Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

LIU Chengjie, SHAO Yanhai, LI Jinhui, LI Rui, CHEN Hongqin, MENG Xiao. Research Progress on Low−Alkaline Flotation Reagents for Zinc−sulfur Separation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 38-48. doi: 10.13779/j.cnki.issn1001-0076.2024.03.004
Citation: LIU Chengjie, SHAO Yanhai, LI Jinhui, LI Rui, CHEN Hongqin, MENG Xiao. Research Progress on Low−Alkaline Flotation Reagents for Zinc−sulfur Separation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 38-48. doi: 10.13779/j.cnki.issn1001-0076.2024.03.004

Research Progress on Low−Alkaline Flotation Reagents for Zinc−sulfur Separation

More Information
  • The separation of sphalerite and pyrite through flotation under low alkali conditions presents a challenging and significant issue within the realm of mineral processing. Conventional methods for separating zinc and sulfur typically require a high−alkali lime environment. Nevertheless, the excessive use of lime can lead to complications such as pipeline obstructions and hinder the activation of metal minerals in subsequent processes.Hence, the careful selection of flotation reagents for zinc−sulfur separation under alkali−free or low−alkali conditions is of paramount importance. The research progress of flotation reagents for zinc−sulfur separation is reviewed.The types of low−alkali inhibitors and low−alkali selective collectors and their separation mechanisms are introduced. The low−alkaline inhibitors encompass organic, inorganic, and novel inhibitors, whereas the low−alkaline selective collectors include xanthates, cationic collectors, combination collectors, and innovative collectors. The advantages and disadvantages of different types of low−alkaline flotation agents are summarized, along with a discussion on the research directions of flotation agents utilized for separating sphalerite and pyrite in a low−alkaline environment.

  • 加载中
  • [1] 何铸文, 杨忆. 黄铁矿型结构的晶体化学[J]. 矿物学报, 1996(4): 423−430.

    Google Scholar

    HE Z W, YANG Y. Crystal chemistry of pyrite−type structure[J]. Journal of Mineralogy, 1996(4): 423−430.

    Google Scholar

    [2] 王淀佐, 龙翔云, 孙水裕, 等. 硫化矿的氧化与浮选机理的量子化学研究[J]. 中国有色金属学报, 1991(1): 15−23.

    Google Scholar

    WANG D Z, LONG X Y, SUN S Y, et al. Quantum chemical study on oxidation and flotation mechanism of sulfide ores[J]. Chinese Journal of Nonferrous Metals, 1991(1): 15−23.

    Google Scholar

    [3] LEHNER S W, SAVAGE K S, AYERS J C, et al. Vapor growth and characterization of pyrite (FeS2) doped with Co, Ni, and As: Variations in semiconducting properties[J]. Journal of Crystal Growth, 2006, 286(2): 306−317. doi: 10.1016/j.jcrysgro.2005.09.062

    CrossRef Google Scholar

    [4] SAVAGE K S, STEFAN D, LEHNER S W, et al. Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products[J]. Applied Geochemistry, 2008, 23(2): 103−120. doi: 10.1016/j.apgeochem.2007.10.010

    CrossRef Google Scholar

    [5] FERRER I J, DE LA HERAS C, SANCHEZ C, et al. The effect of Ni impurities on some structural properties of pyrite thin films[J]. Journal of Physics: Condensed Matter, 1995, 7(10): 2115. doi: 10.1088/0953-8984/7/10/018

    CrossRef Google Scholar

    [6] JIANG K, HAN Y, LIU J, et al. Experimental and theoretical study of the effect of pH level on the surface properties and floatability of pyrite[J]. Applied Surface Science, 2023, 615: 156350. doi: 10.1016/j.apsusc.2023.156350

    CrossRef Google Scholar

    [7] 姜凯, 刘杰, 韩跃新, 等. 自然氧化对黄铁矿可浮性的影响及其机理研究[J]. 金属矿山, 2019(2): 111−114.

    Google Scholar

    JIANG K, LIU J, HAN Y X, et al. The effect of natural oxidation on the floatability of pyrite and its mechanism[J]. Metal Mines, 2019(2): 111−114.

    Google Scholar

    [8] LEPPINEN J O. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non−activated sulfide minerals[J]. International Journal of Mineral Processing, 1990, 30(3/4): 245−263.

    Google Scholar

    [9] 黄凌云. 闪锌矿晶体结构性质及其铜活化作用[J]. 矿产保护与利用, 2018(3): 26−30.

    Google Scholar

    HUANG L Y. Crystal structure properties of sphalerite and its copper activation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 26−30.

    Google Scholar

    [10] HARMER S L, GONCHAROVA L V, KOLAROVA R, et al. Surface structure of sphalerite studied by medium energy ion scattering and XPS[J]. Surface Science, 2007, 601(2): 352−361. doi: 10.1016/j.susc.2006.10.001

    CrossRef Google Scholar

    [11] 陈建华, 曾小钦, 陈晔, 等. 含空位和杂质缺陷的闪锌矿电子结构的第一性原理计算[J]. 中国有色金属学报, 2010, 20(4): 765−771.

    Google Scholar

    CHEN J H, ZENG X Q, CHEN Y, et al. First−principles calculation of the electronic structure of sphalerite with vacancy and impurity defects[J]. Chinese Journal of Nonferrous Metals, 2010, 20(4): 765−771.

    Google Scholar

    [12] 曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109−117.

    Google Scholar

    ZENG Y, LIU J, WANG Y, et al. Research progress on the effect and mechanism of typical metal ions on sphalerite flotation behavior[J]. Conservation and Utilization of Mineral Resources, 2019, 39(2): 109−117.

    Google Scholar

    [13] 黄红军. 低活性难选硫铁矿高效活化应用基础研究[D]. 长沙: 中南大学, 2011.

    Google Scholar

    HUANG H J. Applied basic research on high−efficiency activation of low−activity refractory pyrite[D]. Changsha: Central South University, 2011.

    Google Scholar

    [14] 彭建城, 熊道陵, 马智敏, 等. 有机抑制剂在浮选中抑制黄铁矿的研究进展[J]. 2012, 3(2): 61−65.

    Google Scholar

    PENG J C, XIONG D L, MA Z M, et al. Research progress of organic depressants inhibiting pyrite in flotation[J]. 2012, 3(2): 61−65.

    Google Scholar

    [15] 魏民, 吕晋芳, 郑永兴, 等. 淀粉对硫化矿物和脉石矿物的选择性抑制作用及机理研究进展[J]. 矿产保护与利用, 2021, 41(2): 58−64.

    Google Scholar

    WEI M, LV J F, ZHENG Y X, et al. Research progress on selective inhibition of starch on sulfide minerals and gangue minerals and its mechanism[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 58−64.

    Google Scholar

    [16] CHAPAGAI M K, FLETCHER B, GIDLEY M J, et al. Characterization of structure−function properties relevant to copper−activated pyrite depression by different starches[J]. Carbohydrate Polymers, 2023, 312: 120841. doi: 10.1016/j.carbpol.2023.120841

    CrossRef Google Scholar

    [17] FLETCHER B, CHIMONYO W, PENG Y, et al. A comparison of native starch, oxidized starch and CMC as copper−activated pyrite depressants[J]. Minerals Engineering, 2020, 156(1). doi: 10.1016/j.mineng.2020.106532

    CrossRef Google Scholar

    [18] RAN J, LI Y, ZHAO X, et al. Utilization of soluble starch as the depressant to flotation separation of pyrite from arsenopyrite[J]. Separation and Purification Technology, 2023, 310: 123155. doi: 10.1016/j.seppur.2023.123155

    CrossRef Google Scholar

    [19] FLETCHER B, CHIMONYO W, PENG Y, et al. The potential of modified starches as mineral flotation depressants[J]. Mining, Metallurgy & Exploration, 2021, 38(2): 739−750.

    Google Scholar

    [20] VALDIVIESO A L, CERVANTES T C, SONG S, et al. Dextrin as a non−toxic depressant for pyrite in flotation with xanthates as collector[J]. Minerals Engineering, 2004, 17(9/10): 1001−1006. doi: 10.1016/j.mineng.2004.04.003

    CrossRef Google Scholar

    [21] AČAI P, SORRENTI E, GORNER T, et al. Pyrite passivation by humic acid investigated by inverse liquid chromatography[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 337(1/2/3): 39−46.

    Google Scholar

    [22] WEI Q, DONG L, JIAO F, et al. The synergistic depression of lime and sodium humate on the flotation separation of sphalerite from pyrite[J]. Minerals Engineering, 2021, 163: 106779. doi: 10.1016/j.mineng.2021.106779

    CrossRef Google Scholar

    [23] LÜ C, WANG Y, QIAN P, et al. Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1814−1821. doi: 10.1016/j.cjche.2018.02.014

    CrossRef Google Scholar

    [24] 邱仙辉, 孙传尧. 古尔胶和鞣酸添加方式对硫化矿浮选的影响[J]. 工程科学学报, 2014, 36(3): 283−288.

    Google Scholar

    QIU X H, SUN C Y. Effects of Guer gum and tannic acid addition methods on sulfide ore flotation[J]. Journal of Engineering Science, 2014, 36(3): 283−288.

    Google Scholar

    [25] 邱仙辉, 孙传尧, 邱廷省, 等. 鞣酸对方铅矿及黄铁矿的抑制作用[J]. 东北大学学报 (自然科学版), 2015, 36(1): 124−128.

    Google Scholar

    QIU X H, SUN C Y, QIU T S, et al. Inhibitory effect of tannic acid on lead and pyrite[J]. Journal of Northeast University (Natural Science Edition), 2015, 36(1): 124−128.

    Google Scholar

    [26] LI D, LIU C, LIU Y, et al. Tannic acid as an eco−friendly natural passivator for the inhibition of pyrite oxidation to prevent acid mine drainage at the source[J]. Applied Surface Science, 2022, 591: 153172. doi: 10.1016/j.apsusc.2022.153172

    CrossRef Google Scholar

    [27] HAN G, WEN S, WANG H, et al. Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism[J]. Journal of Molecular Liquids, 2019, 296: 111774. doi: 10.1016/j.molliq.2019.111774

    CrossRef Google Scholar

    [28] AHMADI M, GHARABAGHI M, ABDOLLAHI H, et al. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system[J]. Advanced Powder Technology, 2018, 29(12): 3155−3162. doi: 10.1016/j.apt.2018.08.015

    CrossRef Google Scholar

    [29] CHEN J H, LI Y Q, LONG Q R, et al. Molecular structures and activity of organic depressants for marmatite, jamesonite and pyrite flotation[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1993−1999. doi: 10.1016/S1003-6326(09)60407-6

    CrossRef Google Scholar

    [30] HAN G, WEN S, WANG H, et al. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite[J]. Separation and Purification Technology, 2020, 240: 116650. doi: 10.1016/j.seppur.2020.116650

    CrossRef Google Scholar

    [31] KHOSO S A, HU Y, LYU F, et al. Selective separation of chalcopyrite from pyrite with a novel non−hazardous biodegradable depressant[J]. Journal of Cleaner Production, 2019, 232: 888−897. doi: 10.1016/j.jclepro.2019.06.008

    CrossRef Google Scholar

    [32] KHOSO S A, GAO Z, TIAN M, et al. The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in CuS flotation scheme[J]. Journal of Molecular Liquids, 2020, 299: 112198. doi: 10.1016/j.molliq.2019.112198

    CrossRef Google Scholar

    [33] MONYAKE K C, ALAGHA L. Enhanced separation of base metal sulfides in flotation systems using Chitosan−grafted−Polyacrylamides[J]. Separation and Purification Technology, 2022, 281: 119818. doi: 10.1016/j.seppur.2021.119818

    CrossRef Google Scholar

    [34] BOULTON A, FORNASIERO D, RALSTON J, et al. Selective depression of pyrite with polyacrylamide polymers[J]. International Journal of Mineral Processing, 2001, 61(1): 13−22. doi: 10.1016/S0301-7516(00)00024-7

    CrossRef Google Scholar

    [35] 周艳飞, 姚伟, 付强, 等. 聚丙烯酰胺对黄铁矿浮选行为的影响及其机制研究[J]. 矿冶, 2023, 32(5): 45−50.

    Google Scholar

    ZHOU Y F, YAO W, FU Q, et al. The effect of polyacrylamide on the flotationbehavior of pyrite and its mechanism[J]. Mining and Metallurgical, 2023, 32(5): 45−50.

    Google Scholar

    [36] BICAK O, EKMEKCI Z, BRADSHAW D J, et al. Adsorption of guar gum and CMC on pyrite[J]. Minerals Engineering, 2007, 20(10): 996−1002. doi: 10.1016/j.mineng.2007.03.002

    CrossRef Google Scholar

    [37] 于淙权, 李光胜, 朱幸福, 等. 不同抑制剂对黄铁矿的抑制作用研究进展[J]. 山东化工, 2022, 51(3): 73−75.

    Google Scholar

    YU C Q, LI G S, ZHU X F, et al. Research progress on the inhibitoryeffect of different inhibitors on pyrite[J]. Shandong Chemical Industry, 2022, 51(3): 73−75.

    Google Scholar

    [38] FENG B, FENG Q, LU Y, et al. The effect of PAX/CMC addition order on chlorite/pyrite separation[J]. Minerals Engineering, 2013, 42: 9−12. doi: 10.1016/j.mineng.2012.10.011

    CrossRef Google Scholar

    [39] 熊兴泉, 张辉, 高利柱, 等. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806−819

    Google Scholar

    XIONG X Q, ZHANG H, GAO L Z, et al. Research progress on functionalization and application of lignin[J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806−819.

    Google Scholar

    [40] MU Y, PENG Y, LAUTEN R A, et al. The mechanism of pyrite depression at acidic pH by lignosulfonate−based biopolymers with different molecular compositions[J]. Minerals Engineering, 2016, 92: 37−46. doi: 10.1016/j.mineng.2016.02.007

    CrossRef Google Scholar

    [41] MU Y, PENG Y, LAUTEN R A, et al. The depression of copper−activated pyrite in flotation by biopolymers with different compositions[J]. Minerals Engineering, 2016, 96: 113−122.

    Google Scholar

    [42] MU Y, PENG Y, LAUTEN R A, et al. Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate−based biopolymer depressant[J]. Electrochimica Acta, 2015, 174: 133−142. doi: 10.1016/j.electacta.2015.05.150

    CrossRef Google Scholar

    [43] 陈万雄, 刘清侠. 煤黄铁矿低分子量有机抑制剂研究[J]. 煤炭科学技术, 1994, 22(9): 33−36.

    Google Scholar

    CHEN W X, L Q X, Study on low molecular weight organic inhibitors of coal pyrite[J]. Coal Science and Technology, 1994, 22(9): 33−36.

    Google Scholar

    [44] 邹志红, 严伟, 蒋立建, 等. N, N−二(2−苯并咪唑亚甲基)二硫代氨基甲酸钠的合成[J]. 精细石油化工进展, 2001, 2(12): 4−6.

    Google Scholar

    ZOU Z H, YAN W, JIANG L J, et al. Synthesis of sodium N, N−bis(2−benzimidazolylmethylene)dithiocarbamate[J]. Fine Petrochemical Progress, 2001, 2(12): 4−6.

    Google Scholar

    [45] BAI X, LIU J, FENG Q, et al. Study on selective adsorption of organic depressant on chalcopyrite and pyrite surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127210. doi: 10.1016/j.colsurfa.2021.127210

    CrossRef Google Scholar

    [46] 刘润清, 孙伟, 胡岳华, 等. 巯基类小分子有机抑制剂对复杂硫化矿物浮选行为的抑制机理[J]. 中国有色金属学报, 2006(4): 746−751.

    Google Scholar

    LIU R Q, SUN W, HU Y H, et al. Inhibitory mechanism of thiol small molecule organic inhibitors on flotation behavior of complex sulfide minerals[J]. Chinese Journal of Nonferrous Metals, 2006(4): 746−751.

    Google Scholar

    [47] 杨旭, 李育彪, 彭樱, 等. 黄铁矿抑制剂与活化剂研究进展[J]. 金属矿山, 2020(10): 34−40.

    Google Scholar

    YANG X, LI Y B, PENG Y, et al. Research progress on pyrite inhibitors and activators[J]. Metal Mines, 2020(10): 34−40.

    Google Scholar

    [48] MU Y, PENG Y. The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water[J]. Minerals Engineering, 2019, 142: 105921. doi: 10.1016/j.mineng.2019.105921

    CrossRef Google Scholar

    [49] 贺壮志, 朱阳戈, 肖巧斌, 等. 低碱下含硫化物的抑硫机理和行为研究现状[J]. 有色金属(选矿部分), 2023(4):156−162.

    Google Scholar

    HE Z Z, ZHU Y G, XIAO Q B, et al. Research status of sulfur inhibition mechanism and behavior of sulfide under low alkali[J]. Nonferrous Metals(Mineral Processing Section), 2023(4): 156−162.

    Google Scholar

    [50] HE S, SKINNER W, FORNASIERO D. Effect of oxidation potential and zinc sulphate on the separation of chalcopyrite from pyrite[J]. International Journal of Mineral Processing, 2006, 80(2/3/4): 169−176. doi: 10.1016/j.minpro.2006.03.009

    CrossRef Google Scholar

    [51] OLSEN C, MAKNI S, HART B, et al. Application of Surface Chemical Analysis to the Industrial Flotation Process of a Complex Sulphide Ore[C]//Proceeding; XXVI International Mineral Processing Congress (IMPC 2012), New Delhi, India. 2012.

    Google Scholar

    [52] 邱廷省, 罗仙平, 方夕辉, 等. 黄铁矿氧化抑制行为及机理研究[J]. 矿产综合利用, 2001(5): 17−20.

    Google Scholar

    QIU T S, LUO X P, FANG X H, et al. Research on oxidation inhibition behavior and mechanism of pyrite[J]. Comprehensive Utilization of Mineral Resources, 2001(5): 17−20.

    Google Scholar

    [53] 李达, 刘建, 杨东, 等. 国外某高硫低锌尾矿锌强化回收试验研究[J]. 矿冶, 2023(6): 44−51.

    Google Scholar

    LI D, LIU J, YANG D, et al. [J]. Mining and Metallurgy, 2023(6): 44−51.

    Google Scholar

    [54] 王体琛, 邓久帅, 卢雨, 等. 新型硫抑制剂HD12替代石灰的试验研究[J]. 金属矿山, 2023(9): 98−102.

    Google Scholar

    WANG T C, DENG J S, LU Y, et al. Experimental study on replacement of lime by a new sulfur inhibitor HD12[J]. Metal Mine, 2023(9): 98−102.

    Google Scholar

    [55] 李希掌, 曾娜, 向平, 等. 湖南某铅锌矿无碱浮选试验研究[J]. 矿冶工程, 2021, 41(3): 5.

    Google Scholar

    LI X Z, ZENG N, XIANG P, et al. Experimental study on alkali−free flotation of a lead−zinc mine in Hu’nan[J]. Mining and Metallurgy Engineering, 2021, 41(3): 5.

    Google Scholar

    [56] 张胜东. 闪锌矿铁含量对其浮选及与黄铁矿分离的影响[D]. 昆明: 昆明理工大学, 2021.

    Google Scholar

    ZHANG S D. Effect of iron content of sphalerite on its flotation and separation from pyrite[D]. Kunming: Kunming University of Science and Technology, 2021.

    Google Scholar

    [57] 翁孝卿, 刘丹章, 李洪强, 等. 胺类阳离子捕收剂表面物理化学性能研究的综合实验[J]. 实验技术与管理, 2021, 38(6): 5.

    Google Scholar

    WENG X Q, LIU D Z, LI H Q, et al. Comprehensive experiment on surface physical and chemical properties of amine cationic collectors[J]. Experimental Technology and Management, 2021, 38(6): 5.

    Google Scholar

    [58] J·S·拉斯哥夫斯基, 崔洪山, 李长根. 用阳离子捕收剂浮选硫化矿物[J]. 国外金属矿选矿, 2003, 40(4): 7.

    Google Scholar

    J. S. LASKOVSKI, CUI HONGSHAN, LI CHANGGEN. Flotation of sulfide minerals with cationic collector[J]. Foreign Metal Ore Dressing, 2003, 40(4): 7.

    Google Scholar

    [59] 邓春虎, 吕宏芝, 黄虎辉, 等. 云南某低品位硫化银铅锌矿选矿优化研究[J]. 有色金属(选矿部分), 2020(2): 6.

    Google Scholar

    DENG C H, LV H Z, HUANG H H, et al. Study on beneficiation optimization of a low−grade silver sulfide lead−zinc mine in Yunnan[J]. Nonferrous Metals (Beneficiation Section), 2020(2): 6.

    Google Scholar

    [60] 胡生福, 彭鑫, 冯媛媛, 等. 四川某铅锌矿选锌新型捕收剂工业试验研究[J]. 金属矿山, 2023(12): 154−157.

    Google Scholar

    HU S F, PENG X , FENG Y Y, et al. Industrial experimental study on a new collector for zinc dressing in a lead−zinc mine in Sichuan[J]. Metal Mine, 2023(12): 154−157.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(592) PDF downloads(61) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint