Citation: | DAI Longfu, LIU Jian, LI Da, HUANG Rong, WANG Ping, LI Zhiyu. Research and Molecular Dynamics Simulation of Efficient Flotation of Scheelite with Ternary Combined Collector Based on BHA[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 49-56. doi: 10.13779/j.cnki.issn1001-0076.2024.03.005 |
The hydroxamic acid reagents are extremely pervasive in the collector of scheelite flotation. Due to its high price and large dosage, the flotation cost of scheelite is high. To achieve cost−effective and efficient flotation of scheelite, this study proposes a ternary combined collector for scheelite flotation: benzohydroxamic acid (BHA)+R−benzoic acid (4−MBA)+octyl hydroxamic acid (OHA). The synergistic effect of the combined collector in the scheelite flotation system was confirmed by molecular dynamics simulation. Meanwhile, it was further verified that the combined collector has good collection performance for scheelite through actual ore flotation experiments. Molecular dynamics simulation results indicate that as the variety of collector increases, the relative concentration of water molecules on the scheelite (112) surface decreases, enhancing hydrophobicity. The lowest relative concentration of water molecules on the scheelite surface was observed under the ternary combined collector system. This suggests a synergistic effect among the ternary combined collectors, resulting in a stronger hydrophobicity on the mineral surface. The flotation test was conducted on a complex low−grade scheelite ore. The results showed that the addition of 4−MBA at a dosage of 11.11% in the BHA flotation scheelite system effectively improved the flotation effect of BHA on the scheelite ore, while reducing the BHA dosage by approximately 37.5% while ensuring the flotation recovery. When OHA at a dosage of 2.22% was combined with BHA, the flotation recovery of scheelite ore increased by about 20%, and the flotation foam layer was improved. The best flotation effect was exhibited under the ternary combination of BHA+OHA+4−MBA. Using water glass and carboxymethyl cellulose (CMC) as depressants, a closed−circuit flotation test consisting of roughing, scavenging, and three stages of cleaning can obtain scheelite concentrate with a WO3 grade of 28.55% and a WO3 recovery of 72.04%. Compared to using benzohydroxamic acid as a single collector on site, the grade and recovery of scheelite concentrate increased by approximately 3% and 4%, respectively, while reducing the collector dosage by 37.5%. Therefore, the ternary combined collector can significantly reduce the cost of flotation reagent while improving the recovery of scheelite, and realize the efficient recovery of scheelite.
[1] | YANG, X S. Beneficiation studies of tungsten ores – a review[J]. Minerals Engineering, 2018, 125: 111−119. doi: 10.1016/j.mineng.2018.06.001 |
[2] | 王军. 高性能钨合金制备技术研究现状[J]. 有色金属材料与工程, 2019, 40(4): 53−60. WANG J. Research status on preparation techniques of high−performance tungsten alloys[J]. Nonferrous Metal Materials and Engineering, 2019, 40(4): 53−60. |
[3] | 初阳. 钨合金的各种用途[J]. 有色金属材料与工程, 1982(1): 89−90. CHU Y. The various uses of tungsten alloys[J]. Nonferrous Metal Materials and Engineering, 1982(1): 89−90 |
[4] | U. S. Geological Survey. Mineral commodity summaries 2024[R/OL]. [2023−01−31].https://doi.org/10.3133/mcs2023. |
[5] | 殷俐娟. 我国钨资源现状与政策效应[J]. 中国矿业, 2009, 18(11): 1−3. doi: 10.3969/j.issn.1004-4051.2009.11.001 YIN L J. The status of tungsten resources and policy effects in China[J]. China Mining Magazine, 2009, 18(11): 1−3. doi: 10.3969/j.issn.1004-4051.2009.11.001 |
[6] | 王明燕, 贾木欣, 肖仪武, 等. 中国钨矿资源现状及可持续发展对策[J]. 有色金属工程, 2014, 4(2): 76−80. doi: 10.3969/j.issn.2095-1744.2014.02.018 WANG M Y, JIA M X, XIAO Y W, et al. The current situation of tungsten resources in China and sustainable development strategies[J]. Nonferrous Metals Engineering, 2014, 4(2): 76−80. doi: 10.3969/j.issn.2095-1744.2014.02.018 |
[7] | 赵可可, 戴惠新, 龚志辉, 等. 白钨矿浮选行为研究进展[J]. 有色金属(选矿部分), 2022(6): 155−164. ZHAO K K, DAI H X, GONG Z H, et al. Research progress of scheelite flotation behavior[J]. Nonferrous Metals(Mineral Processing Section), 2022(6): 155−164. |
