Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 3
Article Contents

GUO Tuyue, XIE Haiyun, JIN Yanling, LI Jianjuan, FENG Mengfei, CHEN Haijun, LIU Dianwen. Advances in Theory and Technology of Selective Flocculation of Fine−grained Minerals[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 27-37. doi: 10.13779/j.cnki.issn1001-0076.2024.03.003
Citation: GUO Tuyue, XIE Haiyun, JIN Yanling, LI Jianjuan, FENG Mengfei, CHEN Haijun, LIU Dianwen. Advances in Theory and Technology of Selective Flocculation of Fine−grained Minerals[J]. Conservation and Utilization of Mineral Resources, 2024, 44(3): 27-37. doi: 10.13779/j.cnki.issn1001-0076.2024.03.003

Advances in Theory and Technology of Selective Flocculation of Fine−grained Minerals

More Information
  • China has a large number of refractory fine−grained mineral resources, and selective flocculation technology is one of the effective ways to improve the recovery of fine−grained minerals. This article first analyzes the properties of fine mineral particles and the reasons why they are difficult to float. Secondly, it elaborates on the theoretical research progress of selective flocculation. Finally, it classifies the common selective polymeric flocculants currently available and analyzes and summarizes the research and application status of flocculants and selective flocculation separation processes in fine mineral particles. The main issues identified are the weak selectivity of the flocculants, high cost, environmental impact, and lack of flocculation equipment. The article points out that the development of new, highly selective flocculants, flocculation equipment, and flocculation processes is the future trend.

  • 加载中
  • [1] 刘爽, 鲁力, 柳德华, 等. 我国稀有及稀散金属综合利用技术综述[J]. 矿产综合利用, 2013(5): 10−12.

    Google Scholar

    LIU S, LU L, LIU D H, et al. Review of comprehensive utilization technology of rare and scattered metals in China[J]. Multipurpose Utilization of Mineral Resources, 2013(5): 10−12.

    Google Scholar

    [2] JUNG M U, KIM Y C, GHISLAIN B, et al. Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state−of−the−art and perspectives[J]. Advances in colloid and interface science, 2023, 322: 103047−103047. doi: 10.1016/j.cis.2023.103047

    CrossRef Google Scholar

    [3] 姚伟, 李茂林, 崔瑞, 等. 微细粒矿物的分选技术[J]. 现代矿业, 2015, 31(1): 66−69+152. doi: 10.3969/j.issn.1674-6082.2015.01.022

    CrossRef Google Scholar

    YAO W, LI M L, CUI R, et al. Separation technology of fine−grained minerals[J]. Modern Mining, 2015, 31(1): 66−69+152. doi: 10.3969/j.issn.1674-6082.2015.01.022

    CrossRef Google Scholar

    [4] 倪超. 柱浮选精煤细泥污染形成机理及抑制研究[D]. 徐州: 中国矿业大学, 2016.

    Google Scholar

    NI C. Study on the formation mechanism and inhibition of fine slime pollution in column flotation clean coal[D]. Xuzhou: China University of Mining and Technology, 2016.

    Google Scholar

    [5] 肖遥, 韩海生, 孙伟, 等. 微细粒浮选技术与装备研究进展及其发展趋势[J]. 中南大学学报(自然科学版), 2024, 55(1): 20−31.

    Google Scholar

    XIAO Y, HAN H S, SUN W, et al. Research progress and development trend of micro−fine particle flotation technology and equipment[J]. Journal of Central South University (Science and Technology), 2024, 55(1): 20−31.

    Google Scholar

    [6] 江时锋, 童雄, 谢贤, 等. 微细粒锡石浮选药剂及工艺研究进展[J]. 有色金属工程, 2023, 13(10): 61−73.

    Google Scholar

    JIANG S F, TONG X, XIE X, et al. Research progress of flotation reagents and process for fine cassiterite[J]. Nonferrous Metals Engineering, 2023, 13(10): 61−73.

    Google Scholar

    [7] CHOI J, KIM S B. Influence of pH and ionic strength on the floc−magnetic separation: Selective flocculation of fine iron ore[J]. Results in Engineering, 2023, 20: 101441. doi: 10.1016/j.rineng.2023.101441

    CrossRef Google Scholar

    [8] 罗丽芳. 微细粒白钨矿选择性絮凝行为研究[D]. 赣州: 江西理工大学, 2019.

    Google Scholar

    LUO L F. Study on selective flocculation behavior of fine−grained scheelite[D]. Ganzhou: Jiangxi University of Science and Technology, 2019.

    Google Scholar

    [9] 苏涛. 微细嵌布磁铁矿选择性絮凝提铁工艺及机理研究[D]. 武汉: 武汉科技大学, 2016.

    Google Scholar

    SU T. Study on the process and mechanism of selective flocculation iron extraction from fine disseminated magnetite[D]. Wuhan: Wuhan University of Science and Technology, 2016.

    Google Scholar

    [10] 邱冠周, 胡岳华, 王淀佐. 颗粒间相互作用与细粒浮选[M]. 长沙: 中南工业大学出版社, 1993.

    Google Scholar

    QIU G Z, HU Y H, WANG D Z. Interparticle interaction and fine particle flotation[M]. Changsha: Central South University of Technology Press, 1993.

    Google Scholar

    [11] 廖德进, 陶黎明, 王建军, 等. 微细粒矿物分选理论和浮选药剂研究进展[J]. 现代矿业, 2023, 39(9): 44−48. doi: 10.3969/j.issn.1674-6082.2023.09.010

    CrossRef Google Scholar

    LIAO D J, TAO L M, WANG J J, et al. Research progress on separation theory and flotation reagents of fine−grained minerals[J]. Modern Mining, 2023, 39(9): 44−48. doi: 10.3969/j.issn.1674-6082.2023.09.010

    CrossRef Google Scholar

    [12] NOGUEIRA F, RODRIGUES K, PEREIRA C, et al. Quartz fine particle processing: Hydrophobic aggregation by shear flocculation[J]. Minerals, 2023, 13(9): 5−7.

    Google Scholar

    [13] 胡为柏. 浮选[M]. 北京: 冶金工业出版社, 1983.04.

    Google Scholar

    HU W B. Flotation[M]. Beijing: Metallurgical Industry Press, 1983. 04.

    Google Scholar

    [14] CHEN F M, LIU W, PAN Z B, et al. Characteristics and mechanism of chitosan in flocculation for water coagulation in the Yellow River diversion reservoir[J]. Journal of Water Process Engineering, 2020, 34(1): 191−197.

    Google Scholar

    [15] 祝凤蕊. 无机−有机杂化高分子絮凝剂制备及其絮凝效能研究[D]. 大庆: 东北石油大学, 2024.

    Google Scholar

    ZHU F R. Preparation of inorganic−organic hybrid polymer flocculant and its flocculation efficiency[D]. Daqing: Northeast Petroleum University, 2024.

    Google Scholar

    [16] 王淀佐, 邱冠周, 胡岳华. 资源加工学[M]. 北京: 科学出版社, 2005.03.

    Google Scholar

    WANG D Z, QIU G Z, HU Y H. Resources processing[M]. Beijing: Science Press, 2005. 03.

    Google Scholar

    [17] SINGH R P, PAL S, KRISHNAMOORTHY S, et al. High−technology materials based on modified polysaccharides[J]. Pure and Applied Chemistry, 2009, 81(3): 525−547.

    Google Scholar

    [18] 申路庄. 聚合氯化铝强化煤炭浮选中高岭石选择性絮凝机理研究[D]. 北京: 中国矿业大学, 2023.

    Google Scholar

    SHEN L Z. Study on selective flocculation mechanism of kaolinite in coal flotation enhanced by polyaluminum chloride[D]. Beijing: China University of Mining and Technology, 2023.

    Google Scholar

    [19] 谭明, 魏明安. 选择性絮凝分离磷灰石和石英的影响因素研究[J]. 矿冶, 2013, 22(2): 16−18+23.

    Google Scholar

    TAN M, WEI M A. Study on the influencing factors of selective flocculation separation of apatite and quartz[J]. Mining and Metallurgy, 2013, 22(2): 16−18+23.

    Google Scholar

    [20] 吕帅, 彭伟军, 苗毅恒, 等. 聚丙烯酰胺类絮凝剂在矿业领域的研究进展[J]. 矿产保护与利用, 2021, 41(1): 79−84.

    Google Scholar

    LYU S, PENG W J, MIAO Y H, et al. Research progress of polyacrylamide flocculants in the field of mining[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 79−84.

    Google Scholar

    [21] ASGARI K, KHOSHDAST H, NAKHAEI F, et al. A review on floc−flotation of fine particles: Technological aspects, mechanisms, and future perspectives[J]. Mineral Processing and Extractive Metallurgy Review, 2023: 1−28.

    Google Scholar

    [22] BILAL M. Development of carrier−flotation technique for finely ground copper sulfides[D]. Hokkaido University, 2022.

    Google Scholar

    BILAL M. Development of carrier−flotation technique for finely ground copper sulfides[D]. Hokkaido University, 2022.

    Google Scholar

    [23] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review[J]. Water Research, 2018, 143: 608−631. doi: 10.1016/j.watres.2018.07.029

    CrossRef Google Scholar

    [24] 汪桥. 高分子絮凝剂对细粒胶磷矿浮选影响研究[D]. 武汉: 武汉工程大学, 2017.

    Google Scholar

    WANG Q. Effect of polymer flocculant on flotation of fine collophanite[D]. Wuhan: Wuhan University of Engineering, 2017.

    Google Scholar

    [25] 李雪佳, 唐佳伟, 李杰, 等. 絮凝剂的研究进展及其在煤矿矿井水处理中的应用[J]. 工业水处理, 2023, 43(11): 93−103.

    Google Scholar

    LI X J, TANG J W, LI J, et al. Progress in flocculant research and its application in coal mine water treatment[J]. Industrial Water Treatment, 2023, 43(11): 93−103.

    Google Scholar

    [26] 周正. 新型磁性复合絮凝剂的合成及应用研究[D]. 北京: 中国矿业大学, 2018.

    Google Scholar

    ZHOU Z. Synthesis and application of new magnetic composite flocculant[D]. Beijing: China University of Mining and Technology, 2018.

    Google Scholar

    [27] 隋璨. 基于内外多因素的某铜矿全尾砂浆絮凝剂高效助沉试验及机理研究[D]. 赣州: 江西理工大学, 2020.

    Google Scholar

    SUI C. High−efficiency sedimentation test and mechanism study of flocculant for full tailings mortar of a copper mine based on internal and external factors[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

    Google Scholar

    [28] TUDU K, KUMAR S, MANDRE N. Enhanced recovery of low−grade iron ore by selective flocculation method[J]. Dispers. Sci. Technol. 2018, 39 (8): 1075–1079.

    Google Scholar

    [29] DIPTIMAYEE N, MANDRE N R. Mechanism of polymeric adsorption in selective flocculation of low−grade iron ore[J]. Separation Science and Technology, 2021, 56(1): 68−77. doi: 10.1080/01496395.2019.1708936

    CrossRef Google Scholar

    [30] 苏兴国, 周立波, 李文博, 等. 东鞍山微细粒铁矿选择性絮凝−强磁选技术研究[J]. 矿产保护与利用, 2021, 41(2): 129−136.

    Google Scholar

    SU X G, ZHOU L B, LI W B, et al. Study on selective flocculation−high intensity magnetic separation technology of micro−fine iron ore in Donganshan[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 129−136.

    Google Scholar

    [31] PANDA L, BANERJEE P K, BISWAL S K, et al. Modelling and optimization of process parameters for beneficiation of ultrafine chromite particles by selective flocculation[J]. Separation and Purification Technology, 2014, 132: 666−673. doi: 10.1016/j.seppur.2014.05.033

    CrossRef Google Scholar

    [32] 张镜翠. 晋宁低品位胶磷矿的选择性絮凝浮选研究[D]. 昆明: 昆明理工大学, 2019.

    Google Scholar

    ZHANG J C. Study on selective flocculation flotation of Jinning low−grade collophanite[D]. Kunming: Kunming University of Science and Technology, 2019.

    Google Scholar

    [33] LI W B, CHENG S K, ZHOU L B, et al. Enhanced iron recovery from magnetic separation of ultrafine specularite through polymer−bridging flocculation: A study of flocculation performance and mechanism[J]. Separation and Purification Technology, 2023, 308: 122882. doi: 10.1016/j.seppur.2022.122882

    CrossRef Google Scholar

    [34] KUMAR D, JAIN V, RAI B. Can carboxymethyl cellulose be used as a selective flocculant for beneficiating alumina−rich iron ore slimes? A density functional theory and experimental study[J]. Minerals Engineering, 2018, 121: 47−54. doi: 10.1016/j.mineng.2018.02.020

    CrossRef Google Scholar

    [35] KEMPPAINEN K, SUOPAJäRVI T, LAITINEN O, et al. Flocculation of fine hematite and quartz suspensions with anionic cellulose nanofibers[J]. Chemical Engineering Science, 2016, 148: 256−266. doi: 10.1016/j.ces.2016.04.014

    CrossRef Google Scholar

    [36] TAMMISHETTI V, KUMAR D, RAI B, et al. Selective flocculation of iron ore slimes: results of successful pilot plant trials at Tata steel, Noamundi[J]. Transactions of the Indian Institute of Metals, 2017, 70(2): 411−419. doi: 10.1007/s12666-016-1002-9

    CrossRef Google Scholar

    [37] HUANG Y F, HAN G H, LIU J T, et al. A facile disposal of Bayer red mud based on selective flocculation desliming with organic humics[J]. Journal of Hazardous Materials, 2016, 301: 46−55. doi: 10.1016/j.jhazmat.2015.08.035

    CrossRef Google Scholar

    [38] 罗彤彤. 半乳甘露聚糖植物胶在选矿上的应用[J]. 铜业工程, 2011(1): 12−15. doi: 10.3969/j.issn.1009-3842.2011.01.003

    CrossRef Google Scholar

    LUO T T. Application of galactomannan plant gum in mineral processing[J]. Copper Engineering, 2011(1): 12−15. doi: 10.3969/j.issn.1009-3842.2011.01.003

    CrossRef Google Scholar

    [39] 姜亚雄, 黄丽娟, 刘刚明, 等. 微细粒尾矿絮凝沉降试验及絮凝剂高效使用模式研究[J]. 矿冶, 2017, 26(1): 42−45+73. doi: 10.3969/j.issn.1005-7854.2017.01.010

    CrossRef Google Scholar

    JIANG Y X, HUANG L J, LIU G M, et al. Study on flocculation sedimentation test of micro−fine tailings and efficient use mode of flocculants[J]. Mining and Metallurgy, 2017, 26(1): 42−45+73. doi: 10.3969/j.issn.1005-7854.2017.01.010

    CrossRef Google Scholar

    [40] 张雪菲, 闵凡飞, 陈军. 不同类型聚丙烯酰胺对微细石英颗粒的絮凝特性研究[J]. 煤炭工程, 2020, 52(6): 134−141.

    Google Scholar

    ZHANG X F, MIN F F, CHEN J. Flocculation characteristics of different types of polyacrylamide on fine quartz particles[J]. Coal Engineering, 2020, 52(6): 134−141.

    Google Scholar

    [41] 魏宗武, 高玚, 杨梅金, 等. 微细粒锡石的选择性絮凝浮选[J]. 矿业研究与开发, 2022, 42(1): 42−46.

    Google Scholar

    WEI Z W, GAO Y, YANG M J, et al. Selective flocculation flotation of fine cassiterite[J]. Research and Development, 2022, 42(1): 42−46.

    Google Scholar

    [42] ZOU W J, GONG L, HUANG J, et al. Adsorption of hydrophobically modified polyacrylamide P(AM−NaAA−C 16 DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal[J]. Minerals Engineering, 2019, 142: 105887−105887. doi: 10.1016/j.mineng.2019.105887

    CrossRef Google Scholar

    [43] PENG Y Y, JIN D. Screening Tests of copper mine tailings flocculation with polyacrylamide[J]. IOP Conference Series: Earth and Environmental Science, 2019, 371: 042004. doi: 10.1088/1755-1315/371/4/042004

    CrossRef Google Scholar

    [44] LIU W L, HU Y H, SUN W. Separation of diaspore from bauxite by selective flocculation using hydrolyzed polyacrylamide[J]. Journal of Central South University, 2014, 21(4): 1470−1476. doi: 10.1007/s11771-014-2087-0

    CrossRef Google Scholar

    [45] 冯家祥, 杨敖, 石道民. 菱锌矿—石英体系选择性絮凝研究[J]. 云南冶金, 1993(10): 24−27.

    Google Scholar

    FENG J X, YANG A, SHI D M. Study on selective flocculation of smithsonite−quartz system[J]. Yunnan Metallurgy, 1993(10): 24−27.

    Google Scholar

    [46] 岳双凌, 廖寅飞, 马子龙. 选择性絮凝—柱浮选回收钼精选尾矿中的微细粒辉钼矿[J]. 矿产综合利用, 2018(5): 52−57.

    Google Scholar

    YUE S L, LIAO Y F, MA Z L. Selective flocculation−column flotation recovery of fine−grained molybdenite from molybdenum concentrate tailings[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 52−57.

    Google Scholar

    [47] KUMARI A, GAJBHIYE P, RAYASAM V. Comparative evaluation of natural and synthetic flocculants on selective metal recovery from low−grade iron ore slimes[J]. Transactions of the Indian Institute of Metals, 2019, 72(10): 2567−2579. doi: 10.1007/s12666-019-01726-9

    CrossRef Google Scholar

    [48] 李树磊. 微细粒辉钼矿选择性絮凝—浮选基础研究[D]. 北京: 中国矿业大学, 2018.

    Google Scholar

    LI S L. Basic research on selective flocculation−flotation of fine molybdenite[D]. Beijing: China University of Mining and Technology, 2018.

    Google Scholar

    [49] GONG J, PENG Y, BOUAJILA A, et al. Reducing quartz gangue entrainment in sulphide ore flotation by high molecular weight polyethylene oxide[J]. International Journal of Mineral Processing, 2010, 97(1): 44−51.

    Google Scholar

    [50] CHENG K, WU X Q, TANG H H, et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate[J]. Minerals Engineering, 2022, 176: 107273. doi: 10.1016/j.mineng.2021.107273

    CrossRef Google Scholar

    [51] WANG Y H, HUANG C B, HU Y H, et al. Beneficiation of diasporic−bauxite ore by selective flocculation with a polyacrylate flocculant[J]. Minerals Engineering, 2008, 21(9): 664−672. doi: 10.1016/j.mineng.2008.01.001

    CrossRef Google Scholar

    [52] LI X L. Selective flocculation performance of amphiphilic quaternary ammonium salt in kaolin and bentonite suspensions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128140. doi: 10.1016/j.colsurfa.2021.128140

    CrossRef Google Scholar

    [53] 罗兴, 王蔚, 文应财. 微生物成矿原理及其在矿物加工过程中的利用[J]. 贵州化工, 2007(3): 28−33+53. doi: 10.3969/j.issn.1008-9411.2007.03.011

    CrossRef Google Scholar

    LUO X, WANG W, WEN Y C. Microbial mineralization principle and its application in mineral processing[J]. Guizhou Chemical Industry, 2007(3): 28−33+53. doi: 10.3969/j.issn.1008-9411.2007.03.011

    CrossRef Google Scholar

    [54] 陈雨佳. 微细粒人造硫化矿微生物诱导—絮凝浮选行为及其机理研究[D]. 长沙: 湖南农业大学, 2014.

    Google Scholar

    CHEN Y J. Study on microbial induced−flocculation flotation behavior and mechanism of micro−fine artificial sulfide ore[D]. Changsha: Hunan Agricultural University, 2014.

    Google Scholar

    [55] 李强, 孙国印. 微生物技术在矿物加工中的应用[J]. 科技视界, 2015(3): 301−302+325. doi: 10.3969/j.issn.2095-2457.2015.03.241

    CrossRef Google Scholar

    LI Q, SUN G Y. Application of microbial technology in mineral processing[J]. Science and Technology Vision, 2015(3): 301−302+325. doi: 10.3969/j.issn.2095-2457.2015.03.241

    CrossRef Google Scholar

    [56] LOGANATHAN S, SANKARAN S. Surface chemical and selective flocculation studies on iron oxide and silica suspensions in the presence of xanthan gum[J]. Minerals Engineering, 2021, 160: 106668. doi: 10.1016/j.mineng.2020.106668

    CrossRef Google Scholar

    [57] PATRA P, NATARAJAN K A. Microbially−induced separation of chalcopyrite and galena[J]. Minerals Engineering, 2008, 21(10): 691−698. doi: 10.1016/j.mineng.2008.01.007

    CrossRef Google Scholar

    [58] 常玉广. 生物絮凝剂的絮凝特性及机理研究[D]. 上海: 同济大学, 2010.

    Google Scholar

    CHANG Y G. Study on the flocculation characteristics and mechanism of bioflocculant [D]. Shanghai: Tongji University, 2010.

    Google Scholar

    [59] 陈雨佳, 罗琳, 毛石花, 等. 微生物诱导微细粒硫化矿的絮凝浮选工艺研究[J]. 环境科学与管理, 2012, 37(7): 56−60. doi: 10.3969/j.issn.1673-1212.2012.07.016

    CrossRef Google Scholar

    CHEN Y J, LUO L, MAO S H, et al. Flocculation flotation process of micro−fine sulfide ore induced by microorganisms[J]. Environmental Science and Management, 2012, 37(7): 56−60. doi: 10.3969/j.issn.1673-1212.2012.07.016

    CrossRef Google Scholar

    [60] 杨志超, 滕青, 祝瑄, 等. 多糖微生物絮凝剂对方解石与闪锌矿的絮凝作用及机理[J]. 金属矿山, 2021(10): 108−113.

    Google Scholar

    YANG Z C, TENG Q, ZHU X, et al. Flocculation effect and mechanism of polysaccharide microbial flocculant on calcite and sphalerite[J]. Metal Mine, 2021(10): 108−113.

    Google Scholar

    [61] 盛艳玲, 张强, 王化军. 微生物絮凝剂絮凝铝土矿和石英的比较研究[J]. 金属矿山, 2006(10): 31−33+40. doi: 10.3321/j.issn:1001-1250.2006.10.009

    CrossRef Google Scholar

    SHENG Y L, ZHANG Q, WANG H J. A comparative study on the flocculation of bauxite and quartz by microbial flocculants[J]. Metal Mines, 2006(10): 31−33+40. doi: 10.3321/j.issn:1001-1250.2006.10.009

    CrossRef Google Scholar

    [62] 沈岩柏, 李晓安, 魏德洲, 等. Nocardia在黄铁矿和方铅矿表面的选择性吸附[J]. 中国有色金属学报, 2005(12): 2016−2022. doi: 10.3321/j.issn:1004-0609.2005.12.021

    CrossRef Google Scholar

    SHEN Y B, LI X A, WEI D Z, et al. Selective adsorption of Nocardia on the surface of pyrite and Galena[J]. The Chinese Journal of Nonferrous Metals, 2005(12): 2016−2022. doi: 10.3321/j.issn:1004-0609.2005.12.021

    CrossRef Google Scholar

    [63] 张东晨, 刘志勇, 王涛, 等. 煤炭絮凝微生物黄孢原毛平革菌光谱及电镜研究[J]. 煤炭学报, 2010, 35(5): 825−829.

    Google Scholar

    ZHANG D C, LIU Z Y, WANG T, et al. Spectroscopic and electron microscopic studies on coal flocculation microorganism Phanerochaete chrysosporium[J]. Journal of China Coal Society, 2010, 35(5): 825−829.

    Google Scholar

    [64] 王超. 类聚絮凝提高微细粒矿物浮选分离效率的基础研究[D]. 北京: 北京科技大学, 2022.

    Google Scholar

    WANG C. Basic research on improving flotation separation efficiency of fine−grained minerals by polymer−like flocculation[D]. Beijing: Beijing University of Science and Technology, 2022.

    Google Scholar

    [65] 张帅, 王桂芳, 梁光传, 等. 含硫低品位细粒锡尾矿的回收试验研究[J]. 有色金属(选矿部分), 2023(3): 40−48.

    Google Scholar

    ZHANG S, WANG G F, LIANG G C, et al. Experimental study on the recovery of sulfur−containing low−grade fine−grained tin tailings[J]. Nonferrous Metals(Mineral Processing Section), 2023(3): 40−48.

    Google Scholar

    [66] 王丹, 刘四清, 刘海林, 等. 细粒赤铁矿、石英和绿泥石选择性絮凝分选试验研究[J]. 矿产综合利用, 2015(5): 46−49. doi: 10.3969/j.issn.1000-6532.2015.05.011

    CrossRef Google Scholar

    WANG D, LIU S Q, LIU H L, et al. Experimental study on selective flocculation separation of fine hematite, quartz and chlorite[J]. Multipurpose Utilization of Mineral Resources, 2015(5): 46−49. doi: 10.3969/j.issn.1000-6532.2015.05.011

    CrossRef Google Scholar

    [67] 韩英棋, 杨志超, 滕青, 等. Fe(Ⅲ)−XG配合物选择性絮凝微细粒赤铁矿与石英及其机理研究[J]. 有色金属(选矿部分), 2024(1): 116−125.

    Google Scholar

    HAN Y Q, YANG Z C, TENG Q, et al. Fe(III) −XG complexes selectively flocculate fine−grained hematite and quartz and its mechanism[J]. Nonferrous Metals(Mineral Processing Section), 2024(1): 116−125.

    Google Scholar

    [68] 杨志超, 韩英棋, 滕青, 等. Ca(Ⅱ)−XG配合物选择性絮凝赤铁矿与石英的作用机理[J]. 金属矿山, 2023(5): 129−136.

    Google Scholar

    YANG Z C, HAN Y Q, TENG Q, et al. The mechanism of selective flocculation of hematite and quartz by Ca(Ⅱ)−XG complexes[J]. Metal Mine, 2023(5): 129−136.

    Google Scholar

    [69] ZHANG J X, YANG C, NIU F S, et al. Molecular dynamics study on selective flotation of hematite with sodium oleate collector and starch−acrylamide flocculant[J]. Applied Surface Science, 2022, 592: 153208. doi: 10.1016/j.apsusc.2022.153208

    CrossRef Google Scholar

    [70] ZHANG J X, SUN W G, GAO Z Y, et al. Selective flocculation separation of fine hematite from quartusing a novel grafted copolymer flocculant[J]. Minerals, 2018, 8(6): 227. doi: 10.3390/min8060227

    CrossRef Google Scholar

    [71] NG W S, SONSIE R, FORBES E, et al. Flocculation/flotation of hematite fines with anionic temperature−responsive polymer acting as a selective flocculant and collector[J]. Minerals Engineering, 2015, 77: 64−71. doi: 10.1016/j.mineng.2015.02.013

    CrossRef Google Scholar

    [72] PENG W J, LYU S, CAO Y J, et al. A novel pH−responsive flocculant for efficient separation and recovery of Cu and Mo from secondary resources via selective flocculation−flotation[J]. Journal of Cleaner Production, 2023, 395: 135463.

    Google Scholar

    [73] 潘其经. 选择性絮凝及其分离形式[J]. 湖南有色金属, 1988(3): 27−30.

    Google Scholar

    PAN Q J. Selective flocculation and its separation form[J]. Hunan Nonferrous Metals, 1988(3): 27−30.

    Google Scholar

    [74] 张汉泉, 周峰, 殷佳琪, 等. 选择性絮凝—磁种法在微细粒人工磁铁矿磁选中的团聚效应[J]. 矿冶, 2019, 28(4): 42−50. doi: 10.3969/j.issn.1005-7854.2019.04.007

    CrossRef Google Scholar

    ZHANG H Q, ZHOU F, YIN J Q, et al. Agglomeration effect of selective flocculation−magnetic seed method in magnetic separation of fine artificial magnetite[J]. Mining and Metallurgy, 2019, 28(4): 42−50. doi: 10.3969/j.issn.1005-7854.2019.04.007

    CrossRef Google Scholar

    [75] 杨诚, 李明阳, 龙红明, 等. 微细粒石英/赤铁矿异步絮凝浮选分离研究[J]. 矿产保护与利用, 2022, 42(5): 82−87.

    Google Scholar

    YANG C, LI M Y, LONG H M, et al. Asynchronous flocculation flotation separation of fine−grained quartz/hematite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 82−87.

    Google Scholar

    [76] 郝海青. 菱铁矿絮凝浮选选择性的强化及调控机制[D]. 沈阳: 东北大学, 2022.

    Google Scholar

    HAO H Q. Reinforcement and regulation mechanism of flocculation flotation selectivity of siderite[D]. Shenyang: Northeast University, 2022.

    Google Scholar

    [77] Rinne T, Araya-Gómez N, Serna-Guerrero R. A study on the effect of particle size on li-ion battery recycling via flotation and perspectives on selective flocculation[J]. Batteries, 2023, 9(2): 68. doi: 10.3390/batteries9020068

    CrossRef Google Scholar

    [78] 苏小琼, 陈志友, 柳玉良. 某细粒铁矿石磁选−选择性絮凝脱泥研究[J]. 矿冶工程, 2022, 42(6): 89−92. doi: 10.3969/j.issn.0253-6099.2022.06.019

    CrossRef Google Scholar

    SU X Q, CHEN Z Y, LIU Y L. Research on magnetic separation−selective flocculation desliming of a fine−grained iron ore[J]. Mining and Metallurgical Engineering, 2022, 42(6): 89−92. doi: 10.3969/j.issn.0253-6099.2022.06.019

    CrossRef Google Scholar

    [79] LIMA R M F, ABREU F D P V F. Characterization and concentration by selective flocculation/magnetic separation of iron ore slimes from a dam of Quadrilátero Ferrífero−Brazil[J]. Journal of Materials Research and Technology, 2020, 9(2): 2021−2027. doi: 10.1016/j.jmrt.2019.12.034

    CrossRef Google Scholar

    [80] 王永刚, 杨云虎. 镜铁山周边某微细粒磁铁矿选矿工艺研究[J]. 矿冶工程, 2016, 36(4): 61−63. doi: 10.3969/j.issn.0253-6099.2016.04.016

    CrossRef Google Scholar

    WANG Y G, YANG Y H. Study on mineral processing technology of a fine−grained magnetite around Jingtie Mountain[J]. Mining and Metallurgical Engineering, 2016, 36(4): 61−63. doi: 10.3969/j.issn.0253-6099.2016.04.016

    CrossRef Google Scholar

    [81] 吴锦文, 邓小伟, 陈乐, 等. 基于高效解离−选择性絮凝耦合作用的煤气化渣提炭实验研究[J]. 煤炭转化, 2024, 47(2): 57−66.

    Google Scholar

    WU J W, DENG X W, CHEN L, et al. Experimental study on carbon extraction from coal gasification slag based on high−efficiency dissociation−selective flocculation coupling[J]. Coal Conversion, 2024, 47(2): 57−66.

    Google Scholar

    [82] FORBES E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques[J]. International Journal of Mineral Processing, 2011, 99(1): 1−10.

    Google Scholar

    [83] 张建伟, 王中原. 选择性絮凝的方法及其机理(I)—增加或减少颗粒上的活性质点数法[J]. 过滤与分离, 2005(1): 1−4. doi: 10.3969/j.issn.1005-8265.2005.01.001

    CrossRef Google Scholar

    ZHANG J W, WANG Z Y. The method and mechanism of selective flocculation(I)−increasing or decreasing the number of active sites on particles[J]. Journal of Filtration and Separation, 2005(1): 1−4. doi: 10.3969/j.issn.1005-8265.2005.01.001

    CrossRef Google Scholar

    [84] LI L X, HAO H Q, YUAN Z T, et al. Regulating effects of citric acid and pregelatinized starch on selective flocculation flotation of micro−fine siderite[J]. Journal of Molecular Liquids, 2020, 315: 113726. doi: 10.1016/j.molliq.2020.113726

    CrossRef Google Scholar

    [85] 陈文胜, 付君浩, 韩海生, 等. 微细粒矿物分选技术研究进展[J]. 矿产保护与利用, 2020, 40(4): 134−145.

    Google Scholar

    CHEN W S, FU J H, HAN H S, et al. Research progress of fine mineral separation technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(4): 134−145.

    Google Scholar

    [86] 李振, 王纪镇, 印万忠, 等. 细粒矿物浮选研究进展[J]. 矿产保护与利用, 2016(2): 70−74.

    Google Scholar

    LI Z, WANG J Z, YIN W Z, et al. Research progress in flotation of fine−grained minerals[J]. Conservation and Utilization of Mineral Resources, 2016(2): 70−74.

    Google Scholar

    [87] 卢致明, 韩彬. 微细粒锡石选别的研究进展及思考建议[J]. 世界有色金属, 2019(7): 180−182. doi: 10.3969/j.issn.1002-5065.2019.07.105

    CrossRef Google Scholar

    LU Z M, HAN B. Research progress and suggestions on the selection of fine−grained cassiterite[J]. World Nonferrous Metals, 2019(7): 180−182. doi: 10.3969/j.issn.1002-5065.2019.07.105

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(5)

Article Metrics

Article views(2063) PDF downloads(84) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint