Citation: | GUO Tuyue, XIE Haiyun, JIN Yanling, LI Jianjuan, FENG Mengfei, CHEN Haijun, LIU Dianwen. Advances in Theory and Technology of Selective Flocculation of Fine−grained Minerals[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 27-37. doi: 10.13779/j.cnki.issn1001-0076.2024.03.003 |
China has a large number of refractory fine−grained mineral resources, and selective flocculation technology is one of the effective ways to improve the recovery of fine−grained minerals. This article first analyzes the properties of fine mineral particles and the reasons why they are difficult to float. Secondly, it elaborates on the theoretical research progress of selective flocculation. Finally, it classifies the common selective polymeric flocculants currently available and analyzes and summarizes the research and application status of flocculants and selective flocculation separation processes in fine mineral particles. The main issues identified are the weak selectivity of the flocculants, high cost, environmental impact, and lack of flocculation equipment. The article points out that the development of new, highly selective flocculants, flocculation equipment, and flocculation processes is the future trend.
[1] | 刘爽, 鲁力, 柳德华, 等. 我国稀有及稀散金属综合利用技术综述[J]. 矿产综合利用, 2013(5): 10−12. LIU S, LU L, LIU D H, et al. Review of comprehensive utilization technology of rare and scattered metals in China[J]. Multipurpose Utilization of Mineral Resources, 2013(5): 10−12. |
[2] | JUNG M U, KIM Y C, GHISLAIN B, et al. Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state−of−the−art and perspectives[J]. Advances in colloid and interface science, 2023, 322: 103047−103047. doi: 10.1016/j.cis.2023.103047 |
[3] | 姚伟, 李茂林, 崔瑞, 等. 微细粒矿物的分选技术[J]. 现代矿业, 2015, 31(1): 66−69+152. doi: 10.3969/j.issn.1674-6082.2015.01.022 YAO W, LI M L, CUI R, et al. Separation technology of fine−grained minerals[J]. Modern Mining, 2015, 31(1): 66−69+152. doi: 10.3969/j.issn.1674-6082.2015.01.022 |
[4] | 倪超. 柱浮选精煤细泥污染形成机理及抑制研究[D]. 徐州: 中国矿业大学, 2016. NI C. Study on the formation mechanism and inhibition of fine slime pollution in column flotation clean coal[D]. Xuzhou: China University of Mining and Technology, 2016. |
[5] | 肖遥, 韩海生, 孙伟, 等. 微细粒浮选技术与装备研究进展及其发展趋势[J]. 中南大学学报(自然科学版), 2024, 55(1): 20−31. XIAO Y, HAN H S, SUN W, et al. Research progress and development trend of micro−fine particle flotation technology and equipment[J]. Journal of Central South University (Science and Technology), 2024, 55(1): 20−31. |
[6] | 江时锋, 童雄, 谢贤, 等. 微细粒锡石浮选药剂及工艺研究进展[J]. 有色金属工程, 2023, 13(10): 61−73. JIANG S F, TONG X, XIE X, et al. Research progress of flotation reagents and process for fine cassiterite[J]. Nonferrous Metals Engineering, 2023, 13(10): 61−73. |
[7] | CHOI J, KIM S B. Influence of pH and ionic strength on the floc−magnetic separation: Selective flocculation of fine iron ore[J]. Results in Engineering, 2023, 20: 101441. doi: 10.1016/j.rineng.2023.101441 |
[8] | 罗丽芳. 微细粒白钨矿选择性絮凝行为研究[D]. 赣州: 江西理工大学, 2019. LUO L F. Study on selective flocculation behavior of fine−grained scheelite[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. |
[9] | 苏涛. 微细嵌布磁铁矿选择性絮凝提铁工艺及机理研究[D]. 武汉: 武汉科技大学, 2016. SU T. Study on the process and mechanism of selective flocculation iron extraction from fine disseminated magnetite[D]. Wuhan: Wuhan University of Science and Technology, 2016. |
[10] | 邱冠周, 胡岳华, 王淀佐. 颗粒间相互作用与细粒浮选[M]. 长沙: 中南工业大学出版社, 1993. QIU G Z, HU Y H, WANG D Z. Interparticle interaction and fine particle flotation[M]. Changsha: Central South University of Technology Press, 1993. |
[11] | 廖德进, 陶黎明, 王建军, 等. 微细粒矿物分选理论和浮选药剂研究进展[J]. 现代矿业, 2023, 39(9): 44−48. doi: 10.3969/j.issn.1674-6082.2023.09.010 LIAO D J, TAO L M, WANG J J, et al. Research progress on separation theory and flotation reagents of fine−grained minerals[J]. Modern Mining, 2023, 39(9): 44−48. doi: 10.3969/j.issn.1674-6082.2023.09.010 |
[12] | NOGUEIRA F, RODRIGUES K, PEREIRA C, et al. Quartz fine particle processing: Hydrophobic aggregation by shear flocculation[J]. Minerals, 2023, 13(9): 5−7. |
[13] | 胡为柏. 浮选[M]. 北京: 冶金工业出版社, 1983.04. HU W B. Flotation[M]. Beijing: Metallurgical Industry Press, 1983. 04. |
[14] | CHEN F M, LIU W, PAN Z B, et al. Characteristics and mechanism of chitosan in flocculation for water coagulation in the Yellow River diversion reservoir[J]. Journal of Water Process Engineering, 2020, 34(1): 191−197. |
[15] | 祝凤蕊. 无机−有机杂化高分子絮凝剂制备及其絮凝效能研究[D]. 大庆: 东北石油大学, 2024. ZHU F R. Preparation of inorganic−organic hybrid polymer flocculant and its flocculation efficiency[D]. Daqing: Northeast Petroleum University, 2024. |
[16] | 王淀佐, 邱冠周, 胡岳华. 资源加工学[M]. 北京: 科学出版社, 2005.03. WANG D Z, QIU G Z, HU Y H. Resources processing[M]. Beijing: Science Press, 2005. 03. |
[17] | SINGH R P, PAL S, KRISHNAMOORTHY S, et al. High−technology materials based on modified polysaccharides[J]. Pure and Applied Chemistry, 2009, 81(3): 525−547. |
[18] | 申路庄. 聚合氯化铝强化煤炭浮选中高岭石选择性絮凝机理研究[D]. 北京: 中国矿业大学, 2023. SHEN L Z. Study on selective flocculation mechanism of kaolinite in coal flotation enhanced by polyaluminum chloride[D]. Beijing: China University of Mining and Technology, 2023. |
[19] | 谭明, 魏明安. 选择性絮凝分离磷灰石和石英的影响因素研究[J]. 矿冶, 2013, 22(2): 16−18+23. TAN M, WEI M A. Study on the influencing factors of selective flocculation separation of apatite and quartz[J]. Mining and Metallurgy, 2013, 22(2): 16−18+23. |
[20] | 吕帅, 彭伟军, 苗毅恒, 等. 聚丙烯酰胺类絮凝剂在矿业领域的研究进展[J]. 矿产保护与利用, 2021, 41(1): 79−84. LYU S, PENG W J, MIAO Y H, et al. Research progress of polyacrylamide flocculants in the field of mining[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 79−84. |
[21] | ASGARI K, KHOSHDAST H, NAKHAEI F, et al. A review on floc−flotation of fine particles: Technological aspects, mechanisms, and future perspectives[J]. Mineral Processing and Extractive Metallurgy Review, 2023: 1−28. |
[22] | BILAL M. Development of carrier−flotation technique for finely ground copper sulfides[D]. Hokkaido University, 2022. BILAL M. Development of carrier−flotation technique for finely ground copper sulfides[D]. Hokkaido University, 2022. |
[23] | WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143: 608−631. doi: 10.1016/j.watres.2018.07.029 |
[24] | 汪桥. 高分子絮凝剂对细粒胶磷矿浮选影响研究[D]. 武汉: 武汉工程大学, 2017. WANG Q. Effect of polymer flocculant on flotation of fine collophanite[D]. Wuhan: Wuhan University of Engineering, 2017. |
[25] | 李雪佳, 唐佳伟, 李杰, 等. 絮凝剂的研究进展及其在煤矿矿井水处理中的应用[J]. 工业水处理, 2023, 43(11): 93−103. LI X J, TANG J W, LI J, et al. Progress in flocculant research and its application in coal mine water treatment[J]. Industrial Water Treatment, 2023, 43(11): 93−103. |
[26] | 周正. 新型磁性复合絮凝剂的合成及应用研究[D]. 北京: 中国矿业大学, 2018. ZHOU Z. Synthesis and application of new magnetic composite flocculant[D]. Beijing: China University of Mining and Technology, 2018. |
[27] | 隋璨. 基于内外多因素的某铜矿全尾砂浆絮凝剂高效助沉试验及机理研究[D]. 赣州: 江西理工大学, 2020. SUI C. High−efficiency sedimentation test and mechanism study of flocculant for full tailings mortar of a copper mine based on internal and external factors[D]. Ganzhou: Jiangxi University of Science and Technology, 2020. |
[28] | TUDU K, KUMAR S, MANDRE N. Enhanced recovery of low−grade iron ore by selective flocculation method[J]. Dispers. Sci. Technol. 2018, 39 (8): 1075–1079. |
[29] | DIPTIMAYEE N, MANDRE N R. Mechanism of polymeric adsorption in selective flocculation of low−grade iron ore[J]. Separation Science and Technology, 2021, 56(1): 68−77. doi: 10.1080/01496395.2019.1708936 |
[30] | 苏兴国, 周立波, 李文博, 等. 东鞍山微细粒铁矿选择性絮凝−强磁选技术研究[J]. 矿产保护与利用, 2021, 41(2): 129−136. SU X G, ZHOU L B, LI W B, et al. Study on selective flocculation−high intensity magnetic separation technology of micro−fine iron ore in Donganshan[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 129−136. |
[31] | PANDA L, BANERJEE P K, BISWAL S K, et al. Modelling and optimization of process parameters for beneficiation of ultrafine chromite particles by selective flocculation[J]. Separation and Purification Technology, 2014, 132: 666−673. doi: 10.1016/j.seppur.2014.05.033 |
[32] | 张镜翠. 晋宁低品位胶磷矿的选择性絮凝浮选研究[D]. 昆明: 昆明理工大学, 2019. ZHANG J C. Study on selective flocculation flotation of Jinning low−grade collophanite[D]. Kunming: Kunming University of Science and Technology, 2019. |
[33] | LI W B, CHENG S K, ZHOU L B, et al. Enhanced iron recovery from magnetic separation of ultrafine specularite through polymer−bridging flocculation: A study of flocculation performance and mechanism[J]. Separation and Purification Technology, 2023, 308: 122882. doi: 10.1016/j.seppur.2022.122882 |
[34] | KUMAR D, JAIN V, RAI B. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina−rich iron ore slimes? A density functional theory and experimental study[J]. Minerals Engineering, 2018, 121: 47−54. doi: 10.1016/j.mineng.2018.02.020 |
[35] | KEMPPAINEN K, SUOPAJäRVI T, LAITINEN O, et al. Flocculation of fine hematite and quartz suspensions with anionic cellulose nanofibers[J]. Chemical Engineering Science, 2016, 148: 256−266. doi: 10.1016/j.ces.2016.04.014 |
[36] | TAMMISHETTI V, KUMAR D, RAI B, et al. Selective flocculation of iron ore slimes: results of successful pilot plant trials at Tata steel, Noamundi[J]. Transactions of the Indian Institute of Metals, 2017, 70(2): 411−419. doi: 10.1007/s12666-016-1002-9 |
[37] | HUANG Y F, HAN G H, LIU J T, et al. A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics[J]. Journal of Hazardous Materials, 2016, 301: 46−55. doi: 10.1016/j.jhazmat.2015.08.035 |
[38] | 罗彤彤. 半乳甘露聚糖植物胶在选矿上的应用[J]. 铜业工程, 2011(1): 12−15. doi: 10.3969/j.issn.1009-3842.2011.01.003 LUO T T. Application of galactomannan plant gum in mineral processing[J]. Copper Engineering, 2011(1): 12−15. doi: 10.3969/j.issn.1009-3842.2011.01.003 |
[39] | 姜亚雄, 黄丽娟, 刘刚明, 等. 微细粒尾矿絮凝沉降试验及絮凝剂高效使用模式研究[J]. 矿冶, 2017, 26(1): 42−45+73. doi: 10.3969/j.issn.1005-7854.2017.01.010 JIANG Y X, HUANG L J, LIU G M, et al. Study on flocculation sedimentation test of micro−fine tailings and efficient use mode of flocculants[J]. Mining and Metallurgy, 2017, 26(1): 42−45+73. doi: 10.3969/j.issn.1005-7854.2017.01.010 |
[40] | 张雪菲, 闵凡飞, 陈军. 不同类型聚丙烯酰胺对微细石英颗粒的絮凝特性研究[J]. 煤炭工程, 2020, 52(6): 134−141. ZHANG X F, MIN F F, CHEN J. Flocculation characteristics of different types of polyacrylamide on fine quartz particles[J]. Coal Engineering, 2020, 52(6): 134−141. |
[41] | 魏宗武, 高玚, 杨梅金, 等. 微细粒锡石的选择性絮凝浮选[J]. 矿业研究与开发, 2022, 42(1): 42−46. WEI Z W, GAO Y, YANG M J, et al. Selective flocculation flotation of fine cassiterite[J]. Research and Development, 2022, 42(1): 42−46. |
[42] | ZOU W J, GONG L, HUANG J, et al. Adsorption of hydrophobically modified polyacrylamide P(AM−NaAA−C 16 DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal[J]. Minerals Engineering, 2019, 142: 105887−105887. doi: 10.1016/j.mineng.2019.105887 |
[43] | PENG Y Y, JIN D. Screening Tests of copper mine tailings flocculation with polyacrylamide[J]. IOP Conference Series: Earth and Environmental Science, 2019, 371: 042004. doi: 10.1088/1755-1315/371/4/042004 |
[44] | LIU W L, HU Y H, SUN W. Separation of diaspore from bauxite by selective flocculation using hydrolyzed polyacrylamide[J]. Journal of Central South University, 2014, 21(4): 1470−1476. doi: 10.1007/s11771-014-2087-0 |
[45] | 冯家祥, 杨敖, 石道民. 菱锌矿—石英体系选择性絮凝研究[J]. 云南冶金, 1993(10): 24−27. FENG J X, YANG A, SHI D M. Study on selective flocculation of smithsonite−quartz system[J]. Yunnan Metallurgy, 1993(10): 24−27. |
[46] | 岳双凌, 廖寅飞, 马子龙. 选择性絮凝—柱浮选回收钼精选尾矿中的微细粒辉钼矿[J]. 矿产综合利用, 2018(5): 52−57. YUE S L, LIAO Y F, MA Z L. Selective flocculation−column flotation recovery of fine−grained molybdenite from molybdenum concentrate tailings[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 52−57. |
[47] | KUMARI A, GAJBHIYE P, RAYASAM V. Comparative evaluation of natural and synthetic flocculants on selective metal recovery from low−grade iron ore slimes[J]. Transactions of the Indian Institute of Metals, 2019, 72(10): 2567−2579. doi: 10.1007/s12666-019-01726-9 |
[48] | 李树磊. 微细粒辉钼矿选择性絮凝—浮选基础研究[D]. 北京: 中国矿业大学, 2018. LI S L. Basic research on selective flocculation−flotation of fine molybdenite[D]. Beijing: China University of Mining and Technology, 2018. |
[49] | GONG J, PENG Y, BOUAJILA A, et al. Reducing quartz gangue entrainment in sulphide ore flotation by high molecular weight polyethylene oxide[J]. International Journal of Mineral Processing, 2010, 97(1): 44−51. |
[50] | CHENG K, WU X Q, TANG H H, et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate[J]. Minerals Engineering, 2022, 176: 107273. doi: 10.1016/j.mineng.2021.107273 |
[51] | WANG Y H, HUANG C B, HU Y H, et al. Beneficiation of diasporic−bauxite ore by selective flocculation with a polyacrylate flocculant[J]. Minerals Engineering, 2008, 21(9): 664−672. doi: 10.1016/j.mineng.2008.01.001 |
[52] | LI X L. Selective flocculation performance of amphiphilic quaternary ammonium salt in kaolin and bentonite suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128140. doi: 10.1016/j.colsurfa.2021.128140 |
[53] | 罗兴, 王蔚, 文应财. 微生物成矿原理及其在矿物加工过程中的利用[J]. 贵州化工, 2007(3): 28−33+53. doi: 10.3969/j.issn.1008-9411.2007.03.011 LUO X, WANG W, WEN Y C. Microbial mineralization principle and its application in mineral processing[J]. Guizhou Chemical Industry, 2007(3): 28−33+53. doi: 10.3969/j.issn.1008-9411.2007.03.011 |
[54] | 陈雨佳. 微细粒人造硫化矿微生物诱导—絮凝浮选行为及其机理研究[D]. 长沙: 湖南农业大学, 2014. CHEN Y J. Study on microbial induced−flocculation flotation behavior and mechanism of micro−fine artificial sulfide ore[D]. Changsha: Hunan Agricultural University, 2014. |
[55] | 李强, 孙国印. 微生物技术在矿物加工中的应用[J]. 科技视界, 2015(3): 301−302+325. doi: 10.3969/j.issn.2095-2457.2015.03.241 LI Q, SUN G Y. Application of microbial technology in mineral processing[J]. Science and Technology Vision, 2015(3): 301−302+325. doi: 10.3969/j.issn.2095-2457.2015.03.241 |
[56] | LOGANATHAN S, SANKARAN S. Surface chemical and selective flocculation studies on iron oxide and silica suspensions in the presence of xanthan gum[J]. Minerals Engineering, 2021, 160: 106668. doi: 10.1016/j.mineng.2020.106668 |
[57] | PATRA P, NATARAJAN K A. Microbially−induced separation of chalcopyrite and galena[J]. Minerals Engineering, 2008, 21(10): 691−698. doi: 10.1016/j.mineng.2008.01.007 |
[58] | 常玉广. 生物絮凝剂的絮凝特性及机理研究[D]. 上海: 同济大学, 2010. CHANG Y G. Study on the flocculation characteristics and mechanism of bioflocculant [D]. Shanghai: Tongji University, 2010. |
[59] | 陈雨佳, 罗琳, 毛石花, 等. 微生物诱导微细粒硫化矿的絮凝浮选工艺研究[J]. 环境科学与管理, 2012, 37(7): 56−60. doi: 10.3969/j.issn.1673-1212.2012.07.016 CHEN Y J, LUO L, MAO S H, et al. Flocculation flotation process of micro−fine sulfide ore induced by microorganisms[J]. Environmental Science and Management, 2012, 37(7): 56−60. doi: 10.3969/j.issn.1673-1212.2012.07.016 |
[60] | 杨志超, 滕青, 祝瑄, 等. 多糖微生物絮凝剂对方解石与闪锌矿的絮凝作用及机理[J]. 金属矿山, 2021(10): 108−113. YANG Z C, TENG Q, ZHU X, et al. Flocculation effect and mechanism of polysaccharide microbial flocculant on calcite and sphalerite[J]. Metal Mine, 2021(10): 108−113. |
[61] | 盛艳玲, 张强, 王化军. 微生物絮凝剂絮凝铝土矿和石英的比较研究[J]. 金属矿山, 2006(10): 31−33+40. doi: 10.3321/j.issn:1001-1250.2006.10.009 SHENG Y L, ZHANG Q, WANG H J. A comparative study on the flocculation of bauxite and quartz by microbial flocculants[J]. Metal Mines, 2006(10): 31−33+40. doi: 10.3321/j.issn:1001-1250.2006.10.009 |
[62] | 沈岩柏, 李晓安, 魏德洲, 等. Nocardia在黄铁矿和方铅矿表面的选择性吸附[J]. 中国有色金属学报, 2005(12): 2016−2022. doi: 10.3321/j.issn:1004-0609.2005.12.021 SHEN Y B, LI X A, WEI D Z, et al. Selective adsorption of Nocardia on the surface of pyrite and Galena[J]. The Chinese Journal of Nonferrous Metals, 2005(12): 2016−2022. doi: 10.3321/j.issn:1004-0609.2005.12.021 |
[63] | 张东晨, 刘志勇, 王涛, 等. 煤炭絮凝微生物黄孢原毛平革菌光谱及电镜研究[J]. 煤炭学报, 2010, 35(5): 825−829. ZHANG D C, LIU Z Y, WANG T, et al. Spectroscopic and electron microscopic studies on coal flocculation microorganism Phanerochaete chrysosporium[J]. Journal of China Coal Society, 2010, 35(5): 825−829. |
[64] | 王超. 类聚絮凝提高微细粒矿物浮选分离效率的基础研究[D]. 北京: 北京科技大学, 2022. WANG C. Basic research on improving flotation separation efficiency of fine−grained minerals by polymer−like flocculation[D]. Beijing: Beijing University of Science and Technology, 2022. |
[65] | 张帅, 王桂芳, 梁光传, 等. 含硫低品位细粒锡尾矿的回收试验研究[J]. 有色金属(选矿部分), 2023(3): 40−48. ZHANG S, WANG G F, LIANG G C, et al. Experimental study on the recovery of sulfur−containing low−grade fine−grained tin tailings[J]. Nonferrous Metals(Mineral Processing Section), 2023(3): 40−48. |
[66] | 王丹, 刘四清, 刘海林, 等. 细粒赤铁矿、石英和绿泥石选择性絮凝分选试验研究[J]. 矿产综合利用, 2015(5): 46−49. doi: 10.3969/j.issn.1000-6532.2015.05.011 WANG D, LIU S Q, LIU H L, et al. Experimental study on selective flocculation separation of fine hematite, quartz and chlorite[J]. Multipurpose Utilization of Mineral Resources, 2015(5): 46−49. doi: 10.3969/j.issn.1000-6532.2015.05.011 |
[67] | 韩英棋, 杨志超, 滕青, 等. Fe(Ⅲ)−XG配合物选择性絮凝微细粒赤铁矿与石英及其机理研究[J]. 有色金属(选矿部分), 2024(1): 116−125. HAN Y Q, YANG Z C, TENG Q, et al. Fe(III) −XG complexes selectively flocculate fine−grained hematite and quartz and its mechanism[J]. Nonferrous Metals(Mineral Processing Section), 2024(1): 116−125. |
[68] | 杨志超, 韩英棋, 滕青, 等. Ca(Ⅱ)−XG配合物选择性絮凝赤铁矿与石英的作用机理[J]. 金属矿山, 2023(5): 129−136. YANG Z C, HAN Y Q, TENG Q, et al. The mechanism of selective flocculation of hematite and quartz by Ca(Ⅱ)−XG complexes[J]. Metal Mine, 2023(5): 129−136. |
[69] | ZHANG J X, YANG C, NIU F S, et al. Molecular dynamics study on selective flotation of hematite with sodium oleate collector and starch−acrylamide flocculant[J]. Applied Surface Science, 2022, 592: 153208. doi: 10.1016/j.apsusc.2022.153208 |
[70] | ZHANG J X, SUN W G, GAO Z Y, et al. Selective flocculation separation of fine hematite from quartusing a novel grafted copolymer flocculant[J]. Minerals, 2018, 8(6): 227. doi: 10.3390/min8060227 |
[71] | NG W S, SONSIE R, FORBES E, et al. Flocculation/flotation of hematite fines with anionic temperature−responsive polymer acting as a selective flocculant and collector[J]. Minerals Engineering, 2015, 77: 64−71. doi: 10.1016/j.mineng.2015.02.013 |
[72] | PENG W J, LYU S, CAO Y J, et al. A novel pH−responsive flocculant for efficient separation and recovery of Cu and Mo from secondary resources via selective flocculation−flotation[J]. Journal of Cleaner Production, 2023, 395: 135463. |
[73] | 潘其经. 选择性絮凝及其分离形式[J]. 湖南有色金属, 1988(3): 27−30. PAN Q J. Selective flocculation and its separation form[J]. Hunan Nonferrous Metals, 1988(3): 27−30. |
[74] | 张汉泉, 周峰, 殷佳琪, 等. 选择性絮凝—磁种法在微细粒人工磁铁矿磁选中的团聚效应[J]. 矿冶, 2019, 28(4): 42−50. doi: 10.3969/j.issn.1005-7854.2019.04.007 ZHANG H Q, ZHOU F, YIN J Q, et al. Agglomeration effect of selective flocculation−magnetic seed method in magnetic separation of fine artificial magnetite[J]. Mining and Metallurgy, 2019, 28(4): 42−50. doi: 10.3969/j.issn.1005-7854.2019.04.007 |
[75] | 杨诚, 李明阳, 龙红明, 等. 微细粒石英/赤铁矿异步絮凝浮选分离研究[J]. 矿产保护与利用, 2022, 42(5): 82−87. YANG C, LI M Y, LONG H M, et al. Asynchronous flocculation flotation separation of fine−grained quartz/hematite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 82−87. |
[76] | 郝海青. 菱铁矿絮凝浮选选择性的强化及调控机制[D]. 沈阳: 东北大学, 2022. HAO H Q. Reinforcement and regulation mechanism of flocculation flotation selectivity of siderite[D]. Shenyang: Northeast University, 2022. |
[77] | Rinne T, Araya-Gómez N, Serna-Guerrero R. A study on the effect of particle size on li-ion battery recycling via flotation and perspectives on selective flocculation[J]. Batteries, 2023, 9(2): 68. doi: 10.3390/batteries9020068 |
[78] | 苏小琼, 陈志友, 柳玉良. 某细粒铁矿石磁选−选择性絮凝脱泥研究[J]. 矿冶工程, 2022, 42(6): 89−92. doi: 10.3969/j.issn.0253-6099.2022.06.019 SU X Q, CHEN Z Y, LIU Y L. Research on magnetic separation−selective flocculation desliming of a fine−grained iron ore[J]. Mining and Metallurgical Engineering, 2022, 42(6): 89−92. doi: 10.3969/j.issn.0253-6099.2022.06.019 |
[79] | LIMA R M F, ABREU F D P V F. Characterization and concentration by selective flocculation/magnetic separation of iron ore slimes from a dam of Quadrilátero Ferrífero−Brazil[J]. Journal of Materials Research and Technology, 2020, 9(2): 2021−2027. doi: 10.1016/j.jmrt.2019.12.034 |
[80] | 王永刚, 杨云虎. 镜铁山周边某微细粒磁铁矿选矿工艺研究[J]. 矿冶工程, 2016, 36(4): 61−63. doi: 10.3969/j.issn.0253-6099.2016.04.016 WANG Y G, YANG Y H. Study on mineral processing technology of a fine−grained magnetite around Jingtie Mountain[J]. Mining and Metallurgical Engineering, 2016, 36(4): 61−63. doi: 10.3969/j.issn.0253-6099.2016.04.016 |
[81] | 吴锦文, 邓小伟, 陈乐, 等. 基于高效解离−选择性絮凝耦合作用的煤气化渣提炭实验研究[J]. 煤炭转化, 2024, 47(2): 57−66. WU J W, DENG X W, CHEN L, et al. Experimental study on carbon extraction from coal gasification slag based on high−efficiency dissociation−selective flocculation coupling[J]. Coal Conversion, 2024, 47(2): 57−66. |
[82] | FORBES E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques[J]. International Journal of Mineral Processing, 2011, 99(1): 1−10. |
[83] | 张建伟, 王中原. 选择性絮凝的方法及其机理(I)—增加或减少颗粒上的活性质点数法[J]. 过滤与分离, 2005(1): 1−4. doi: 10.3969/j.issn.1005-8265.2005.01.001 ZHANG J W, WANG Z Y. The method and mechanism of selective flocculation(I)−increasing or decreasing the number of active sites on particles[J]. Journal of Filtration and Separation, 2005(1): 1−4. doi: 10.3969/j.issn.1005-8265.2005.01.001 |
[84] | LI L X, HAO H Q, YUAN Z T, et al. Regulating effects of citric acid and pregelatinized starch on selective flocculation flotation of micro−fine siderite[J]. Journal of Molecular Liquids, 2020, 315: 113726. doi: 10.1016/j.molliq.2020.113726 |
[85] | 陈文胜, 付君浩, 韩海生, 等. 微细粒矿物分选技术研究进展[J]. 矿产保护与利用, 2020, 40(4): 134−145. CHEN W S, FU J H, HAN H S, et al. Research progress of fine mineral separation technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 134−145. |
[86] | 李振, 王纪镇, 印万忠, 等. 细粒矿物浮选研究进展[J]. 矿产保护与利用, 2016(2): 70−74. LI Z, WANG J Z, YIN W Z, et al. Research progress in flotation of fine−grained minerals[J]. Conservation and Utilization of Mineral Resources, 2016(2): 70−74. |
[87] | 卢致明, 韩彬. 微细粒锡石选别的研究进展及思考建议[J]. 世界有色金属, 2019(7): 180−182. doi: 10.3969/j.issn.1002-5065.2019.07.105 LU Z M, HAN B. Research progress and suggestions on the selection of fine−grained cassiterite[J]. World Nonferrous Metals, 2019(7): 180−182. doi: 10.3969/j.issn.1002-5065.2019.07.105 |
Physicochemical properties of fine particles and its influence on flotation
Schematic diagram of selective flocculation process
Charge neutralization process of polymer flocculants
Adsorption bridging process of polymer flocculant
Network capture sweeping process of polymer flocculant
Common natural organic polymer flocculants ( functional groups ) and their applied minerals
Common microbial flocculants and applied minerals