[8] | 李小康, 张英, 管侦皓, 等. 微细粒白钨矿浮选研究进展[J]. 矿产保护与利用, 2023, 43(2): 169−178. LI X K, ZHANG Y, GUAN Z H, et al. Research status and prospect of flotation of fine scheelite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 169−178. |
[9] | KUPKA N, RUDOLPH M. Froth flotation of scheelite – a review[J]. International Journal of Mining Science and Technology, 2018, 28(3): 373−384. doi: 10.1016/j.ijmst.2017.12.001 |
[10] | 卢颖, 孙胜义. 组合药剂的发展及规律[J]. 矿业工程, 2007(6): 42−44. LU Y, SUN S Y. The development and the combined law of composite reagents[J]. Mining Engineering, 2007(6): 42−44. |
[11] | 刘明宝, 姚国超, 鲁力力, 等. 氧化矿和盐类矿物浮选捕收剂协同效应研究现状[J]. 矿物学报, 2022, 42(5): 649−658. LIU M B, YAO G C, LU L L, et al. Recent status of researches on synergistic effect of floatation collector for oxidized ores and salt minerals[J]. Acta Mineralogica Sinica, 2022, 42(5): 649−658. |
[12] | 徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107−112. XU L H, TIAN J, WU H Q, et al. A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 107−112. |
[13] | WANG L, HU Y, LIU J, et al. Flotation and adsorption of muscovite using mixed cationic–nonionic surfactants as collector[J]. Powder Technology, 2015, 276: 26−33. doi: 10.1016/j.powtec.2015.02.019 |
[14] | 艾光华, 徐晓衣, 邬海滨, 等. 江西某低品位白钨矿选矿试验研究[J]. 有色金属工程, 2017, 7(1): 44−48. AI G H, XU X Y, WU H B, et al. Experimental research on beneficiation of a low−grade scheelite in Jiangxi[J]. Nonferrous Metals Engineering, 2017, 7(1): 44−48. |
[15] | 黄发兰, 马英强, 印万忠, 等. 组合捕收剂浮选回收云南某白钨矿的选矿试验研究[J]. 有色金属(选矿部分), 2016(1): 78−82. HANG F L, MA Y Q, YIN W Z, et al. Experimental study on scheelite flotation with combined collectors[J]. Nonferrous Metals(Mineral Processing Section), 2016(1): 78−82. |
[16] | 徐芮, 孙宁, 孙伟, 等. 分子动力学模拟在矿物浮选中的研究进展[J]. 中南大学学报(自然科学版), 2024, 55(1): 1−19. XU R, SUN N, SUN W, et al. Research progress of molecular dynamics simulation in mineral flotation[J]. Journal of Central South University(Science and Technology), 2024, 55(1): 1−19. |
[17] | 郝海青, 李丽匣, 张晨, 等. 经典分子动力学模拟在矿物浮选研究中的应用[J]. 矿产保护与利用, 2018(3): 9−16. HAO H Q, LI L X, ZHANG C, et al. Application of classic molecular dynamics simulations in minerals flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 9−16. |
[18] | GAO Z Y, SUN W, HU Y H. New insights into the dodecylamine adsorption on scheelite and calcite: an adsorption model[J]. Minerals Engineering, 2015, 79: 54−61. doi: 10.1016/j.mineng.2015.05.011 |
[19] | LIAO R P, WEN S M, LIU J, et al. Experimental and molecular dynamics simulation study on DDA/DDTC mixed collector co−adsorption on sulfidized smithsonite surfaces[J]. Minerals Engineering, 2024, 205: 108493. doi: 10.1016/j.mineng.2023.108493 |
[20] | 汪聪, 邓建, 王建军, 等. 白钨矿晶体化学及浮选现状[J]. 金属矿山, 2021(6): 15−25. WANG C, DENG J. WANG J J, et al. Crystal chemistry and flotation principle of scheelite[J]. Metal Mine, 2021(6): 15−25. |
[21] | GAO Z Y, HU Y H, SUN W, et al. Surface−charge anisotropy of scheelite crystals[J]. Langmuir, 2016, 32(25): 6282−6288. doi: 10.1021/acs.langmuir.6b01252 |
[22] | LIAO R P, WEN S M, BAI S J, et al. Co−adsorption mechanism of isoamyl potassium xanthate and ammonium dibutyl dithiophosphate on sulfidized smithsonite in dodecylamine flotation system[J]. Separation and Purification Technology, 2024, 333: 125788. |
Model structure of the scheelite cell (American mineralogist crystal structure database)
Geometrically optimized scheelite (112) surface model
Optimal structures and atomic charges of the reagent molecules and water molecule
Relative concentration profiles of H2O molecules in the different systems on the vertical direction of scheelite (112) surface: (a) Pb system; (b) BHA system; (c) BHA+4−MBA system; (d) BHA+OHA system; (e) BHA+4−MBA+OHA system
XRD analysis results of sample
Flotation principle flowchart
Flotation test results under single collector conditions (a—BHA 500 g/t; b—BHA 600 g/t; c—BHA 700 g/t; d—BHA 800 g/t; e—OHA 300 g/t; f—OHA 500 g/t)
Flotation test results under the binary combination collector system (a—BHA+4−MBA 450+25 g/t; b—BHA+4−MBA 450+50 g/t; c—BHA+OHA 450+5 g/t; d—BHA+OHA 450+10 g/t; e—BHA+OHA 450+20 g/t)
Flotation test results under the ternary combination collector system (a—BHA+OHA+4−MBA 450+3+25 g/t; b—BHA+OHA+4−MBA 450+3+35 g/t; c—BHA+OHA+4−MBA 450+7+25 g/t)
Flowchart of closed-circuit test