017.03.074

    CrossRef Google Scholar

    [53] Liang J, Huang X, Yan J, et al. A review of the formation of Cr(Ⅵ) via Cr(Ⅲ) oxidation in soils and groundwater[J]. Science of the Total Environment, 2021, 774: 145762. doi: 10.1016/j.scitotenv.2021.145762

    CrossRef Google Scholar

    [54] Li B, Yang J X, Sun W T, et al. Carbonization of plant residues decreased their capability of reducing hexavalent chromium in soils[J]. Water Air and Soil Pollution, 2019, 230(12): 300. doi: 10.1007/s11270-019-4353-0

    CrossRef Google Scholar

    [55] Zhang Z, Ren J, Liang J, et al. New insight into the natural detoxification of Cr(Ⅵ) in Fe-rich surface soil: Crucial role of photogenerated silicate-bound Fe(Ⅱ)[J]. Environmental Science & Technology, 2023, 57(50): 21370−21381. doi: 10.1021/acs.est.3c05767

    CrossRef Google Scholar

    [56] Hao Y, Ma H, Wang Q, et al. Complexation behaviour and removal of organic-Cr(Ⅲ) complexes from the environment: A review[J]. Ecotoxicology and Environmental Safety, 2022, 240: 113676. doi: 10.1016/j.ecoenv.2022.113676

    CrossRef Google Scholar

    [57] Bokare A D, Choi W. Advanced oxidation process based on the Cr(Ⅲ)/Cr(Ⅵ) redox cycle[J]. Environmental Science & Technology, 2011, 45(21): 9332−9338. doi: 10.1021/es2021704

    CrossRef Google Scholar

    [58] Jiang B, Gong Y, Gao J, et al. The reduction of Cr(Ⅵ) to Cr(Ⅲ) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives[J]. Journal of Hazardous Materials, 2019, 365: 205−226. doi: 10.1016/j.jhazmat.2018.10.070

    CrossRef Google Scholar

    [59] Zheng C, Yang Z, Si M, et al. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species[J]. Journal of Hazardous Materials, 2021, 407: 124376. doi: 10.1016/j.jhazmat.2020.124376

    CrossRef Google Scholar

    [60] Shi Y, Shan R, Lu L, et al. High-efficiency removal of Cr(Ⅵ) by modified biochar derived from glue residue[J]. Journal of Cleaner Production, 2020, 254: 119935. doi: 10.1016/j.jclepro.2019.119935

    CrossRef Google Scholar

    [61] Li H, Wang J, Zhao B, et al. The role of major functional groups: Multi-evidence from the binding experiments of heavy metals on natural fulvic acids extracted from lake sediments[J]. Ecotoxicology and Environmental Safety, 2018, 162: 514−520. doi: 10.1016/j.ecoenv.2018.07.038

    CrossRef Google Scholar

    [62] Xu J, Dai Y, Shi Y, et al. Mechanism of Cr(Ⅵ) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species[J]. Science of the Total Environment, 2020, 725: 138413. doi: 10.1016/j.scitotenv.2020.138413

    CrossRef Google Scholar

    [63] Zhang J, Yin H, Wang H, et al. Reduction mechanism of hexavalent chromium by functional groups of undissolved humic acid and humin fractions of typical black soil from Northeast China[J]. Environmental Science and Pollution Research, 2018, 25(17): 16913−16921. doi: 10.1007/s11356-018-1878-5

    CrossRef Google Scholar

    [64] Xu Z, Xu X, Zhang Y, et al. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(Ⅵ) reduction[J]. Journal of Hazardous Materials, 2020, 388: 121794. doi: 10.1016/j.jhazmat.2019.121794

    CrossRef Google Scholar

    [65] Wang X, Xu J, Liu J, et al. Mechanism of Cr(Ⅵ) removal by magnetic greigite/biochar composites[J]. Science of the Total Environment, 2020, 700: 134414. doi: 10.1016/j.scitotenv.2019.134414

    CrossRef Google Scholar

    [66] Odinga E S, Waigi M G, Gudda F O, et al. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars[J]. Environment International, 2020, 134: 105172. doi: 10.1016/j.envint.2019.105172

    CrossRef Google Scholar

    [67] Fan Z, Zhang Q, Gao B, et al. Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention[J]. Chemosphere, 2019, 217: 85−94. doi: 10.1016/j.chemosphere.2018.11.009

    CrossRef Google Scholar

    [68] 陈壮, 梁媛, 赵奔, 等. 改性生物炭对Cr(Ⅵ)的吸附特性研究[J]. 复旦学报(自然科学版), 2021, 60(6): 779−788. doi: 10.15943/j.cnki.fdxb-jns.2021.06.007

    CrossRef Google Scholar

    Chen Z, Liang Y, Zhao B, et al. Adsorption characteristics and mechanism of modified biochar to Cr(Ⅵ)[J]. Journal of Fudan University (Natural Science), 2021, 60(6): 779−788. doi: 10.15943/j.cnki.fdxb-jns.2021.06.007

    CrossRef Google Scholar

    [69] Li K, Huang Z, Zhu S, et al. Removal of Cr(Ⅵ) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems[J]. Applied Catalysis B-Environmental, 2019, 243: 386−396. doi: 10.1016/j.apcatb.2018.10.052

    CrossRef Google Scholar

    [70] Peng X X, Gai S, Cheng K, et al. Roles of humic substances redox activity on environmental remediation[J]. Journal of Hazardous Materials, 2022, 435: 129070. doi: 10.1016/j.jhazmat.2022.129070

    CrossRef Google Scholar

    [71] Zhu S, Huang X, Yang X, et al. Enhanced transformation of Cr(Ⅵ) by heterocyclic-N within nitrogen-doped biochar: Impact of surface modulatory persistent free radicals (PFRs)[J]. Environmental Science & Technology, 2020, 54(13): 8123−8132. doi: 10.1021/acs.est.0c02713

    CrossRef Google Scholar

    [72] Fang G, Liu C, Wang Y, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B-Environmental, 2017, 214: 34−45. doi: 10.1016/j.apcatb.2017.05.036

    CrossRef Google Scholar

    [73] Yu Y, An Q, Jin L, et al. Unraveling sorption of Cr(Ⅵ) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: Implicit mechanism and application[J]. Bioresource Technology, 2020, 297: 122466. doi: 10.1016/j.biortech.2019.122466

    CrossRef Google Scholar

    [74] Geng A, Xu L, Gan L, et al. Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal[J]. Chemosphere, 2020, 250: 126291. doi: 10.1016/j.chemosphere.2020.126291

    CrossRef Google Scholar

    [75] Wang T, Liu S, Mao W, et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 389: 121827. doi: 10.1016/j.jhazmat.2019.121827

    CrossRef Google Scholar

    [76] Alsaiari M. Biomass-derived active carbon (AC) modified TiO2 photocatalyst for efficient photocatalytic reduction of chromium(Ⅵ) under visible light[J]. Arabian Journal of Chemistry, 2021, 14(8): 103258. doi: 10.1016/j.arabjc.2021.103258

    CrossRef Google Scholar

    [77] Jalili B, Sadegh-Zadeh F, Jabari-Giashi M, et al. Lead bioimmobilization in contaminated mine soil by Aspergillus niger SANRU[J]. Journal of Hazardous Materials, 2020, 393: 122375. doi: 10.1016/j.jhazmat.2020.122375

    CrossRef Google Scholar

    [78] Hussain S, Maqbool Z, Shahid M, et al. Simultaneous removal of reactive dyes and hexavalent chromium by a metal tolerant pseudomonas sp. Ws-d/183 harboring plant growth promoting traits[J]. International Journal of Agriculture and Biology, 2020, 23(2): 241−252. doi: 10.17957/IJAB/15.1282

    CrossRef Google Scholar

    [79] Tariq M, Waseem M, Rasool M H, et al. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites[J]. Peerj, 2019, 7: e7726. doi: 10.7717/peerj.7726

    CrossRef Google Scholar

    [80] Pattnaik S, Dash D, Mohapatra S, et al. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae[J]. Chemosphere, 2020, 240: 124895. doi: 10.1016/j.chemosphere.2019.124895

    CrossRef Google Scholar

    [81] Sha C Y, Wu J, Wu J Q, et al. Effects of different fertilizers on soil microbial diversity during long-term fertilization of a corn field in Shanghai, China[J]. Diversity-Basel, 2023, 15(1): 78. doi: 10.3390/d15010078

    CrossRef Google Scholar

    [82] Jin Q, Zhang Y, Wang Q, et al. Effects of potassium fulvic acid and potassium humate on microbial biodiversity in bulk soil and rhizosphere soil of Panax ginseng[J]. Microbiological Research, 2022, 254: 126914. doi: 10.1016/j.micres.2021.126914

    CrossRef Google Scholar

    [83] Tang X, Huang Y, Li Y, et al. Study on detoxification and removal mechanisms of hexavalent chromium by microorganisms[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111699. doi: 10.1016/j.ecoenv.2020.111699

    CrossRef Google Scholar

    [84] Gu B H, Chen J. Enhanced microbial reduction of Cr(Ⅵ) and U(Ⅵ) by different natural organic matter fractions[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3575−3582. doi: 10.1016/S0016-7037(3)00162-5

    CrossRef Google Scholar

    [85] Chen Y, Wu H, Sun P, et al. Remediation of chromium-contaminated soil based on bacillus cereus WHX-1 immobilized on biochar: Cr(Ⅵ) transformation and functional microbial enrichment[J]. Frontiers in Microbiology, 2021, 12: 641913. doi: 10.3389/fmicb.2021.641913

    CrossRef Google Scholar

    [86] Huang X N, Min D, Liu D F, et al. Formation mechanism of organo-chromium(Ⅲ) complexes from bioreduction of chromium(Ⅵ) by Aeromonas hydrophila[J]. Environment International, 2019, 129: 86−94. doi: 10.1016/j.envint.2019.05.016

    CrossRef Google Scholar

    [87] Tan H, Wang C, Zeng G, et al. Bioreduction and biosorption of Cr(Ⅵ) by a novel Bacillus sp. CRB-B1 strain[J]. Journal of Hazardous Materials, 2020, 386: 121628. doi: 10.1016/j.jhazmat.2019.121628

    CrossRef Google Scholar

    [88] Zhuang L, Li Q, Chen J, et al. Carbothermal preparation of porous carbon-encapsulated iron composite for the removal of trace hexavalent chromium[J]. Chemical Engineering Journal, 2014, 253: 24−33. doi: 10.1016/j.cej.2014.05.038

    CrossRef Google Scholar

    [89] Shaheen S M, Niazi N K, Hassan N E E, et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review[J]. International Materials Reviews, 2019, 64(4): 216−247. doi: 10.1080/09506608.2018.1473096

    CrossRef Google Scholar

    [90] Liu W, Jin L, Xu J, et al. Insight into pH dependent Cr(Ⅵ) removal with magnetic Fe3S4[J]. Chemical Engineering Journal, 2019, 359: 564−571. doi: 10.1016/j.cej.2018.11.192

    CrossRef Google Scholar

    [91] Lee S, Roh Y, Koh D C. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments: A review[J]. Chemosphere, 2019, 220: 86−97. doi: 10.1016/j.chemosphere.2018.11.143

    CrossRef Google Scholar

    [92] Zhu S, Huang X, Wang D, et al. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential[J]. Chemosphere, 2018, 207: 50−59. doi: 10.1016/j.chemosphere.2018.05.046

    CrossRef Google Scholar

    [93] Gustafsson J P, Persson I, Oromieh A G, et al. Chromium(Ⅲ) complexation to natural organic matter: Mechanisms and modeling[J]. Environmental Science & Technology, 2014, 48(3): 1753−1761. doi: 10.1021/es404557e

    CrossRef Google Scholar

    [94] 刘爱科, 顾梦琪, 魏书斋, 等. 蒽醌-2,6-二磺酸(AQDS)强化厌氧降解直接蓝15[J]. 净水技术, 2019, 38(2): 63−68. doi: 10.15890/j.cnki.jsjs.2019.02.011

    CrossRef Google Scholar

    Liu A K, Gu M Q, Wei S Z, et al. Enhanced anaerobic degradation of direct blue 15 by anthraquinone-2,6-disulfonate (AQDS)[J]. Water Purification Technology, 2019, 38(2): 63−68. doi: 10.15890/j.cnki.jsjs.2019.02.011

    CrossRef Google Scholar

    [95] Tomaszewski E J, Ginder-Vogel M. Decreased electron transfer between Cr(Ⅵ) and AH2DS in the presence of goethite[J]. Journal of Environmental Quality, 2018, 47(1): 139−146. doi: 10.2134/jeq2017.08.0316

    CrossRef Google Scholar

    [96] Langer M, Jamal M U, Conklin A, et al. Chromium removal in the presence of NOM during Fe(Ⅱ) reductive precipitation for drinking water treatment[J]. Water, 2022, 14(18): 2903. doi: 10.3390/w14182903

    CrossRef Google Scholar

    [97] Wittbrodt P R, Palmer C D. Effect of temperature, ionic strength, background electrolytes, and Fe(Ⅲ) on the reduction of hexavalent chromium by soil humic substances[J]. Environmental Science & Technology, 1996, 30(8): 2470−2477. doi: 10.1021/es950731c

    CrossRef Google Scholar

    [98] Song C X, Sun S Q, Wang J T, et al. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect[J]. Frontiers in Microbiology, 2023, 13: 1084097. doi: 10.3389/fmicb.2022.1084097

    CrossRef Google Scholar

    [99] Bao Z J, Feng H Y, Tu W Y, et al. Method and mechanism of chromium removal from soil: A systematic review[J]. Environmental Science and Pollution Research, 2022, 29(24): 35501−35517. doi: 10.1007/s11356-022-19452-z

    CrossRef Google Scholar

    [100] Zulfiqar U, Haider F U, Ahmad M, et al. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review[J]. Frontiers in Plant Science, 2023, 13: 1081624. doi: 10.3389/fpls.2022.1081624

    CrossRef Google Scholar

    [101] 张兆鑫, 曹宁宁, 李林记, 等. 原位吸附技术修复六价铬污染土壤[J]. 岩矿测试, 2024, 43(2): 302−314. doi: 10.15898/j.ykcs.202307090090

    CrossRef Google Scholar

    Zhang Z X, Cao N N, Li L J, et al. In situ adsorption technology for remediation of Cr(Ⅵ) contaminated soil[J]. Rock and Mineral Analysis, 2024, 43(2): 302−314. doi: 10.15898/j.ykcs.202307090090

    CrossRef Google Scholar

    [102] 杨梦楠, 孙晗, 曹海龙, 等. 生物炭-壳聚糖磁性复合吸附剂的制备及去除地下水中铅和铜[J]. 岩矿测试, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    CrossRef Google Scholar

    Yang M N, Sun H, Cao H L, et al. Preparation and application of biochar-chitosan magnetic composite adsorbent for removal of lead and copper from groundwater[J]. Rock and Mineral Analysis, 2023, 42(3): 563−575. doi: 10.15898/j.ykcs.202208230155

    CrossRef Google Scholar

    [103] Peng H, Gao P, Chu G, et al. Enhanced adsorption of Cu(Ⅱ) and Cd(Ⅱ) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229: 846−853. doi: 10.1016/j.envpol.2017.07.004

    CrossRef Google Scholar

    [104] Mandal S, Sarkar B, Bolan N, et al. Enhancement of chromate reduction in soils by surface modified biochar[J]. Journal of Environmental Management, 2017, 186: 277−284. doi: 10.1016/j.jenvman.2016.05.034

    CrossRef Google Scholar

    [105] Murad H A, Ahmad M, Bundschuh J, et al. A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell[J]. Environmental Research, 2022, 204: 112125. doi: 10.1016/j.envres.2021.112125

    CrossRef Google Scholar

    [106] Aparicio J D, Lacalle R G, Artetxe U, et al. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies[J]. Environmental Research, 2021, 194: 110666. doi: 10.1016/j.envres.2020.110666

    CrossRef Google Scholar

    [107] Su H, Fang Z, Tsang P E, et al. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles[J]. Journal of Hazardous Materials, 2016, 318: 533−540. doi: 10.1016/j.jhazmat.2016.07.039

    CrossRef Google Scholar

    [108] Ahmed T, Noman M, Ijaz M, et al. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture[J]. Ecotoxicology and Environmental Safety, 2021, 227: 112888. doi: 10.1016/j.ecoenv.2021.112888

    CrossRef Google Scholar

    [109] Mondal P, Anweshan A, Purkait M K. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review[J]. Chemosphere, 2020, 259: 127509. doi: 10.1016/j.chemosphere.2020.127509

    CrossRef Google Scholar

    [110] Wei Y Z, Chu R, Zhang Q H, et al. Nano zero-valent iron loaded corn-straw biochar for efficient removal of hexavalent chromium: Remediation performance and interfacial chemical behaviour[J]. RSC Advances, 2022, 12(41): 26953−26965. doi: 10.1039/d2ra04650d

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(637) PDF downloads(215) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint