Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

CHU Yingyu, XIA Kaisheng, GAO Qiang, YANG Zhen, Li Yudie, CHEN Xinyi, MENG Yi, LI Zhen, ZU Bo, LIU Chenglin. Research Progress on Preparation and Adsorption Application of Macroscopical Large Size Lithium−ion Sieves[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 130-144. doi: 10.13779/j.cnki.issn1001-0076.2023.07.006
Citation: CHU Yingyu, XIA Kaisheng, GAO Qiang, YANG Zhen, Li Yudie, CHEN Xinyi, MENG Yi, LI Zhen, ZU Bo, LIU Chenglin. Research Progress on Preparation and Adsorption Application of Macroscopical Large Size Lithium−ion Sieves[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 130-144. doi: 10.13779/j.cnki.issn1001-0076.2023.07.006

Research Progress on Preparation and Adsorption Application of Macroscopical Large Size Lithium−ion Sieves

More Information
  • Lithium is an important strategic resource. With the rapid development of new energy industry in recent years, the demand for lithium metal and its compounds has increased rapidly. Most of our proved lithium resources were distributed in salt lake brine, but the high magnesia lithium ratio restricted the large-scale development and utilization. Among the many methods of lithium extraction, lithium ion sieve adsorption technology has been widely studied because of its simple process, high selectivity and recyclability. However, the artificially prepared lithium ion sieve is mostly in powder form, difficult to recover and reuse, which is not conducive to popularization and application. By forming technologies such as granulation and casting film, lithium ion screen can be constructed as macro-size adsorbent, which can effectively make up for its deficiency in practical application, and has great significance for accelerating the development of salt lake brined lithium resources and realizing the self-sufficiency of Chinese lithium resources. In this paper, the main types and development status of lithium ion screen, the common preparation methods of macroscopic large size lithium ion screen, and the application progress of macroscopic large size lithium ion screen in adsorption and extraction of lithium are reviewed. Finally, the technology is summarized and prospected.

  • 加载中
  • [1] USGS. Mineral commodity summaries 2023 [R]. Reston, VA, 2023.

    Google Scholar

    [2] 姜贞贞, 刘高令, 卓玛曲西, 等. 我国锂资源供需现状下西藏盐湖锂产业现状及对策建议[J]. 盐湖研究, 2021, 29(3): 104−110.

    Google Scholar

    JIANG Z Z, LIU G L, ZHUOMA Q X, et al. Current situation and countermeasures of lithium industry in Xizang salt lake under the current situation of lithium resource supply and demand[J]. Salt Lake Research, 2021, 29(3): 104−110.

    Google Scholar

    [3] TIAN L, WEI M, MEI H. Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide−science direct[J]. Chemical Engineering Journal, 2010, 156(1): 134−140. doi: 10.1016/j.cej.2009.10.008

    CrossRef Google Scholar

    [4] YU J, ZHENG M, WU Q, et al. Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond[J]. Solar Energy, 2015, 115: 133−144. doi: 10.1016/j.solener.2015.02.021

    CrossRef Google Scholar

    [5] 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905−2921+3433.

    Google Scholar

    WANG Q, ZHAO Y J, LIU Y, et al. Research progress on separation and extraction of lithium magnesium from salt lake with high magnesium lithium ratio[J]. Chinese Journal of Chemical Engineering, 2021, 72(6): 2905−2921+3433.

    Google Scholar

    [6] 葛涛, 徐亮, 孟金伟, 等. 盐湖卤水提锂工艺技术研究进展[J]. 有色金属工程, 2021, 11(2): 55−62.

    Google Scholar

    GE T, XU L, MENG J W, et al. Research progress of lithium extraction technology from salt Lake brine[J]. Nonferrous Metals Engineering, 2021, 11(2): 55−62.

    Google Scholar

    [7] 肖小玲. 氢氧化铝沉淀法从卤水中提取锂的研究[D]. 西宁: 中国科学院研究生院(青海盐湖研究所), 2005.

    Google Scholar

    XIAO X L. Study on extraction of lithium from brine by alumina hydroxide precipitation [D]. Xining: Graduate University of Chinese Academy of Sciences (Qinghai Salt Lake Research Institute), 2005.

    Google Scholar

    [8] 陈宋波, 徐川, 严新星, 等. 矿石和盐湖提锂研究进展[J]. 新能源科技, 2022, 28(10): 31−34.

    Google Scholar

    CHEN S B, XU C, YAN X X, et al. Research progress of lithium extraction from ores and salt lakes[J]. New Energy Science and Technology, 2022, 28(10): 31−34.

    Google Scholar

    [9] 乜贞, 伍倩, 丁涛, 等. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业, 2022, 54(10): 1-12.

    Google Scholar

    IE Z, WU Q, DING T, et al. Research progress on the industrialization technology of lithium extraction from salt lake brine in China [J]. Inorganicchemicalsindustry, 202, 54(10): 1-12.

    Google Scholar

    [10] 计超, 张杰, 张志君, 等. DK纳滤膜对高镁锂比卤水的分离性能研究[J]. 膜科学与技术, 2014, 34(3): 79−85. doi: 10.3969/j.issn.1007-8924.2014.03.014

    CrossRef Google Scholar

    JI C, ZHANG J, ZHANG Z J, et al. Separation performance of DK nanofiltration membrane for high magnesium lithium ratio brine[J]. Membrane Science and Technology, 2014, 34(3): 79−85. doi: 10.3969/j.issn.1007-8924.2014.03.014

    CrossRef Google Scholar

    [11] 康为清, 时历杰, 赵有璟, 等. 纳滤法用于盐湖卤水镁锂分离的初步试验[J]. 无机盐工业, 2014, 46(12): 22−24.

    Google Scholar

    KANG W Q, SHI L J, ZHAO Y J, et al. Preliminary experiment on separation of magnesium lithium from salt lake brine by nanofiltration[J]. Inorganicchemicalsindustry, 2014, 46(12): 22−24.

    Google Scholar

    [12] ZHOU G, CHEN L, CHAO Y, et al. Progress in electrochemical lithium ion pumping for lithium recovery[J]. 能源化学, 2021, 59: 431−445.

    Google Scholar

    [13] BATTISTEL A, PALAGONIA M S, BROGIOLI D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): 1905440. doi: 10.1002/adma.201905440

    CrossRef Google Scholar

    [14] HU S, SUN Y, PU M, et al. Determination of boundary conditions for highly efficient separation of magnesium and lithium from salt lake brine by reaction-coupled separation technology[J]. Separation & Purification Technology, 2019, 229: 115813.

    Google Scholar

    [15] 马珍. 盐湖锂资源高效分离提取技术研究进展[J]. 无机盐工业, 2022, 54(10): 22−29.

    Google Scholar

    MA Z. Research progress on efficient separation and extraction technology of lithium resources in salt lake[J]. Inorganic Chemicals Industry, 2022, 54(10): 22−29.

    Google Scholar

    [16] 丁涛, 郑绵平, 张雪飞, 等. 盐湖卤水提锂技术及产业化发展[J]. 科技导报, 2020, 38(15): 16−23. doi: 10.3981/j.issn.1000-7857.2020.15.002

    CrossRef Google Scholar

    DING T, ZHENG M P, ZHANG X F, et al. Technology and industrialization of lithium extraction from salt lake brine[J]. Science & Technology Review, 2020, 38(15): 16−23. doi: 10.3981/j.issn.1000-7857.2020.15.002

    CrossRef Google Scholar

    [17] 雪晶, 胡山鹰. 我国锂工业现状及前景分析[J]. 化工进展, 2011, 30(4): 782−787+801.

    Google Scholar

    XUE J, HU S Y. Current situation and prospect analysis of Chinese lithium industry[J]. Chemical Industry Progress, 2011, 30(4): 782−787+801.

    Google Scholar

    [18] 肖小玲, 戴志锋, 祝增虎, 等. 吸附法盐湖卤水提锂的研究进展[J]. 盐湖研究, 2005(2): 66−69.

    Google Scholar

    XIAO X L, DAI Z F, ZHU Z H, et al. Research progress of lithium extraction from salt lake brine by adsorption[J]. Salt Lake Research, 2005(2): 66−69.

    Google Scholar

    [19] ZHANG Q H, LI S P, SUN S Y, et al. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption[J]. Chemical Engineering Science, 2010, 65(1): 169−173. doi: 10.1016/j.ces.2009.06.045

    CrossRef Google Scholar

    [20] 段曼华, 程丹, 高倩, 等. 锂离子筛吸附材料的研究进展[J]. 功能材料, 2023, 54(2): 2072−2081.

    Google Scholar

    DUAN M H, CHENG D, GAO Q, et al. Research progress of lithium ion sieve adsorption materials[J]. Journal of Functional Materials, 2023, 54(2): 2072−2081.

    Google Scholar

    [21] 李丹, 邓天龙, 孙柏. 无机离子交换法从卤水中提锂的研究进展[J]. 广东微量元素科学, 2007(1): 6−10. doi: 10.3969/j.issn.1006-446X.2007.01.002

    CrossRef Google Scholar

    LI D, DENG T L, SUN B. Research progress of lithium extraction from brine by inorganic ion exchange[J]. Guangdong Trace Elements Science, 2007(1): 6−10. doi: 10.3969/j.issn.1006-446X.2007.01.002

    CrossRef Google Scholar

    [22] 刘亮, 钟辉. 锂离子吸附剂成型研究现状[J]. 化工技术与开发, 2016, 45(3): 44−46.

    Google Scholar

    LIU L, ZHONG H. Research Status of Lithium ion adsorbent Forming[J]. Chemical Technology and Development, 2016, 45(3): 44−46.

    Google Scholar

    [23] ARIZA M J, JONES D J, ROZIÈRE J, et al. Probing the local structure and the role of protons in lithium sorption processes of a new lithium−rich manganese oxide[J]. Chemistry of Materials, 2006, 18(7): 1885−1890. doi: 10.1021/cm052214r

    CrossRef Google Scholar

    [24] XIAO, WEIJI, XIN, et al. Insight into fast Li diffusion in Li−excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry, A Materials for energy and sustainability, 2018, 6(21): 9893−9898. doi: 10.1039/C8TA01428K

    CrossRef Google Scholar

    [25] 王大伟. 离子筛法海水提锂新工艺研究[D]. 天津: 河北工业大学, 2008.

    Google Scholar

    Wang D W. Study on new technology of lithium extraction from seawater by ion sieve [D]. Tianjin: Hebei University of Technology, 2008.

    Google Scholar

    [26] HUNTER J C. Preparation of a new crystal form of manganese dioxide: λ-MnO2[J]. Journal of Solid State Chemistry, 1981, 39(2): 142−147. doi: 10.1016/0022-4596(81)90323-6

    CrossRef Google Scholar

    [27] 徐占武, 岳德宇, 张蕾, 等. 锂离子筛吸附剂及成型的研究进展[J]. 无机盐工业, 2014, 46(6): 12−16.

    Google Scholar

    XU Z W, YUE D Y, ZHANG L, et al. Research progress of adsorbent and molding for lithium ion screen[J]. Inorganic Chemicals Industry, 2014, 46(6): 12−16.

    Google Scholar

    [28] LU W, WEI M, RU L, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Ionics, 2006, 177(17/18): 1421−1428. doi: 10.1016/j.ssi.2006.07.019

    CrossRef Google Scholar

    [29] FENG Q. Li+ extraction/insertion with spinel-type lithium manganese oxides-characterization of redox-type and ion-exchange-type sites[J]. Science of the Total Environment, 2015, 506/507: 234−240. doi: 10.1016/j.scitotenv.2014.11.012

    CrossRef Google Scholar

    [30] 赵元元, 陈海峰, 刘云云, 等. 锰系锂离子筛的制备与改性的研究进展[J]. 无机盐工业, 2022, 54(2): 21−29.

    Google Scholar

    ZHAO Y Y, CHEN H F, LIU Y Y, et al. Research progress on preparation and modification of manganese lithium ion screen[J]. Inorganic Chemicals Industry, 2022, 54(2): 21−29.

    Google Scholar

    [31] 路青强, 陈琳琳, 巢艳红, 等. 钛系锂离子筛用于盐湖提锂的研究进展[J]. 化工进展, 2021, 40(S1): 1−12.

    Google Scholar

    LU Q Q, CHEN L L, CHAO Y H, et al. Research progress of titanium series lithium ion screen for lithium extraction from salt lake[J]. Chemical Industry Progress, 2021, 40(S1): 1−12.

    Google Scholar

    [32] MARTHI R. Application and limitations of a H2TiO3−diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent[J]. Separation and Purification Technology, 2021, 254: 117580. doi: 10.1016/j.seppur.2020.117580

    CrossRef Google Scholar

    [33] 潘鑫, 曾文文, 何周坤, 等. 钛系锂离子筛盐湖提锂的研究进展[J]. 云南化工, 2019, 46(2): 25−32. doi: 10.3969/j.issn.1004-275X.2019.02.008

    CrossRef Google Scholar

    PAN X, ZENG W W, HE Z K, et al. Research progress of lithium extraction by titanium lithium ion screen salt lake[J]. Yunnan Chemical Industry, 2019, 46(2): 25−32. doi: 10.3969/j.issn.1004-275X.2019.02.008

    CrossRef Google Scholar

    [34] ZHANG Q-H, LI S-P, SUN S-Y, et al. Lithium selective adsorption on low-dimensional titania nanoribbons[J]. Chemical Engineering Science, 2010, 65(1): 165−168. doi: 10.1016/j.ces.2009.06.001

    CrossRef Google Scholar

    [35] 张丽芬, 陈白珍, 石西昌, 等. 偏钛酸型锂吸附剂的合成及吸附性能[J]. 中国有色金属学报, 2010, 20(9): 1849−1854.

    Google Scholar

    ZHANG L F, CHEN B Z, SHI X C, et al. Synthesis and adsorption properties of metatilinic acid lithium adsorbent[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1849−1854.

    Google Scholar

    [36] LI YH, ZHAO ZW, LIU XH, et al. Extraction of lithium from salt lake brine by aluminum-based alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3484−3489. doi: 10.1016/S1003-6326(15)64032-8

    CrossRef Google Scholar

    [37] RAGAVAN A, KHAN A I, O'HARE D. Intercalation and controlled release of 2, 4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl·xH2O[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5): 983−986.

    Google Scholar

    [38] QU J, HE X, WANG B, et al. Synthesis of Li–Al layered double hydroxides via a mechanochemical route[J]. Applied Clay Science, 2016, 120: 24−27. doi: 10.1016/j.clay.2015.11.017

    CrossRef Google Scholar

    [39] 李杰. 铝盐锂吸附剂制备工艺及吸附性能研究[D]. 成都: 成都理工大学, 2011.

    Google Scholar

    LI J. Study on preparation technology and adsorption properties of lithium aluminum salt adsorbent [D]. Chengdu: Chengdu University of Technology, 2011.

    Google Scholar

    [40] 陈亮. 吸附法从盐湖卤水中提取锂的研究[D]. 北京: 北京化工大学, 2020.

    Google Scholar

    CHEN L. Study on extraction of lithium from salt lake brine by adsorption method [D]. Beijing: Beijing University of Chemical Technology, 2020.

    Google Scholar

    [41] 许鑫. 高效锂离子选择性吸附材料的设计、制备及性能研究[D]. 北京: 北京化工大学, 2017.

    Google Scholar

    XU X. Design, preparation and properties of highly efficient lithium ion selective adsorption materials [D]. Beijing: Beijing University of Chemical Technology, 2017.

    Google Scholar

    [42] B X X A, A Y C, A P W, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science, 2016, 84: 276−313. doi: 10.1016/j.pmatsci.2016.09.004

    CrossRef Google Scholar

    [43] ZHONG J, LIN S, YU J. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J]. Journal of Colloid and Interface Science, 2020, 572: 107−113. doi: 10.1016/j.jcis.2020.03.081

    CrossRef Google Scholar

    [44] 田思敏. LiMn2O4型离子筛前驱体的制备及其成型结构特性研究[D]. 西安: 西安建筑科技大学, 2021.

    Google Scholar

    TIAN S M. Preparation of LiMn2O4 ion sieve precursor and its forming structure characteristics [D]. Xi 'an: Xi 'an University of Architecture and Technology, 2021.

    Google Scholar

    [45] 李修磊. 纳米纤维基锂离子筛复合吸附剂设计制备及提锂性能研究[D]. 石河子: 石河子大学, 2022.

    Google Scholar

    LI X L. Design, preparation and lithium extraction performance of nano−fiber Wireline lithium ion sieve composite adsorbent [D]. Shihezi: Shihezi University, 2022.

    Google Scholar

    [46] 贾庆源, 陶百福, 郭瑞丽. H1.6Mn1.6O4/PVC纳米纤维膜吸附剂的制备及其锂吸附性能[J]. 石河子大学学报(自然科学版), 2018, 36(6): 712−721.

    Google Scholar

    JIA Q Y, TAO B F, GUO R L. Preparation and Lithium adsorption properties of H1.6Mn1.6O4/PVC nanofiber membrane adsorbent[J]. Journal of Shihezi University (Natural Science Edition), 2018, 36(6): 712−721.

    Google Scholar

    [47] 储政, 吴钊, 黄伟. 锰系离子筛吸附法提纯油田富锂卤水技术研究[J]. 能源化工, 2020, 41(6): 30−33.

    Google Scholar

    CHU Z, WU Z, HUANG W. Study on purification of Li−rich oilfield brine by manganese ion sieve adsorption[J]. Energy Chemical Industry, 2020, 41(6): 30−33.

    Google Scholar

    [48] 聂想. 锂锰系锂离子筛的合成及应用研究[D]. 邯郸: 河北工程大学, 2017.

    Google Scholar

    NIE X. Study on synthesis and application of lithium manganese type lithium ion screen [D]. Handan: Hebei University of Engineering, 2017.

    Google Scholar

    [49] 申辉, 钟辉, 黄溢民. 离子筛型锂吸附剂的研究现状[J]. 四川化工, 2012, 15(3): 19−22. doi: 10.3969/j.issn.1672-4887.2012.03.010

    CrossRef Google Scholar

    SHEN H, ZHONG H, HUANG Y M. Research status of ion sieve type lithium adsorbent[J]. Sichuan Chemical Industry, 2012, 15(3): 19−22. doi: 10.3969/j.issn.1672-4887.2012.03.010

    CrossRef Google Scholar

    [50] CHABAN M O, ROZHDESTVENSKA L M, PALCHYK O V, et al. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2[J]. Applied Nanoscience, 2019, 9(5): 1037−1045. doi: 10.1007/s13204-018-0749-1

    CrossRef Google Scholar

    [51] 孙建科, 陈进, 易大伟. 离子筛型锂吸附剂的成型及研究进展[J]. 化工新型材料, 2022, 50(2): 293−297.

    Google Scholar

    SUN J K, CHEN J, YI D W. Preparation and research progress of ion sieve type lithium adsorbent[J]. New Chemical Materials, 2022, 50(2): 293−297.

    Google Scholar

    [52] 肖国萍, 童柯锋, 孙淑英, 等. 球形PVC-MnO2离子筛的制备及锂吸附性能[J]. 无机化学学报, 2012, 28(11): 2385−2394.

    Google Scholar

    XIAO G P, TONG K F, SUN S Y, et al. Preparation and Lithium adsorption performance of spherical PVC-MnO2 ionic sieve[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(11): 2385−2394.

    Google Scholar

    [53] 柳睿, 伍攀羽, 石西昌, 等. 球形锂离子筛的制备及其吸附性能[J]. 中国有色金属学报, 2019, 29(4): 828−836.

    Google Scholar

    LIU R, WU P Y, SHI X C, et al. Preparation and adsorption properties of spherical lithium ion sieve[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4): 828−836.

    Google Scholar

    [54] XIAO J L, SUN S Y, SONG X, et al. Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve[J]. Chemical Engineering Journal, 2015, 279: 659−666. doi: 10.1016/j.cej.2015.05.075

    CrossRef Google Scholar

    [55] JIA Q, WANG J, GUO R. Preparation and characterization of porous HMO/PAN composite adsorbent and its adsorption–desorption properties in brine[J]. Journal of Porous Materials, 2019, 26(3): 705−716. doi: 10.1007/s10934-018-0662-8

    CrossRef Google Scholar

    [56] 张绍成, 董丽春, 戈桦, 等. 负载二氧化锰球形吸附剂的制备及锂吸附性质的研究[J]. 离子交换与吸附, 1993(1): 54−58.

    Google Scholar

    ZHANG S C, DONG L C, GE H, et al. Preparation of spherical adsorbent supported by manganese dioxide and its adsorption properties for lithium[J]. Ion Exchange and Adsorption, 1993(1): 54−58.

    Google Scholar

    [57] 孟兴智. 离子筛型锂吸附剂的成型及其性能研究[D]. 天津: 河北工业大学, 2005.

    Google Scholar

    MENG X Z. Study on the forming and properties of ion sieve type lithium adsorbent [D]. Tianjin: Hebei University of Technology, 2005.

    Google Scholar

    [58] ZHANG G, HAI C, ZHOU Y, et al. Synthesis and performance estimation of a granulated PVC/PAN-lithium ion-sieve for Li+ recovery from brine[J]. Separation and Purification Technology, 2023, 305: 122431. doi: 10.1016/j.seppur.2022.122431

    CrossRef Google Scholar

    [59] HONG H J, PARK I S, RYU T, et al. Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater[J]. Chemical Engineering Journal, 2013, 234: 16−22. doi: 10.1016/j.cej.2013.08.060

    CrossRef Google Scholar

    [60] 张果泰. 锰氧化物型锂离子筛的制备、改性及应用性能研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2022.

    Google Scholar

    ZHANG G T. Preparation, modification and application of manganese oxide lithium ion screen [D]. Xining: University of Chinese Academy of Sciences (Qinghai Institute of Salt Lake Research, CAS), 2022.

    Google Scholar

    [61] DONGSHU SUN, MINJIA MENG, YIJIE YIN, et al. Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+[J]. Journal of Porous Materials, 2016, 23: 1411−1419. doi: 10.1007/s10934-016-0201-4

    CrossRef Google Scholar

    [62] CHENG M, YAO C, SU Y, et al. Synthesis of membrane-type graphene oxide immobilized manganese dioxide adsorbent and its adsorption behavior for lithium ion[J]. Chemosphere, 2021, 279: 130487. doi: 10.1016/j.chemosphere.2021.130487

    CrossRef Google Scholar

    [63] 段皓月. MnO2·0.5H2O型锂离子筛的制备和成型[D]. 上海: 上海师范大学, 2020.

    Google Scholar

    DUAN H Y. Preparation and molding of MnO2·0.5H2O lithium ion sieve [D]. Shanghai: Shanghai Normal University, 2020.

    Google Scholar

    [64] A G M N, A L A L, A E L V, et al. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation - ScienceDirect[J]. Chemical Engineering Journal, 2015, 280: 536−548. doi: 10.1016/j.cej.2015.05.107

    CrossRef Google Scholar

    [65] MA L W, CHEN B Z, CHEN Y, et al. Preparation, characterization and adsorptive properties of foam-type lithium adsorbent[J]. Microporous & Mesoporous Materials, 2011, 142(1): 147−153.

    Google Scholar

    [66] PARK M J, NISOLA G M, BELTRAN A B, et al. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate[J]. Chemical Engineering Journal, 2014, 254: 73−81. doi: 10.1016/j.cej.2014.05.095

    CrossRef Google Scholar

    [67] PARK M J, NISOLA G M, VIVAS E L, et al. Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li+ recovery from seawater[J]. Journal of Membrane Science, 2016, 510: 141−154. doi: 10.1016/j.memsci.2016.02.062

    CrossRef Google Scholar

    [68] NISOLA G M, PAROHINOG K J, TORREJOS R, et al. Crown ethers "clicked" on fibrous polyglycidyl methacrylate for selective Li+ retrieval from aqueous sources[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 596: 124709. doi: 10.1016/j.colsurfa.2020.124709

    CrossRef + retrieval from aqueous sources" target="_blank">Google Scholar

    [69] 刘炳光, 祖晓冬, 李建生, 等. 负载型锂离子筛吸附剂研究进展[J]. 无机盐工业, 2019, 51(9): 12−16.

    Google Scholar

    LIU B G, ZU X D, LI J S, et al. Research progress of supported lithium ion sieve adsorbent[J]. Inorganic Chemicals Industry, 2019, 51(9): 12−16.

    Google Scholar

    [70] HONG H J, PARK I S, RYU J, et al. Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li+ from seawater[J]. Chemical Engineering Journal, 2015, 271: 71−78. doi: 10.1016/j.cej.2015.02.023

    CrossRef Google Scholar

    [71] XUE F, ZHANG X, NIU Y, et al. Preparation and evaluation of α-Al2O3 supported lithium ion sieve membranes for Li+ extraction[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2312−2318. doi: 10.1016/j.cjche.2020.05.006

    CrossRef Google Scholar

    [72] 赵祎. 整体式酚醛树脂基锂离子筛的制备及其分离性能研究[D]. 大连: 大连理工大学, 2018.

    Google Scholar

    ZHAO Y. Preparation and separation performance of integrated phenolic resin-based lithium ion screen [D]. Dalian: Dalian University of Technology, 2018.

    Google Scholar

    [73] LIU C, TAO B, WANG Z, et al. Preparation and characterization of lithium ion sieves embedded in a hydroxyethyl cellulose cryogel for the continuous recovery of lithium from brine and seawater[J]. Chemical Engineering Science, 2020, 229: 115984.

    Google Scholar

    [74] 李超, 肖伽励, 孙淑英, 等. 球形离子筛吸附剂的制备及其锂吸附性能评价[J]. 化工学报, 2014, 65(1): 220−226.

    Google Scholar

    LI C, XIAO J L, SUN S Y, et al. Preparation and evaluation of spherical ion-sieve adsorbent for lithium adsorption[J]. Acta Chimica Sinica, 2014, 65(1): 220−226.

    Google Scholar

    [75] 王俊. PAN基锂离子筛膜的制备及在盐湖卤水应用性能研究[D]. 石河子: 石河子大学, 2016.

    Google Scholar

    WANG J. Preparation of PAN-based lithium ion screen film and its application in Salt lake brine [D]. Shi Hezi: Shihezi University, 2016.

    Google Scholar

    [76] 王涛, 孟庆祥, 许海涛, 等. 纳米纤维锂离子筛吸附剂的制备及表征[J]. 无机盐工业, 2016, 48(3): 29−33.

    Google Scholar

    WANG T, MENG Q X, XU H T, et al. Preparation and characterization of nano-fiber lithium ion sieve adsorbent[J]. Inorganic Chemicals Industry, 2016, 48(3): 29−33.

    Google Scholar

    [77] SW A, YW A, TAO C A, et al. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water[J]. Chemical Engineering Journal, 2020, 379: 122407. doi: 10.1016/j.cej.2019.122407

    CrossRef Google Scholar

    [78] 闫树旺, 钟辉, 黄志华. 粒状二氧化钛交换剂的研制及从卤水中提取锂[J]. 离子交换与吸附, 1994(3): 219−224.

    Google Scholar

    YAN S W, ZHONG H, HUANG Z H. Preparation of granular titanium dioxide exchanger and extraction of lithium from brine[J]. Ion Exchange and Adsorption, 1994(3): 219−224.

    Google Scholar

    [79] LIMJUCO L A, NISOLA G M, LAWAGON C P, et al. H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 504: 267−279. doi: 10.1016/j.colsurfa.2016.05.072

    CrossRef Google Scholar

    [80] ZHU X, YUE H, SUN W, et al. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium−based lithium ion sieves[J]. Separation and Purification Technology, 2021, 274: 119099. doi: 10.1016/j.seppur.2021.119099

    CrossRef Google Scholar

    [81] ZHANG L, ZHOU D, HE G, et al. Synthesis of H2TiO3–lithium adsorbent loaded on ceramic foams[J]. Materials Letters, 2015, 145: 351−354. doi: 10.1016/j.matlet.2015.01.142

    CrossRef Google Scholar

    [82] 陈自正. H2TiO3锂吸附剂的制备及其吸附性能探究[D]. 上海: 华东理工大学, 2017.

    Google Scholar

    CHEN Z Z. Preparation and adsorption properties of H2TiO3 lithium adsorbent [D]. Shanghai: East China University of Science and Technology, 2017.

    Google Scholar

    [83] ZHONG J, LIN S, YU J. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al−LDHs adsorbent[J]. Separation and Purification Technology, 2021, 256: 117780. doi: 10.1016/j.seppur.2020.117780

    CrossRef Google Scholar

    [84] 张瑞, 钟静, 林森, 等. 盐湖铝系提锂吸附剂成型条件的影响研究[J]. 化工学报, 2021, 72(12): 6291−6297.

    Google Scholar

    ZHANG R, ZHONG J, LIN S, et al. Study on the influence of forming conditions of Aluminum series lithium extraction adsorbent from Salt Lake[J]. Acta Chimica Sinica, 2021, 72(12): 6291−6297.

    Google Scholar

    [85] 张瑞, 陆旗玮, 林森, 等. 铝系成型锂吸附剂性能测试评价与对比[J]. 化工学报, 2021, 72(6): 3053−3062.

    Google Scholar

    ZHANG R, LU Q W, LIN S, et al. Evaluation and comparison of performance of lithium adsorbent for aluminum series molding[J]. Acta Chemicae Sinica, 2021, 72(6): 3053−3062.

    Google Scholar

    [86] RYABTSEV A D, MENZHERES L T, TEN A V. Sorption of lithium from brine onto granular LiCl· 2Al(OH)3·mH2O sorbent under dynamic conditions[J]. Russian Journal of Applied Chemistry, 2002, 75(7): 1069−1074. doi: 10.1023/A:1020795709156

    CrossRef Google Scholar

    [87] 吕帅轲, 赵云良, 陈立才, 等. 锰系和铝系吸附剂对江汉盆地卤水中锂的吸附性能研究[J]. 金属矿山, 2022(8): 94−100.

    Google Scholar

    LV S K, ZHAO Y L, CHEN L C, et al. Study on adsorption properties of manganese and aluminum adsorbents for lithium in brine of Jianghan Basin[J]. Metal Mine, 2022(8): 94−100.

    Google Scholar

    [88] LUO Q, DONG M, NIE G, et al. Extraction of lithium from salt lake brines by granulated adsorbents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127256. doi: 10.1016/j.colsurfa.2021.127256

    CrossRef Google Scholar

    [89] 周苏禹. LTO型锂离子筛的改性与成型[D]. 上海: 上海师范大学, 2022.

    Google Scholar

    ZHOU S Y. Modification and molding of LTO lithium ion screen [D]. Shanghai: Shanghai Normal University, 2022.

    Google Scholar

    [90] LI X, TAO B, JIA Q, et al. Preparation and adsorption performance of muliti-morphology H1.6Mn1.6O4 for lithium extraction−science direct[J]. Chinese Journal of Chemical Engineering, 2021, 34: 68−76. doi: 10.1016/j.cjche.2020.09.006

    CrossRef Google Scholar

    [91] ZHANG X, NIU Y, XUE F, et al. Preparation and evaluation of porous H1.6Mn1.6O4@chitosan pellet for Li+ extraction[J]. Korean Journal of Chemical Engineering, 2021, 38(10): 2141−2149. doi: 10.1007/s11814-021-0862-9

    CrossRef Google Scholar

    [92] LIU J, ZHANG Y, MIAO Y, et al. Alkaline resins enhancing Li+/H+ ion exchange for lithium recovery from brines using granular titanium−type lithium ion−sieves[J]. Industrial & Engineering Chemistry Research, 2021, 60(45): 16457−16468.

    Google Scholar

    [93] 陈琳琳, 李小为, 蒋磊, 等. 钛系颗粒状吸附剂用于盐湖卤水中锂的吸附研究[J]. 当代化工研究, 2021(21): 4−7. doi: 10.3969/j.issn.1672-8114.2021.21.002

    CrossRef Google Scholar

    CHEN L L, LI X W, JIANG L, et al. Study on the adsorption of lithium from salt lake brines by titanium granular adsorbent[J]. Contemporary Chemical Industry Research, 2021(21): 4−7. doi: 10.3969/j.issn.1672-8114.2021.21.002

    CrossRef Google Scholar

    [94] ZHU G, WANG P, QI P, et al. Adsorption and desorption properties of Li+ on PVC−H1.6Mn1.6O4 lithium ion−sieve membrane[J]. Chemical Engineering Journal, 2014, 235: 340−348. doi: 10.1016/j.cej.2013.09.068

    CrossRef Google Scholar

    [95] 刘文涛, 刘亦凡. 锂离子交换体Li1.5Ti1.625O4的研究(Ⅲ)−Li1.5Ti1.625O4的造粒、改型及油田咸水中锂的回收[J]. 离子交换与吸附, 2011, 27(4): 353−358.

    Google Scholar

    LIU W T, LIU Y F. Study on lithium ion exchange Li1.5Ti1.625O4(Ⅲ)−granulation, modification of Li1.5Ti1.625O4 and recovery of lithium from oilfield salt water[J]. Ion Exchange and Adsorption, 2011, 27(4): 353−358.

    Google Scholar

    [96] 刘亮. 偏钛酸型锂离子吸附剂的成型及提锂工艺研究[D]. 成都: 成都理工大学, 2016.

    Google Scholar

    LIU L. Study on the forming and extraction process of titanate Lithium ion adsorbent [D]. Chengdu: Chengdu University of Technology, 2016.

    Google Scholar

    [97] Hierarchically porous polyacrylonitrile (PAN) 3D architectures with anchored lattice−expanded λMnO2 nanodots as freestanding adsorbents for superior lithium separation [J]. Industrial And Engineering Chemistry Research, 2020, 59(29): 13239−13245.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(1486) PDF downloads(171) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint