Citation: | CHU Yingyu, XIA Kaisheng, GAO Qiang, YANG Zhen, Li Yudie, CHEN Xinyi, MENG Yi, LI Zhen, ZU Bo, LIU Chenglin. Research Progress on Preparation and Adsorption Application of Macroscopical Large Size Lithium−ion Sieves[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 130-144. doi: 10.13779/j.cnki.issn1001-0076.2023.07.006 |
Lithium is an important strategic resource. With the rapid development of new energy industry in recent years, the demand for lithium metal and its compounds has increased rapidly. Most of our proved lithium resources were distributed in salt lake brine, but the high magnesia lithium ratio restricted the large-scale development and utilization. Among the many methods of lithium extraction, lithium ion sieve adsorption technology has been widely studied because of its simple process, high selectivity and recyclability. However, the artificially prepared lithium ion sieve is mostly in powder form, difficult to recover and reuse, which is not conducive to popularization and application. By forming technologies such as granulation and casting film, lithium ion screen can be constructed as macro-size adsorbent, which can effectively make up for its deficiency in practical application, and has great significance for accelerating the development of salt lake brined lithium resources and realizing the self-sufficiency of Chinese lithium resources. In this paper, the main types and development status of lithium ion screen, the common preparation methods of macroscopic large size lithium ion screen, and the application progress of macroscopic large size lithium ion screen in adsorption and extraction of lithium are reviewed. Finally, the technology is summarized and prospected.
[1] | USGS. Mineral commodity summaries 2023 [R]. Reston, VA, 2023. |
[2] | 姜贞贞, 刘高令, 卓玛曲西, 等. 我国锂资源供需现状下西藏盐湖锂产业现状及对策建议[J]. 盐湖研究, 2021, 29(3): 104−110. JIANG Z Z, LIU G L, ZHUOMA Q X, et al. Current situation and countermeasures of lithium industry in Xizang salt lake under the current situation of lithium resource supply and demand[J]. Salt Lake Research, 2021, 29(3): 104−110. |
[3] | TIAN L, WEI M, MEI H. Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide−science direct[J]. Chemical Engineering Journal, 2010, 156(1): 134−140. doi: 10.1016/j.cej.2009.10.008 |
[4] | YU J, ZHENG M, WU Q, et al. Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond[J]. Solar Energy, 2015, 115: 133−144. doi: 10.1016/j.solener.2015.02.021 |
[5] | 王琪, 赵有璟, 刘洋, 等. 高镁锂比盐湖镁锂分离与锂提取技术研究进展[J]. 化工学报, 2021, 72(6): 2905−2921+3433. WANG Q, ZHAO Y J, LIU Y, et al. Research progress on separation and extraction of lithium magnesium from salt lake with high magnesium lithium ratio[J]. Chinese Journal of Chemical Engineering, 2021, 72(6): 2905−2921+3433. |
[6] | 葛涛, 徐亮, 孟金伟, 等. 盐湖卤水提锂工艺技术研究进展[J]. 有色金属工程, 2021, 11(2): 55−62. GE T, XU L, MENG J W, et al. Research progress of lithium extraction technology from salt Lake brine[J]. Nonferrous Metals Engineering, 2021, 11(2): 55−62. |
[7] | 肖小玲. 氢氧化铝沉淀法从卤水中提取锂的研究[D]. 西宁: 中国科学院研究生院(青海盐湖研究所), 2005. XIAO X L. Study on extraction of lithium from brine by alumina hydroxide precipitation [D]. Xining: Graduate University of Chinese Academy of Sciences (Qinghai Salt Lake Research Institute), 2005. |
[8] | 陈宋波, 徐川, 严新星, 等. 矿石和盐湖提锂研究进展[J]. 新能源科技, 2022, 28(10): 31−34. CHEN S B, XU C, YAN X X, et al. Research progress of lithium extraction from ores and salt lakes[J]. New Energy Science and Technology, 2022, 28(10): 31−34. |
[9] | 乜贞, 伍倩, 丁涛, 等. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业, 2022, 54(10): 1-12. IE Z, WU Q, DING T, et al. Research progress on the industrialization technology of lithium extraction from salt lake brine in China [J]. Inorganicchemicalsindustry, 202, 54(10): 1-12. |
[10] | 计超, 张杰, 张志君, 等. DK纳滤膜对高镁锂比卤水的分离性能研究[J]. 膜科学与技术, 2014, 34(3): 79−85. doi: 10.3969/j.issn.1007-8924.2014.03.014 JI C, ZHANG J, ZHANG Z J, et al. Separation performance of DK nanofiltration membrane for high magnesium lithium ratio brine[J]. Membrane Science and Technology, 2014, 34(3): 79−85. doi: 10.3969/j.issn.1007-8924.2014.03.014 |
[11] | 康为清, 时历杰, 赵有璟, 等. 纳滤法用于盐湖卤水镁锂分离的初步试验[J]. 无机盐工业, 2014, 46(12): 22−24. KANG W Q, SHI L J, ZHAO Y J, et al. Preliminary experiment on separation of magnesium lithium from salt lake brine by nanofiltration[J]. Inorganicchemicalsindustry, 2014, 46(12): 22−24. |
[12] | ZHOU G, CHEN L, CHAO Y, et al. Progress in electrochemical lithium ion pumping for lithium recovery[J]. 能源化学, 2021, 59: 431−445. |
[13] | BATTISTEL A, PALAGONIA M S, BROGIOLI D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): 1905440. doi: 10.1002/adma.201905440 |
[14] | HU S, SUN Y, PU M, et al. Determination of boundary conditions for highly efficient separation of magnesium and lithium from salt lake brine by reaction-coupled separation technology[J]. Separation & Purification Technology, 2019, 229: 115813. |
[15] | 马珍. 盐湖锂资源高效分离提取技术研究进展[J]. 无机盐工业, 2022, 54(10): 22−29. MA Z. Research progress on efficient separation and extraction technology of lithium resources in salt lake[J]. Inorganic Chemicals Industry, 2022, 54(10): 22−29. |
[16] | 丁涛, 郑绵平, 张雪飞, 等. 盐湖卤水提锂技术及产业化发展[J]. 科技导报, 2020, 38(15): 16−23. doi: 10.3981/j.issn.1000-7857.2020.15.002 DING T, ZHENG M P, ZHANG X F, et al. Technology and industrialization of lithium extraction from salt lake brine[J]. Science & Technology Review, 2020, 38(15): 16−23. doi: 10.3981/j.issn.1000-7857.2020.15.002 |
[17] | 雪晶, 胡山鹰. 我国锂工业现状及前景分析[J]. 化工进展, 2011, 30(4): 782−787+801. XUE J, HU S Y. Current situation and prospect analysis of Chinese lithium industry[J]. Chemical Industry Progress, 2011, 30(4): 782−787+801. |
[18] | 肖小玲, 戴志锋, 祝增虎, 等. 吸附法盐湖卤水提锂的研究进展[J]. 盐湖研究, 2005(2): 66−69. XIAO X L, DAI Z F, ZHU Z H, et al. Research progress of lithium extraction from salt lake brine by adsorption[J]. Salt Lake Research, 2005(2): 66−69. |
[19] | ZHANG Q H, LI S P, SUN S Y, et al. LiMn2O4 spinel direct synthesis and lithium ion selective adsorption[J]. Chemical Engineering Science, 2010, 65(1): 169−173. doi: 10.1016/j.ces.2009.06.045 |
[20] | 段曼华, 程丹, 高倩, 等. 锂离子筛吸附材料的研究进展[J]. 功能材料, 2023, 54(2): 2072−2081. DUAN M H, CHENG D, GAO Q, et al. Research progress of lithium ion sieve adsorption materials[J]. Journal of Functional Materials, 2023, 54(2): 2072−2081. |
[21] | 李丹, 邓天龙, 孙柏. 无机离子交换法从卤水中提锂的研究进展[J]. 广东微量元素科学, 2007(1): 6−10. doi: 10.3969/j.issn.1006-446X.2007.01.002 LI D, DENG T L, SUN B. Research progress of lithium extraction from brine by inorganic ion exchange[J]. Guangdong Trace Elements Science, 2007(1): 6−10. doi: 10.3969/j.issn.1006-446X.2007.01.002 |
[22] | 刘亮, 钟辉. 锂离子吸附剂成型研究现状[J]. 化工技术与开发, 2016, 45(3): 44−46. LIU L, ZHONG H. Research Status of Lithium ion adsorbent Forming[J]. Chemical Technology and Development, 2016, 45(3): 44−46. |
[23] | ARIZA M J, JONES D J, ROZIÈRE J, et al. Probing the local structure and the role of protons in lithium sorption processes of a new lithium−rich manganese oxide[J]. Chemistry of Materials, 2006, 18(7): 1885−1890. doi: 10.1021/cm052214r |
[24] | XIAO, WEIJI, XIN, et al. Insight into fast Li diffusion in Li−excess spinel lithium manganese oxide[J]. Journal of Materials Chemistry, A Materials for energy and sustainability, 2018, 6(21): 9893−9898. doi: 10.1039/C8TA01428K |
[25] | 王大伟. 离子筛法海水提锂新工艺研究[D]. 天津: 河北工业大学, 2008. Wang D W. Study on new technology of lithium extraction from seawater by ion sieve [D]. Tianjin: Hebei University of Technology, 2008. |
[26] | HUNTER J C. Preparation of a new crystal form of manganese dioxide: λ-MnO2[J]. Journal of Solid State Chemistry, 1981, 39(2): 142−147. doi: 10.1016/0022-4596(81)90323-6 |
[27] | 徐占武, 岳德宇, 张蕾, 等. 锂离子筛吸附剂及成型的研究进展[J]. 无机盐工业, 2014, 46(6): 12−16. XU Z W, YUE D Y, ZHANG L, et al. Research progress of adsorbent and molding for lithium ion screen[J]. Inorganic Chemicals Industry, 2014, 46(6): 12−16. |
[28] | LU W, WEI M, RU L, et al. Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor[J]. Solid State Ionics, 2006, 177(17/18): 1421−1428. doi: 10.1016/j.ssi.2006.07.019 |
[29] | FENG Q. Li+ extraction/insertion with spinel-type lithium manganese oxides-characterization of redox-type and ion-exchange-type sites[J]. Science of the Total Environment, 2015, 506/507: 234−240. doi: 10.1016/j.scitotenv.2014.11.012 |
[30] | 赵元元, 陈海峰, 刘云云, 等. 锰系锂离子筛的制备与改性的研究进展[J]. 无机盐工业, 2022, 54(2): 21−29. ZHAO Y Y, CHEN H F, LIU Y Y, et al. Research progress on preparation and modification of manganese lithium ion screen[J]. Inorganic Chemicals Industry, 2022, 54(2): 21−29. |
[31] | 路青强, 陈琳琳, 巢艳红, 等. 钛系锂离子筛用于盐湖提锂的研究进展[J]. 化工进展, 2021, 40(S1): 1−12. LU Q Q, CHEN L L, CHAO Y H, et al. Research progress of titanium series lithium ion screen for lithium extraction from salt lake[J]. Chemical Industry Progress, 2021, 40(S1): 1−12. |
[32] | MARTHI R. Application and limitations of a H2TiO3−diatomaceous earth composite synthesized from titania slag as a selective lithium adsorbent[J]. Separation and Purification Technology, 2021, 254: 117580. doi: 10.1016/j.seppur.2020.117580 |
[33] | 潘鑫, 曾文文, 何周坤, 等. 钛系锂离子筛盐湖提锂的研究进展[J]. 云南化工, 2019, 46(2): 25−32. doi: 10.3969/j.issn.1004-275X.2019.02.008 PAN X, ZENG W W, HE Z K, et al. Research progress of lithium extraction by titanium lithium ion screen salt lake[J]. Yunnan Chemical Industry, 2019, 46(2): 25−32. doi: 10.3969/j.issn.1004-275X.2019.02.008 |
[34] | ZHANG Q-H, LI S-P, SUN S-Y, et al. Lithium selective adsorption on low-dimensional titania nanoribbons[J]. Chemical Engineering Science, 2010, 65(1): 165−168. doi: 10.1016/j.ces.2009.06.001 |
[35] | 张丽芬, 陈白珍, 石西昌, 等. 偏钛酸型锂吸附剂的合成及吸附性能[J]. 中国有色金属学报, 2010, 20(9): 1849−1854. ZHANG L F, CHEN B Z, SHI X C, et al. Synthesis and adsorption properties of metatilinic acid lithium adsorbent[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1849−1854. |
[36] | LI YH, ZHAO ZW, LIU XH, et al. Extraction of lithium from salt lake brine by aluminum-based alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3484−3489. doi: 10.1016/S1003-6326(15)64032-8 |
[37] | RAGAVAN A, KHAN A I, O'HARE D. Intercalation and controlled release of 2, 4-dichlorophenoxyacetic acid using rhombohedral [LiAl2(OH)6]Cl·xH2O[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5): 983−986. |
[38] | QU J, HE X, WANG B, et al. Synthesis of Li–Al layered double hydroxides via a mechanochemical route[J]. Applied Clay Science, 2016, 120: 24−27. doi: 10.1016/j.clay.2015.11.017 |
[39] | 李杰. 铝盐锂吸附剂制备工艺及吸附性能研究[D]. 成都: 成都理工大学, 2011. LI J. Study on preparation technology and adsorption properties of lithium aluminum salt adsorbent [D]. Chengdu: Chengdu University of Technology, 2011. |
[40] | 陈亮. 吸附法从盐湖卤水中提取锂的研究[D]. 北京: 北京化工大学, 2020. CHEN L. Study on extraction of lithium from salt lake brine by adsorption method [D]. Beijing: Beijing University of Chemical Technology, 2020. |
[41] | 许鑫. 高效锂离子选择性吸附材料的设计、制备及性能研究[D]. 北京: 北京化工大学, 2017. XU X. Design, preparation and properties of highly efficient lithium ion selective adsorption materials [D]. Beijing: Beijing University of Chemical Technology, 2017. |
[42] | B X X A, A Y C, A P W, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science, 2016, 84: 276−313. doi: 10.1016/j.pmatsci.2016.09.004 |
[43] | ZHONG J, LIN S, YU J. Effects of excessive lithium deintercalation on Li+ adsorption performance and structural stability of lithium/aluminum layered double hydroxides[J]. Journal of Colloid and Interface Science, 2020, 572: 107−113. doi: 10.1016/j.jcis.2020.03.081 |
[44] | 田思敏. LiMn2O4型离子筛前驱体的制备及其成型结构特性研究[D]. 西安: 西安建筑科技大学, 2021. TIAN S M. Preparation of LiMn2O4 ion sieve precursor and its forming structure characteristics [D]. Xi 'an: Xi 'an University of Architecture and Technology, 2021. |
[45] | 李修磊. 纳米纤维基锂离子筛复合吸附剂设计制备及提锂性能研究[D]. 石河子: 石河子大学, 2022. LI X L. Design, preparation and lithium extraction performance of nano−fiber Wireline lithium ion sieve composite adsorbent [D]. Shihezi: Shihezi University, 2022. |
[46] | 贾庆源, 陶百福, 郭瑞丽. H1.6Mn1.6O4/PVC纳米纤维膜吸附剂的制备及其锂吸附性能[J]. 石河子大学学报(自然科学版), 2018, 36(6): 712−721. JIA Q Y, TAO B F, GUO R L. Preparation and Lithium adsorption properties of H1.6Mn1.6O4/PVC nanofiber membrane adsorbent[J]. Journal of Shihezi University (Natural Science Edition), 2018, 36(6): 712−721. |
[47] | 储政, 吴钊, 黄伟. 锰系离子筛吸附法提纯油田富锂卤水技术研究[J]. 能源化工, 2020, 41(6): 30−33. CHU Z, WU Z, HUANG W. Study on purification of Li−rich oilfield brine by manganese ion sieve adsorption[J]. Energy Chemical Industry, 2020, 41(6): 30−33. |
[48] | 聂想. 锂锰系锂离子筛的合成及应用研究[D]. 邯郸: 河北工程大学, 2017. NIE X. Study on synthesis and application of lithium manganese type lithium ion screen [D]. Handan: Hebei University of Engineering, 2017. |
[49] | 申辉, 钟辉, 黄溢民. 离子筛型锂吸附剂的研究现状[J]. 四川化工, 2012, 15(3): 19−22. doi: 10.3969/j.issn.1672-4887.2012.03.010 SHEN H, ZHONG H, HUANG Y M. Research status of ion sieve type lithium adsorbent[J]. Sichuan Chemical Industry, 2012, 15(3): 19−22. doi: 10.3969/j.issn.1672-4887.2012.03.010 |
[50] | CHABAN M O, ROZHDESTVENSKA L M, PALCHYK O V, et al. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2[J]. Applied Nanoscience, 2019, 9(5): 1037−1045. doi: 10.1007/s13204-018-0749-1 |
[51] | 孙建科, 陈进, 易大伟. 离子筛型锂吸附剂的成型及研究进展[J]. 化工新型材料, 2022, 50(2): 293−297. SUN J K, CHEN J, YI D W. Preparation and research progress of ion sieve type lithium adsorbent[J]. New Chemical Materials, 2022, 50(2): 293−297. |
[52] | 肖国萍, 童柯锋, 孙淑英, 等. 球形PVC-MnO2离子筛的制备及锂吸附性能[J]. 无机化学学报, 2012, 28(11): 2385−2394. XIAO G P, TONG K F, SUN S Y, et al. Preparation and Lithium adsorption performance of spherical PVC-MnO2 ionic sieve[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(11): 2385−2394. |
[53] | 柳睿, 伍攀羽, 石西昌, 等. 球形锂离子筛的制备及其吸附性能[J]. 中国有色金属学报, 2019, 29(4): 828−836. LIU R, WU P Y, SHI X C, et al. Preparation and adsorption properties of spherical lithium ion sieve[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(4): 828−836. |
[54] | XIAO J L, SUN S Y, SONG X, et al. Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve[J]. Chemical Engineering Journal, 2015, 279: 659−666. doi: 10.1016/j.cej.2015.05.075 |
[55] | JIA Q, WANG J, GUO R. Preparation and characterization of porous HMO/PAN composite adsorbent and its adsorption–desorption properties in brine[J]. Journal of Porous Materials, 2019, 26(3): 705−716. doi: 10.1007/s10934-018-0662-8 |
[56] | 张绍成, 董丽春, 戈桦, 等. 负载二氧化锰球形吸附剂的制备及锂吸附性质的研究[J]. 离子交换与吸附, 1993(1): 54−58. ZHANG S C, DONG L C, GE H, et al. Preparation of spherical adsorbent supported by manganese dioxide and its adsorption properties for lithium[J]. Ion Exchange and Adsorption, 1993(1): 54−58. |
[57] | 孟兴智. 离子筛型锂吸附剂的成型及其性能研究[D]. 天津: 河北工业大学, 2005. MENG X Z. Study on the forming and properties of ion sieve type lithium adsorbent [D]. Tianjin: Hebei University of Technology, 2005. |
[58] | ZHANG G, HAI C, ZHOU Y, et al. Synthesis and performance estimation of a granulated PVC/PAN-lithium ion-sieve for Li+ recovery from brine[J]. Separation and Purification Technology, 2023, 305: 122431. doi: 10.1016/j.seppur.2022.122431 |
[59] | HONG H J, PARK I S, RYU T, et al. Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater[J]. Chemical Engineering Journal, 2013, 234: 16−22. doi: 10.1016/j.cej.2013.08.060 |
[60] | 张果泰. 锰氧化物型锂离子筛的制备、改性及应用性能研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所), 2022. ZHANG G T. Preparation, modification and application of manganese oxide lithium ion screen [D]. Xining: University of Chinese Academy of Sciences (Qinghai Institute of Salt Lake Research, CAS), 2022. |
[61] | DONGSHU SUN, MINJIA MENG, YIJIE YIN, et al. Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+[J]. Journal of Porous Materials, 2016, 23: 1411−1419. doi: 10.1007/s10934-016-0201-4 |
[62] | CHENG M, YAO C, SU Y, et al. Synthesis of membrane-type graphene oxide immobilized manganese dioxide adsorbent and its adsorption behavior for lithium ion[J]. Chemosphere, 2021, 279: 130487. doi: 10.1016/j.chemosphere.2021.130487 |
[63] | 段皓月. MnO2·0.5H2O型锂离子筛的制备和成型[D]. 上海: 上海师范大学, 2020. DUAN H Y. Preparation and molding of MnO2·0.5H2O lithium ion sieve [D]. Shanghai: Shanghai Normal University, 2020. |
[64] | A G M N, A L A L, A E L V, et al. Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation - ScienceDirect[J]. Chemical Engineering Journal, 2015, 280: 536−548. doi: 10.1016/j.cej.2015.05.107 |
[65] | MA L W, CHEN B Z, CHEN Y, et al. Preparation, characterization and adsorptive properties of foam-type lithium adsorbent[J]. Microporous & Mesoporous Materials, 2011, 142(1): 147−153. |
[66] | PARK M J, NISOLA G M, BELTRAN A B, et al. Recyclable composite nanofiber adsorbent for Li+ recovery from seawater desalination retentate[J]. Chemical Engineering Journal, 2014, 254: 73−81. doi: 10.1016/j.cej.2014.05.095 |
[67] | PARK M J, NISOLA G M, VIVAS E L, et al. Mixed matrix nanofiber as a flow-through membrane adsorber for continuous Li+ recovery from seawater[J]. Journal of Membrane Science, 2016, 510: 141−154. doi: 10.1016/j.memsci.2016.02.062 |
[68] |
NISOLA G M, PAROHINOG K J, TORREJOS R, et al. Crown ethers "clicked" on fibrous polyglycidyl methacrylate for selective Li+ retrieval from aqueous sources[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 596: 124709. doi: 10.1016/j.colsurfa.2020.124709
CrossRef + retrieval from aqueous sources" target="_blank">Google Scholar |
[69] | 刘炳光, 祖晓冬, 李建生, 等. 负载型锂离子筛吸附剂研究进展[J]. 无机盐工业, 2019, 51(9): 12−16. LIU B G, ZU X D, LI J S, et al. Research progress of supported lithium ion sieve adsorbent[J]. Inorganic Chemicals Industry, 2019, 51(9): 12−16. |
[70] | HONG H J, PARK I S, RYU J, et al. Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li+ from seawater[J]. Chemical Engineering Journal, 2015, 271: 71−78. doi: 10.1016/j.cej.2015.02.023 |
[71] | XUE F, ZHANG X, NIU Y, et al. Preparation and evaluation of α-Al2O3 supported lithium ion sieve membranes for Li+ extraction[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2312−2318. doi: 10.1016/j.cjche.2020.05.006 |
[72] | 赵祎. 整体式酚醛树脂基锂离子筛的制备及其分离性能研究[D]. 大连: 大连理工大学, 2018. ZHAO Y. Preparation and separation performance of integrated phenolic resin-based lithium ion screen [D]. Dalian: Dalian University of Technology, 2018. |
[73] | LIU C, TAO B, WANG Z, et al. Preparation and characterization of lithium ion sieves embedded in a hydroxyethyl cellulose cryogel for the continuous recovery of lithium from brine and seawater[J]. Chemical Engineering Science, 2020, 229: 115984. |
[74] | 李超, 肖伽励, 孙淑英, 等. 球形离子筛吸附剂的制备及其锂吸附性能评价[J]. 化工学报, 2014, 65(1): 220−226. LI C, XIAO J L, SUN S Y, et al. Preparation and evaluation of spherical ion-sieve adsorbent for lithium adsorption[J]. Acta Chimica Sinica, 2014, 65(1): 220−226. |
[75] | 王俊. PAN基锂离子筛膜的制备及在盐湖卤水应用性能研究[D]. 石河子: 石河子大学, 2016. WANG J. Preparation of PAN-based lithium ion screen film and its application in Salt lake brine [D]. Shi Hezi: Shihezi University, 2016. |
[76] | 王涛, 孟庆祥, 许海涛, 等. 纳米纤维锂离子筛吸附剂的制备及表征[J]. 无机盐工业, 2016, 48(3): 29−33. WANG T, MENG Q X, XU H T, et al. Preparation and characterization of nano-fiber lithium ion sieve adsorbent[J]. Inorganic Chemicals Industry, 2016, 48(3): 29−33. |
[77] | SW A, YW A, TAO C A, et al. Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water[J]. Chemical Engineering Journal, 2020, 379: 122407. doi: 10.1016/j.cej.2019.122407 |
[78] | 闫树旺, 钟辉, 黄志华. 粒状二氧化钛交换剂的研制及从卤水中提取锂[J]. 离子交换与吸附, 1994(3): 219−224. YAN S W, ZHONG H, HUANG Z H. Preparation of granular titanium dioxide exchanger and extraction of lithium from brine[J]. Ion Exchange and Adsorption, 1994(3): 219−224. |
[79] | LIMJUCO L A, NISOLA G M, LAWAGON C P, et al. H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 504: 267−279. doi: 10.1016/j.colsurfa.2016.05.072 |
[80] | ZHU X, YUE H, SUN W, et al. Study on adsorption extraction process of lithium ion from West Taijinar brine by shaped titanium−based lithium ion sieves[J]. Separation and Purification Technology, 2021, 274: 119099. doi: 10.1016/j.seppur.2021.119099 |
[81] | ZHANG L, ZHOU D, HE G, et al. Synthesis of H2TiO3–lithium adsorbent loaded on ceramic foams[J]. Materials Letters, 2015, 145: 351−354. doi: 10.1016/j.matlet.2015.01.142 |
[82] | 陈自正. H2TiO3锂吸附剂的制备及其吸附性能探究[D]. 上海: 华东理工大学, 2017. CHEN Z Z. Preparation and adsorption properties of H2TiO3 lithium adsorbent [D]. Shanghai: East China University of Science and Technology, 2017. |
[83] | ZHONG J, LIN S, YU J. Lithium recovery from ultrahigh Mg2+/Li+ ratio brine using a novel granulated Li/Al−LDHs adsorbent[J]. Separation and Purification Technology, 2021, 256: 117780. doi: 10.1016/j.seppur.2020.117780 |
[84] | 张瑞, 钟静, 林森, 等. 盐湖铝系提锂吸附剂成型条件的影响研究[J]. 化工学报, 2021, 72(12): 6291−6297. ZHANG R, ZHONG J, LIN S, et al. Study on the influence of forming conditions of Aluminum series lithium extraction adsorbent from Salt Lake[J]. Acta Chimica Sinica, 2021, 72(12): 6291−6297. |
[85] | 张瑞, 陆旗玮, 林森, 等. 铝系成型锂吸附剂性能测试评价与对比[J]. 化工学报, 2021, 72(6): 3053−3062. ZHANG R, LU Q W, LIN S, et al. Evaluation and comparison of performance of lithium adsorbent for aluminum series molding[J]. Acta Chemicae Sinica, 2021, 72(6): 3053−3062. |
[86] | RYABTSEV A D, MENZHERES L T, TEN A V. Sorption of lithium from brine onto granular LiCl· 2Al(OH)3·mH2O sorbent under dynamic conditions[J]. Russian Journal of Applied Chemistry, 2002, 75(7): 1069−1074. doi: 10.1023/A:1020795709156 |
[87] | 吕帅轲, 赵云良, 陈立才, 等. 锰系和铝系吸附剂对江汉盆地卤水中锂的吸附性能研究[J]. 金属矿山, 2022(8): 94−100. LV S K, ZHAO Y L, CHEN L C, et al. Study on adsorption properties of manganese and aluminum adsorbents for lithium in brine of Jianghan Basin[J]. Metal Mine, 2022(8): 94−100. |
[88] | LUO Q, DONG M, NIE G, et al. Extraction of lithium from salt lake brines by granulated adsorbents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127256. doi: 10.1016/j.colsurfa.2021.127256 |
[89] | 周苏禹. LTO型锂离子筛的改性与成型[D]. 上海: 上海师范大学, 2022. ZHOU S Y. Modification and molding of LTO lithium ion screen [D]. Shanghai: Shanghai Normal University, 2022. |
[90] | LI X, TAO B, JIA Q, et al. Preparation and adsorption performance of muliti-morphology H1.6Mn1.6O4 for lithium extraction−science direct[J]. Chinese Journal of Chemical Engineering, 2021, 34: 68−76. doi: 10.1016/j.cjche.2020.09.006 |
[91] | ZHANG X, NIU Y, XUE F, et al. Preparation and evaluation of porous H1.6Mn1.6O4@chitosan pellet for Li+ extraction[J]. Korean Journal of Chemical Engineering, 2021, 38(10): 2141−2149. doi: 10.1007/s11814-021-0862-9 |
[92] | LIU J, ZHANG Y, MIAO Y, et al. Alkaline resins enhancing Li+/H+ ion exchange for lithium recovery from brines using granular titanium−type lithium ion−sieves[J]. Industrial & Engineering Chemistry Research, 2021, 60(45): 16457−16468. |
[93] | 陈琳琳, 李小为, 蒋磊, 等. 钛系颗粒状吸附剂用于盐湖卤水中锂的吸附研究[J]. 当代化工研究, 2021(21): 4−7. doi: 10.3969/j.issn.1672-8114.2021.21.002 CHEN L L, LI X W, JIANG L, et al. Study on the adsorption of lithium from salt lake brines by titanium granular adsorbent[J]. Contemporary Chemical Industry Research, 2021(21): 4−7. doi: 10.3969/j.issn.1672-8114.2021.21.002 |
[94] | ZHU G, WANG P, QI P, et al. Adsorption and desorption properties of Li+ on PVC−H1.6Mn1.6O4 lithium ion−sieve membrane[J]. Chemical Engineering Journal, 2014, 235: 340−348. doi: 10.1016/j.cej.2013.09.068 |
[95] | 刘文涛, 刘亦凡. 锂离子交换体Li1.5Ti1.625O4的研究(Ⅲ)−Li1.5Ti1.625O4的造粒、改型及油田咸水中锂的回收[J]. 离子交换与吸附, 2011, 27(4): 353−358. LIU W T, LIU Y F. Study on lithium ion exchange Li1.5Ti1.625O4(Ⅲ)−granulation, modification of Li1.5Ti1.625O4 and recovery of lithium from oilfield salt water[J]. Ion Exchange and Adsorption, 2011, 27(4): 353−358. |
[96] | 刘亮. 偏钛酸型锂离子吸附剂的成型及提锂工艺研究[D]. 成都: 成都理工大学, 2016. LIU L. Study on the forming and extraction process of titanate Lithium ion adsorbent [D]. Chengdu: Chengdu University of Technology, 2016. |
[97] | Hierarchically porous polyacrylonitrile (PAN) 3D architectures with anchored lattice−expanded λMnO2 nanodots as freestanding adsorbents for superior lithium separation [J]. Industrial And Engineering Chemistry Research, 2020, 59(29): 13239−13245. |
Schematic diagram of the complex mechanism of Li+ embedding and ejection reaction[30]
Schematic diagram of lithium ion adsorption by titanium lithium ion screen[31]
Schematic diagram of Li+ adsorption by [LiAl2(OH)6]Cl.mH2O[40]
Schematic diagram of granulation of Li1.6Mn1.6O4 granular adsorbent[58]
Preparation process of membrane adsorbent GO-β-CD/MnO2[62]
Preparation process of LIS/PVA foam adsorbent[64]
Synthesis of lithium ion sieve and preparation of MO/PSF composite nanofibers by electrostatic spinning[67]
HMO/AAB synthesis process[70]
Dynamic cyclic adsorption device and cyclic process flow chart[96]
(a) Continuous flow test of fixed bed column; (b) Actual seawater adsorption tests off the coast of Dalian; (c) Selective separation tests with actual salt lake brines from Qaidam Basin[97]