Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

CHEN Sirui, LI Xiaolong, YANG Wenyu, DENG Sha, LONG Tao, YANG Wei. Research Progress on the Effects of Typical Co-associated Minerals on Chalcopyrite Bioleaching[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 123-129. doi: 10.13779/j.cnki.issn1001-0076.2023.04.014
Citation: CHEN Sirui, LI Xiaolong, YANG Wenyu, DENG Sha, LONG Tao, YANG Wei. Research Progress on the Effects of Typical Co-associated Minerals on Chalcopyrite Bioleaching[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 123-129. doi: 10.13779/j.cnki.issn1001-0076.2023.04.014

Research Progress on the Effects of Typical Co-associated Minerals on Chalcopyrite Bioleaching

More Information
  • Chalcopyrite is always associated with sulfide minerals, oxide minerals and gangue minerals in nature. In bioleaching systems, the ions dissolved from these associated minerals, the galvanic effect, and the influence on the redox potentials of chalcopyrite leaching solution will affect the leaching efficiency of chalcopyrite. This paper reviews the research status of the effects of chalcopyrite co-associated minerals on its bioleaching from gangue minerals, metal sulfide minerals and metal oxide minerals, aiming to provide theoretical support for improving the leaching efficiency of chalcopyrite and provide some inspiration for the efficient separation of other refractory sulfide ores.

  • 加载中
  • [1] 王安建. 世界资源格局与展望[J]. 地球学报, 2010, 31(5): 621−627.

    Google Scholar

    WANG A J. Global Resource Structure and Its Perspective[J]. Act Geoscientica Sinica, 2010, 31(5): 621−627.

    Google Scholar

    [2] PANDA S, AKCIL A, PRADHAN N, et al. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology[J]. Bioresource Technology, 2015, 196: 694−706. doi: 10.1016/j.biortech.2015.08.064

    CrossRef Google Scholar

    [3] CóRDOBA E M, MUñOZ J A, BLáZQUEZ M L, et al. Leaching of chalcopyrite with ferric ion. Part I: General aspects[J]. Hydrometallurgy, 2008, 93(3): 81−87.

    Google Scholar

    [4] 庄田. 含Pb、Zn、Sn复杂铜精矿槽浸过程微生物群落演替规律[D]. 长沙: 中南大学, 2012.

    Google Scholar

    ZHUANG T. Micobial community succession laws of Pb, Zn, Sn complex copper concentrate tank leaching[D]. Changsha: Central South University, 2012.

    Google Scholar

    [5] 莫晓兰, 林海, 董颖博, 等. 石英对微生物浸出黄铜矿的作用[J]. 北京科技大学学报, 2011, 33(6): 682−687.

    Google Scholar

    MO X L, LIN H, DONG Y B, et al. Effect of quartz on bioleaching of chalcopyrite[J]. Journal of University of Science and Technology Beijing, 2011, 33(6): 682−687.

    Google Scholar

    [6] 林海, 周闪闪, 董颖博, 等. 石英在微生物浸出黄铜矿体系中的溶出动力学[J]. 中南大学学报(自然科学版), 2015, 46(9): 3167−3175.

    Google Scholar

    LIN H, ZHOU S S, DONG Y B, et al. Dissolution kinetics of quartz in bioleaching system of chalcopyrite[J]. Journal of Central South University (Science and Technology), 2015, 46(9): 3167−3175.

    Google Scholar

    [7] DONG Y B, LIN H, ZHOU S, et al. Effects of quartz addition on chalcopyrite bioleaching in shaking flasks[J]. Minerals Engineering, 2013, 46/47: 177−179. doi: 10.1016/j.mineng.2013.04.014

    CrossRef Google Scholar

    [8] 莫晓兰, 林海, 傅开彬, 等. 绢云母对黄铜矿微生物浸出的影响[J]. 中国有色金属学报(英文版), 2012, 22(5): 1475−1481.

    Google Scholar

    MO X L, LIN H, FU K B, et al. Effect of sericite on bioleaching of chalcopyrite[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(5): 1475−1481.

    Google Scholar

    [9] 许晓芳, 林海, 董颖博. 铝离子对氧化亚铁硫杆菌活性及浸出黄铜矿的影响[J]. 稀有金属, 2017, 41(8): 943−948.

    Google Scholar

    XU X F, LIN H, DONG Y B. Effect of aluminum ion on activiy of Acidthiobacillus ferrooxidans and bioleaching of chalcopyrite[J]. Chinese Journal of Rare Metals, 2017, 41(8): 943−948.

    Google Scholar

    [10] 刘晶. pH对嗜酸氧化亚铁硫杆菌分泌胞外多聚物及其吸附性能的影响[D]. 长沙: 中南大学, 2013.

    Google Scholar

    LIU J. Effect of pH on the extracellular polymeric substances and adhesion from Acidithiobacillus ferrooxidans[D]. Changsha: Central South University, 2013.

    Google Scholar

    [11] 周闪闪, 林海, 董颖博, 等. 磷灰石在微生物浸铜体系的溶出特性及对浸铜效率的影响[J]. 中国有色金属学报, 2014, 24(11): 2928−2934.

    Google Scholar

    ZHOU S S, LIN H, DONG Y B, et al. Dissolution characteristics of apatite in chalcopyrite bioleaching system and its influence on chalcopyrite leaching efficiency[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(11): 2928−2934.

    Google Scholar

    [12] HE Z, ZHONG H, HU Y, et al. Analysis of differential-expressed proteins of Acidithiobacillus ferrooxidans grown under phosphate starvation.[J]. Journal of biochemistry and molecular biology, 2005, 38(5): 545−549.

    Google Scholar

    [13] 周闪闪. 脉石矿物在微生物浸出黄铜矿体系的溶出特性及机理研究[D]. 北京: 北京科技大学, 2016.

    Google Scholar

    ZHOU S S. Study on mechanism and dissolution characteristics of gangue minerals in bioleaching of chalcopyrite[D]. Beijing: University of Science and Technology, 2016.

    Google Scholar

    [14] 杨晓龙. 镍黄铁矿和黄铜矿微生物浸出差异性研究[D]. 北京: 北京有色金属研究总院, 2013.

    Google Scholar

    YANG X L. Research on the difference of bioleaching between pentlandite and chalcopyrite[D]. Beijing: Ceneral Research Institute for Nonferrous Metals, 2013

    Google Scholar

    [15] 许晓芳, 林海, 董颖博, 等. 阳离子对嗜酸氧化亚铁硫杆菌氧化活性的影响[J]. 稀有金属, 2016, 40(5): 478−484.

    Google Scholar

    XU X F, LIN H, DONG Y B, et al. Oxidation Activity of Acidthiobacillus ferrooxidans with Cation Additives[J]. Chinese Journal of Rare Metals, 2016, 40(5): 478−484.

    Google Scholar

    [16] 李想, 温建康, 莫晓兰, 等. 浸矿微生物氟抑制机理及铁的竞争络合作用[J]. 工程科学学报, 2018, 40(10): 1223−1230.

    Google Scholar

    LI X, WEN J K, MO X L, et al. Mechanism of fluoride inhibition on bioleaching bacteria and competitive complexation of ferric ions[J]. Chinese Journal of Engineering, 2018, 40(10): 1223−1230.

    Google Scholar

    [17] 罗小波. 微生物外膜细胞色素c介导的胞外电子传递过程与机制[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2020.

    Google Scholar

    LUO X B. The processes and mechanisms of microbial outer membrane ctype cytochrome mediated extracellular electron transfer [D]. Guangzhou: Chinese Academy of Sciences(Guangzhou Institute of Geochemiety), 2020.

    Google Scholar

    [18] 向婉丽, 陆现彩, 陆昀乔, 等. 含方解石铜矿石微生物氧化作用的试验研究[J]. 矿物岩石地球化学通报, 2014, 33(6): 764−771.

    Google Scholar

    XIANG W L, LU X C, LU Y Q, et al. Experimental study on the microbial oxidation of chalcopyrite in calcite-boaring ore[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(6): 764−771.

    Google Scholar

    [19] AHMADI A, RANJBAR M, SCHAFFIE M. Catalytic effect of pyrite on the leaching of chalcopyrite concentrates in chemical, biological and electrobiochemical systems[J]. Minerals Engineering, 2012, 34: 11−18. doi: 10.1016/j.mineng.2012.03.022

    CrossRef Google Scholar

    [20] ZHAO H, WANG J, GAN X, et al. Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum[J]. Bioresource Technology, 2015, 194: 28−35. doi: 10.1016/j.biortech.2015.07.003

    CrossRef Google Scholar

    [21] HONG M, HUANG X, GAN X, et al. The use of pyrite to control redox potential to enhance chalcopyrite bioleaching in the presence of Leptospirillum ferriphilum[J]. Minerals Engineering, 2021, 172: 107145. doi: 10.1016/j.mineng.2021.107145

    CrossRef Google Scholar

    [22] MEHTA A P, MURR L E. Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of T. ferrooxidans(30 degrees C) and a thermophilic microorganism (55 degrees C)[J]. Biotechnology and bioengineering, 1982, 24(4): 919−940. doi: 10.1002/bit.260240413

    CrossRef Google Scholar

    [23] MEHTA A P, MURR L E. Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides[J]. Hydrometallurgy, 1983, 9(3): 235−256. doi: 10.1016/0304-386X(83)90025-7

    CrossRef Google Scholar

    [24] 莫晓兰, 林海, 傅开彬, 等. 黄铁矿促进黄铜矿微生物浸出影响因素[J]. 北京科技大学学报, 2012, 34(7): 761−768.

    Google Scholar

    MO X L, LIN H, FU K B, et al. Influence factors of pyrite promotion on the bioleaching of chalcopyrite[J]. Journal of University of Science and Technology Beijing, 2012, 34(7): 761−768.

    Google Scholar

    [25] 武彪, 阮仁满, 温建康, 等. 黄铁矿在生物浸矿过程中的电化学氧化行为[J]. 金属矿山, 2007(10): 64−67. doi: 10.3321/j.issn:1001-1250.2007.10.016

    CrossRef Google Scholar

    WU B, RUAN R M, WEN J K, et al. Electrochemical oxidative behavior of pyrite during ore bioleaching[J]. Metal Mine, 2007(10): 64−67. doi: 10.3321/j.issn:1001-1250.2007.10.016

    CrossRef Google Scholar

    [26] 张冬艳, 张通. 细菌浸出黄铜矿过程中黄铁矿的影响行为[J]. 湿法冶金, 1997, 62(2): 4−7. doi: 10.13355/j.cnki.sfyj.1997.02.003

    CrossRef Google Scholar

    ZHANG D Y, ZHANG T. Effect of pyrite on biooxidation of chalcopyrite[J]. Hydrometallutgy, 1997, 62(2): 4−7. doi: 10.13355/j.cnki.sfyj.1997.02.003

    CrossRef Google Scholar

    [27] ZHENG X, NIE Z, JIANG Q, et al. The mechanism by which FeS2 promotes the bioleaching of CuFeS2: An electrochemical and DFT study[J]. Minerals Engineering, 2021, 173.

    Google Scholar

    [28] K. K, N. M. Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function[J]. Acta Crystallographica Section B, 1975, 31(9): 2268−2273. doi: 10.1107/S0567740875007376

    CrossRef Google Scholar

    [29] P. B, K. T, E. A. The effect of mechanical activation on the thermal decomposition of chalcopyrite[J]. Journal of Thermal Analysis and Calorimetry, 2005, 35(5): 1325−1330.

    Google Scholar

    [30] ZHAO H, WANG J, HU M, et al. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans[J]. Bioresour Technol, 2013, 149: 71−76. doi: 10.1016/j.biortech.2013.09.035

    CrossRef Google Scholar

    [31] ZHAO H, WANG J, GAN X, et al. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(8): 777−787. doi: 10.1007/s12613-015-1134-7

    CrossRef Google Scholar

    [32] WANG J, TAO L, ZHAO H, et al. Cooperative effect of chalcopyrite and bornite interactions during bioleaching by mixed moderately thermophilic culture[J]. Minerals Engineering, 2016, 95: 116−123. doi: 10.1016/j.mineng.2016.06.006

    CrossRef Google Scholar

    [33] 彭玙萍, 彭堂见, 曾伟民. 低温下YL15对黄铜矿和斑铜矿的协同浸出及电化学研究[J]. 中国有色金属学报, 2022, 32(1): 271−278.

    Google Scholar

    PENG Y P, PENG T J, ZENG W M. Synergistic bioleaching of chalcopyrite and bornite in Acidithiobacillus ferrivorans YL15 and electrochemical study at low temperature[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(1): 271−278.

    Google Scholar

    [34] 蒋磊. 闪锌矿的生物氧化与化学氧化对比[J]. 金属矿山, 2011(3): 84−86.

    Google Scholar

    JIANG L. Comparison of biological oxidation and chemical oxidation of sphalerite[J]. Metal Mine, 2011(3): 84−86.

    Google Scholar

    [35] CHEN S, QIN W Q, QIU G Z. Effect of Cu2+ ions on bioleaching of marmatite[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(6): 1518−1522. doi: 10.1016/S1003-6326(09)60035-2

    CrossRef Google Scholar

    [36] MAXIM M, NATALYA F. Bioleaching as a method of zinc removal from copper-zinc sulfide concentrate[J]. Journal of Biotechnology, 2017, 256: 54−54.

    Google Scholar

    [37] XIAO Y H, LIU X D, DONG W L, et al. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process[J]. Archives of Microbiology, 2017, 199(5): 757−766. doi: 10.1007/s00203-017-1342-9

    CrossRef Google Scholar

    [38] 刘伟. 复杂硫化铜钴矿生物浸出机理及新工艺研究[D]. 沈阳: 东北大学, 2015.

    Google Scholar

    LIU W. Mechanism research and leaching technology of conplicated Cu-Co sulfide ore bioleaching[D]. Shengyang: Northeastern University, 2015.

    Google Scholar

    [39] HADI A, SIED Z S, MOHAMMAD N, et al. Mesophilic and thermophilic bioleaching of copper from a chalcopyrite-containing molybdenite concentrate[J]. International Journal of Mineral Processing, 2014, 128: 25−32. doi: 10.1016/j.minpro.2014.02.003

    CrossRef Google Scholar

    [40] BAOJUN Y, WEN L, MAOXIN H, et al. Inhibition of hematite on acid mine drainage caused by chalcopyrite biodissolution[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 94−104.

    Google Scholar

    [41] MAO X C, ZHAO Y, DENG H, et al. Quantitative analysis of intrusive body morphology and its relationship with skarn mineralization— A case study of Fenghuangshan copper deposit, Tongling, Anhui, China[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(1): 151−162. doi: 10.1016/S1003-6326(18)64648-5

    CrossRef Google Scholar

    [42] SAAVEDRA A, GARCIA-MEZA J V, CORTON E, et al. Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching[J]. Electrochimica Acta, 2018, 265: 569−576. doi: 10.1016/j.electacta.2018.01.169

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(769) PDF downloads(107) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint