Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

TENG Daoguang, JIN Peng, ZHOU Guoli, LIU Jiang, WANG Wei, LI Peng, CAO Yijun. Research Progress on Recovery of Critical Scattered Metals by Ion−imprinted Polymers[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 145-154. doi: 10.13779/j.cnki.issn1001-0076.2023.04.015
Citation: TENG Daoguang, JIN Peng, ZHOU Guoli, LIU Jiang, WANG Wei, LI Peng, CAO Yijun. Research Progress on Recovery of Critical Scattered Metals by Ion−imprinted Polymers[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 145-154. doi: 10.13779/j.cnki.issn1001-0076.2023.04.015

Research Progress on Recovery of Critical Scattered Metals by Ion−imprinted Polymers

More Information
  • Critical scattered metals (CSMs) play vital roles in the development of high technology and energy to all countries in the future world. Moreover, the reserves of CSMs are relatively rare and the geographical distribution is unevenly high, so the recycling of key scarce metal is of great significance to our strategy. Traditional recovery methods feature high separation efficiency, wide application range and strong adaptability, while it has the disadvantages of high environmental pollution and high process cost. The ion imprinted recovery method possesses low mass transfer resistance, large adsorption capacity, easy removal of template, fast adsorption rate and good reusability. The ion imprinted polymers (IIPs) show strong recognition for template ions and adsorption performance with high selectivity. Recent advances on IIPs are reviewed from the aspects of synthetic principle, reaction raw materials and preparation process in this paper. The encountered problems with the development of IIPs are summarized and analyzed combined with target ions and carrier materials. In addition, the development trend and prospect of IIPs recovery of CSMs are prospected.

  • 加载中
  • [1] 周家喜, 杨智谋, 肖嵩, 等. 滇东北火德红铅锌矿床铊超常富集的发现及其意义[J]. 大地构造与成矿学, 2021, 45(2): 427−429. doi: 10.16539/j.ddgzyckx.2021.02.014

    CrossRef Google Scholar

    ZHOU J X, YANG Z M, XIAO S, et al. Discovery and significance of thallium supernormal enrichment in Huodehong lead−zinc deposit in northeast Yunnan Province[J]. Geotectonics and Metallogeny, 2021, 45(2): 427−429. doi: 10.16539/j.ddgzyckx.2021.02.014

    CrossRef Google Scholar

    [2] 邹铭金, 李栋, 田庆华, 等. 从二次资源中分离回收镓的研究进展[J]. 有色金属科学与工程, 2020, 11(5): 45−51. doi: 10.13264/j.cnki.ysjskx.2020.05.007

    CrossRef Google Scholar

    ZOU M J, LI D, TIAN Q H, et al. Research progress on separation and recovery of gallium from secondary resources[J]. Non−ferrous Metal Science and Engineering, 2020, 11(5): 45−51. doi: 10.13264/j.cnki.ysjskx.2020.05.007

    CrossRef Google Scholar

    [3] 敦妍冉, 荆海鹏, 洛桑才仁, 等. 全球镓矿资源分布、供需及消费趋势研究[J]. 矿产保护与利用, 2019, 39(5): 9−15+25. doi: 10.13779/j.cnki.issn1001-0076.2019.05.002

    CrossRef Google Scholar

    DUN Y R, JING H P, LUOS C R, et al. Research on global gallium mineral resource distribution, supply and demand and consumption trend[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 9−15+25. doi: 10.13779/j.cnki.issn1001-0076.2019.05.002

    CrossRef Google Scholar

    [4] GUO Y R, JING H P, ZHANG W Y, et al. Study on the distribution, supply and demand and consumption trend of global gallium mineral resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39: 9−15.

    Google Scholar

    [5] 武秋杰, 吕振福, 曹进成, 等. 国内外镓资源分布供需及镓产业链发展现状研究[J]. 矿产综合利用, 2021, 231(5): 38−44. doi: 10.3969/j.issn.1000-6532.2021.05.006

    CrossRef Google Scholar

    WU Q J, LV Z F, CAO J C, et al. Research on distribution and supply of gallium resources and development status of gallium industry chain at home and abroad[J]. Comprehensive Utilization of Mineral Resources, 2021, 231(5): 38−44. doi: 10.3969/j.issn.1000-6532.2021.05.006

    CrossRef Google Scholar

    [6] 黄蒙蒙, 李宏煦, 刘召波. 不同二次资源中镓提取方法的研究进展[J]. 有色金属科学与工程, 2017, 8(1): 21−28. doi: 10.13264/j.cnki.ysjskx.2017.01.004

    CrossRef Google Scholar

    HUANG M M, LI H X, LIU Z B. Research progress on extraction methods of gallium from different secondary resources[J]. Non−ferrous Metal Science and Engineering, 2017, 8(1): 21−28. doi: 10.13264/j.cnki.ysjskx.2017.01.004

    CrossRef Google Scholar

    [7] 刘麦, 李伊兰, 张睿, 等. 全球镓资源现状及供需形势[J]. 国土资源情报, 2020, 6(10): 50−54.

    Google Scholar

    LIU M, LI Y L, ZHANG R, et al. Global gallium resources and supply and demand situation[J]. Land Resources Information, 2020, 6(10): 50−54.

    Google Scholar

    [8] LU F H, XIAO T F, LIN J, et al. Resources and extraction of gallium: A review[J]. Hydrometallurgy, 2017, 174: 105−115. doi: 10.1016/j.hydromet.2017.10.010

    CrossRef Google Scholar

    [9] 李兴扬, 宋庆武, 张旭, 等. 分离富集金属铟的方法进展[J]. 冶金分析, 2013, 33(12): 13−18. doi: 10.13228/j.issn.1000-7571.2013.12.015

    CrossRef Google Scholar

    LI X Y, SONG Q W, ZHANG X, et al. Progress in separation and enrichment of metal indium[J]. Metallurgical Analysis, 2013, 33(12): 13−18. doi: 10.13228/j.issn.1000-7571.2013.12.015

    CrossRef Google Scholar

    [10] 何名飞, 卜浩, 高玉德, 等. 铁闪锌矿中稀有金属铟的高效提取应用研究[J]. 有色金属(选矿部分), 2021, 6(6): 102−106.

    Google Scholar

    HE M F, PU H, GAO Y D, et al. Study on efficient extraction and application of rare metal indium from sphalerite[J]. Non−ferrous Metals (beneficiation), 2021, 6(6): 102−106.

    Google Scholar

    [11] ALFANTAZIAM MOSKALYK R R. Procssing of indium: A review[J]. Minerals Engineering, 2003, 16(8): 687−694. doi: 10.1016/S0892-6875(03)00168-7

    CrossRef Google Scholar

    [12] 梁传志, 王朝霞, 郭梁雨. 铜铟镓硒(CIGS)薄膜太阳能电池发展概述[J]. 建设科技, 2015, 297(18): 50−57. doi: 10.16116/j.cnki.jskj.2015.18.010

    CrossRef Google Scholar

    LIANG C Z, WANG C X, GUO L Y. Overview of the development of copper indium gallium selenium (CIGS) thin film solar cells[J]. Construction Technology, 2015, 297(18): 50−57. doi: 10.16116/j.cnki.jskj.2015.18.010

    CrossRef Google Scholar

    [13] 陆挺, 刘璇, 张艳飞, 等. 基于产业链分析的中国铟锗镓产业发展战略研究[J]. 资源科学, 2015, 37(5): 1008−1017.

    Google Scholar

    LU T, LIU, ZHANG, Y, F, et al. Research on China indium germanium gallium industry development strategy based on industry chain analysis[J]. Resource Science, 2015, 37(5): 1008−1017.

    Google Scholar

    [14] ZHANG K H, WU Y F, WANG W, et al. Recycling indium from waste LCDs: A review [J]. Resources, Conservation and Recycling, 2015, 104: 276−290.

    Google Scholar

    [15] PRADHAN D, PANDA S, SUKLA L B. Recent advances in indium metallurgy: A Review on the Influence of temperature[J]. Mineral Processing and Extractive Metallurgy Review, 2018, 39(3): 167−180. doi: 10.1080/08827508.2017.1399887

    CrossRef Google Scholar

    [16] HOLL R, KLING M, SCHROLL E. Metallogenesis of germanium−A review[J]. Ore Geology Reviews, 2007, 30(3/4): 145−180. doi: 10.1016/j.oregeorev.2005.07.034

    CrossRef Google Scholar

    [17] TAO J, TAO Z, LIU Z H. Review on resources and recycling of germanium, with special focus on characteristics, mechanism and challenges of solvent extraction[J]. Journal of Cleaner Production, 2021, 294.

    Google Scholar

    [18] ZHANG S J, JI G Y, WANG N, et al. Current situation and sustainable development countermeasures of germanium resources in China[J]. Conservation and Utilization of Mineral Resources, 2017, 37(2): 6−11.

    Google Scholar

    [19] 李平. 人大代表何以心血“铼”潮[N]. 中国矿业报, 2020-05-25(2).

    Google Scholar

    LI P. Why the People's Congress deputies blood "rhenium" tide[N]. China Mining News, 2020-05-25(2).

    Google Scholar

    [20] SHEN L T, TESFAYE F, LI X B. Review of rhenium extraction and recycling technologies from primary and secondary resources[J]. Minerals Engineering, 2022, 161: 106719.

    Google Scholar

    [21] UCHENNA K, ANDREAS C, MAURIZIO C. Assessment of supply interruption of rhenium, recycling, processing sources and technologies[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 150−158.

    Google Scholar

    [22] HISAO HORI, YUTA YOSHIMURA, TAKAFUMI OTSU, et al. Efficient photochemical recovery of rhenium from aqueous solutions[J]. Separation and Purification Technology, 2015, 156(2): 242−248.

    Google Scholar

    [23] SHEN L. C, LO A, Nguyen X T, et al. Recovery of heavy metal ions and recycle of removal agent in the polymer−surfactant aggregate process[J]. Separation and Purification Technology, 2016, 159: 169−176. doi: 10.1016/j.seppur.2015.12.025

    CrossRef Google Scholar

    [24] 王俊莲, 刘新宇, 谢美英, 等. 离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989−1012.

    Google Scholar

    WANG J L, LIU X Y, XIE M Y, et al. Preparation method of ion imprinted material[J]. Progress in Chemistry, 2018, 30(7): 989−1012.

    Google Scholar

    [25] FU J Q, WANG X Y, LI J H, et al. Ion imprinting technology for heavy metal ions[J]. Progress in Chemistry, 2016, 28(1): 83−90.

    Google Scholar

    [26] 朱彩艳, 马慧敏, 张强, 等. 离子印迹聚合物功能单体的研究进展[J]. 化工进展, 2014, 33(11): 3013−3020+3074. doi: 10.3969/j.issn.1000-6613.2014.11.030

    CrossRef Google Scholar

    ZHU C Y, MA H M, ZHANG Q, et al. Research progress on functional monomers of ion−imprinted polymers[J]. Progress in Chemical Industry, 2014, 33(11): 3013−3020+3074. doi: 10.3969/j.issn.1000-6613.2014.11.030

    CrossRef Google Scholar

    [27] FU J, CHEN L, LI J, et al. Current status and challenges of ion imprinting[J]. Journal of Materials Chemistry A, 2015, 3(26): 13598−13627. doi: 10.1039/C5TA02421H

    CrossRef Google Scholar

    [28] EMIR DILTEMIZ S, KEGILI R, ERSOZ A, et al. Molecular imprinting technology in quartz crystal microbalance (QCM) sensors[J]. Sensors, 2017, 17(3): 454. doi: 10.3390/s17030454

    CrossRef Google Scholar

    [29] SAATGILAR O, SATROGLU N, SAY R, et al. Binding behavior of Fe3+ ions on ion−imprinted polymeric beads for analytical applications[J]. Journal of Applied Polymer Science, 2006, 101(5): 3520−3528.

    Google Scholar

    [30] ZU B, ZHANG Y, GUO X, et al. Preparation of molecularly imprinted polymers via atom transfer radical“bulk” polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2010, 48(3): 532−541. doi: 10.1002/pola.23750

    CrossRef Google Scholar

    [31] TAKIMOTO K, TAKANO E, KITAYAMA Y, et al. Synthesis of monodis−persed submillimeter−sized molecularly imprinted particles selective for human serum albumin using inverse suspension polymerization in water−in−oil emulsion prepared using microfluidics[J]. Langmuir, 2015, 31(17): 4981−4987. doi: 10.1021/acs.langmuir.5b00769

    CrossRef Google Scholar

    [32] LIU W, ZHANG M H, LIU X T, et al. Preparation of surface ion−imprinted materials based on modified chitosan for highly selective recognition and adsorption of nickel ions in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 6033−6042.

    Google Scholar

    [33] ELSAYED N H, ALATAWI A, MONIER M. Diacetylmonoxine modified chitosan derived ion−imprinted polymer for selective solid−phase extraction of nickel(Ⅱ) ions[J]. Reactive and Functional Polymers, 2020, 151: 104570. doi: 10.1016/j.reactfunctpolym.2020.104570

    CrossRef Google Scholar

    [34] 周爱玲. 海藻酸钠/硅基复合重金属离子吸附剂的制备及性能研究[D]. 天津: 河北工业大学, 2021.

    Google Scholar

    ZHOU A L. Preparation and properties of sodium alginate/silicon−based heavy metal ion adsorbent[D]. Tianjin: Hebei University of Technology, 2021.

    Google Scholar

    [35] SHAHATA M M. Adsorption of some heavy metal ions by used different immobilized substances on silica gel[J]. Arabian Journal of Chemistry, 2016, 9(6): 755−763. doi: 10.1016/j.arabjc.2011.12.010

    CrossRef Google Scholar

    [36] HE H X, GAN Q, FENG C G. An ion−imprinted silica gel polymer prepared by surface imprinting technique combined with aqueous solution polymerization for selective adsorption of Ni(Ⅱ) from aqueous solution[J]. Chinese Journal of Polymer Science, 2018, 36(4): 462−471. doi: 10.1007/s10118-018-2063-5

    CrossRef Google Scholar

    [37] HE H X, GAN Q, FENG C G. Preparation and application of Ni(Ⅱ) ion−imprinted silica gel polymer for selective separation of Ni(Ⅱ) from aqueous solution[J]. RSC Advances, 2017, 7(25): 15102−15111. doi: 10.1039/C7RA00101K

    CrossRef Google Scholar

    [38] KADAM R, PETR M, ZBORIL R, et al. Hexagonal mesoporous silica supported ultrasmall copper oxides for oxidative amidation of carboxylic acids[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12935−12945.

    Google Scholar

    [39] HUANG L, WANG L, GONG L, et al. Preparation, characterization and adsorption characteristics of diatom−based Cd(Ⅱ) surface ion−imprinted polymer[J]. Journal of Dispersion Science and Technology, 2020: 1−12.

    Google Scholar

    [40] LI Z H, CHEN L H, SU Q, et al. Synthesis and characterization of a surface−grafted Pb(Ⅱ)−imprinted polymer based on activated carbon for selective separation and pre−concentration of Pb(Ⅱ) ions from environmental water samples[J]. RSC Advances, 2019, 9(9): 5110−5120. doi: 10.1039/C8RA09992H

    CrossRef Google Scholar

    [41] FANG P, XIA W Z, ZHOU Y Q, et al. Ion−imprinted mesoporous silica/magnetic graphene oxide composites functionalized with Schiff−base for selective Cu(Ⅱ) capture and simultaneously being transformed as a robust heterogeneous catalyst[J]. Chemical Engineering Journal, 2020, 385: 123847. doi: 10.1016/j.cej.2019.123847

    CrossRef Google Scholar

    [42] ARAVIND A, MATHEW B. Electrochemical sensor based on nanostructured ion imprinted polymer for the sensing and extraction of Cr(Ⅲ) ions from industrial wastewater[J]. Polymer International, 2018, 67(12): 1595−1604. doi: 10.1002/pi.5683

    CrossRef Google Scholar

    [43] HASSANPOUR S, TAGHIZADEH M, YAMINI Y. Magnetic Cr(Ⅵ) ion imprinted polymer for the fast selective adsorption of Cr(Ⅵ) from aqueous solution[J]. Journal of Polymers and the Environment, 2018, 26(1): 101−115. doi: 10.1007/s10924-016-0929-6

    CrossRef Google Scholar

    [44] EBRAHIMZADEH H, MOAZZEN E, AMINI M M, et al. Novel ion imprinted polymer coated multiwalled carbon nanotubes as a high selective sorbent for determination of gold ions in environmental samples[J]. Chemical Engineering Journal, 2013, 215/216: 315−321. doi: 10.1016/j.cej.2012.11.031

    CrossRef Google Scholar

    [45] YUAN N, GONG X R, SUN W D, et al. Advanced applications of Zr−based MOFs in the removal of water pollutants[J]. Chemosphere, 2021, 267: 128863. doi: 10.1016/j.chemosphere.2020.128863

    CrossRef Google Scholar

    [46] YUAN G Y, TU H, LIU J, et al. A novel ion−imprinted polymer induced by the glycylglycine modified metal organic framework for the selective removal of Co(Ⅱ) from aqueous solutions[J]. Chemical Engineering Journal, 2018, 333: 280−288. doi: 10.1016/j.cej.2017.09.123

    CrossRef Google Scholar

    [47] CHEONG W J, YANG S H, ALI F. Molecular imprinted polymers for separation science: A review of reviews[J]. Journal of Separation Science, 2013, 36(3): 609−628. doi: 10.1002/jssc.201200784

    CrossRef Google Scholar

    [48] 吕晓华. 改性壳聚糖基离子印迹复合吸附材料的制备及性能研究[D]. 乌鲁木齐: 新疆大学, 2019.

    Google Scholar

    LV X H. Preparation and properties of modified chitosan based ion imprinted composite adsorption materials[D]. Urumqi: Xinjiang University, 2019.

    Google Scholar

    [49] WANG J, HAN Y, LI J, et al. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization[J]. Separation and Purification Technology, 2017, 177: 62−70. doi: 10.1016/j.seppur.2016.12.038

    CrossRef Google Scholar

    [50] SELLERGREN B. Polymer−and template−related factors influencing the effciency in molecularly imprinted solid−phase extractions[J]. TrAC Trends in Analytical Chemistry, 1999, 18(3): 164−174. doi: 10.1016/S0165-9936(98)00117-4

    CrossRef Google Scholar

    [51] 孔德隆. 离子印迹吸附材料的制备及其分离性能研究[D]. 北京: 化工大学, 2018.

    Google Scholar

    KONG D L. Study on preparation and separation performance of ion−imprinted adsorbent materials[D]. Beijing: University of Chemical Technology, 2018.

    Google Scholar

    [52] GAO R, MU X, HAO Y, et al. Combination of surface imprinting and immobilized template techniques for preparation of core−shell molecularly imprinted polymers based on directly amino−modified Fe3O4: nanoparticles for specific recognition of bovine hemoglobin[J]. Journal of Materials Chemistry B, 2014, 2(12): 1733−1741. doi: 10.1039/C3TB21684E

    CrossRef Google Scholar

    [53] STAFIEJ A, PYRZYNSKA K. Solid phase extraction of metal ions using carbon nanotubes[J]. Microchemical Journal, 2008, 89(1): 29−33. doi: 10.1016/j.microc.2007.11.001

    CrossRef Google Scholar

    [54] 苏蕾, 吴根华, 汪竹青. Cu(Ⅱ)离子印迹聚合物微球制备及其性能[J]. 安庆师范学院学报(自然科学版), 2010, 16(1): 81−84.

    Google Scholar

    SU L, WU G H, WANG Z Q. Preparation and properties of Cu(Ⅱ) ion−imprinted polymer microspheres[J]. Journal of Anqing Normal University (Natural Science Edition), 2010, 16(1): 81−84.

    Google Scholar

    [55] KUPAI J, RAZALI M, BUYUKTIRYAKI S, et al. Long−term stability and reusability of molecularly imprinted polymers[J]. Polymer Chemistry, 2017, 8(4): 666−673. doi: 10.1039/C6PY01853J

    CrossRef Google Scholar

    [56] HUANG Y, ZHAO X, WANG R. Molecular imprinting lon−exchange technology: fundamentals and applications on environmental issues[M]. New York: Nova Science Publishers, 2017.

    Google Scholar

    [57] OTERO R J, MOREDA P A, BERMEJO B P, et al. Ionic imprinted polymer for nickel recognition by using the bi−functionalized 5−vinyl−8−hydroxyquinoline as a monomer: Application as a new solid phase extraction support[J]. Microchemical Journal, 2009, 11(4): 225−231.

    Google Scholar

    [58] SHAMSIPUR M, FASIHI J, KHANCHI A, et al. A stoichiometric imprinted chelating resin for selective recognitionof copper(Ⅱ) ions in aqueous media[J]. Anal. Chim. Acta, 2007, 599(2): 294−301. doi: 10.1016/j.aca.2007.08.013

    CrossRef Google Scholar

    [59] LIANG R, ZHANG R, SONG W, et al. Potentiometric sensor based on an ion−imprinted polymer for determination of copper[J]. Sensor Letters, 2011, 9(2): 557−562. doi: 10.1166/sl.2011.1512

    CrossRef Google Scholar

    [60] LI Z H, SU Q, JIANG W P, et al. Preparation of a thermosensitive surface imprinted polymer based on palygorskite for removal of copper (Ⅱ) from environment aqueous solution[J]. International Journal of Environmental Analytical Chemistry, 2021.

    Google Scholar

    [61] 王蓝青, 钟溢健, 陈南春, 等. 溶胶−凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016−5022. doi: 10.11896/cldb.18090044

    CrossRef Google Scholar

    WANG L Q, ZHONG Y J, CHEN N C, et al. Preparation of ion−imprinted polymers by sol−gel method and their application in selective adsorption of heavy metal ions[J]. Material Guide, 2020, 34(5): 5016−5022. doi: 10.11896/cldb.18090044

    CrossRef Google Scholar

    [62] LI Z, SU Q, JIANG W, et al. Preparation of a thermosensitive surface imprinted polymer based on palygorskite for removal of copper (Ⅱ) from environment aqueous solution[J]. International Journal of Environmental Analytical Chemistry, 2021: 1−16.

    Google Scholar

    [63] WANG Y J, ZHU L, SONG Y, et al. Novel chitosan−based ions imprinted bio−adsorbent for enhanced adsorption of gallium(Ⅲ) in acidic solution[J]. Journal of Molecular Liquids, 2021, 320: 114413.

    Google Scholar

    [64] GAO L H, WANG L Z, CAO Y J, et al. Persimmon peel−based ion−imprinted adsorbent with enhanced adsorption performance of gallium ions[J]. Minerals Engineering, 2022, 176: 107354. doi: 10.1016/j.mineng.2021.107354

    CrossRef Google Scholar

    [65] ZHANG Z H, ZHANG H B, HU Y F, et al. Novel surface molecularly imprinted material modified multi−walled carbon nanotubes as solid−phase extraction sorbent for selective extraction gallium ion from fly ash[J]. Talanta, 2010, 82(1): 304−311.

    Google Scholar

    [66] LI M, FENG C G, LI M Y, et al. Synthesis and application of a surface−grafted In (Ⅲ) ion−imprinted polymer for selective separation and pre−concentration of indium (Ⅲ) ion from aqueous solution[J]. Hydrometallurgy, 2015, 154: 63−71. doi: 10.1016/j.hydromet.2015.03.011

    CrossRef Google Scholar

    [67] LI M, MENG X J, LIANG X K, et al. A novel In(Ⅲ) ion−imprinted polymer (IIP) for selective extraction of In(Ⅲ) ions from aqueous solutions[J]. Hydrometallurgy, 2018, 176: 243−252. doi: 10.1016/j.hydromet.2018.02.006

    CrossRef Google Scholar

    [68] LI M, TANG S, LIU R H, et al. Experimental and DFT studies on highly selective separation of indium ions using silica gel/graphene oxide based ion−imprinted composites as a sorbent[J]. Chemical Engineering Research and Design, 2021, 168: 135−145. doi: 10.1016/j.cherd.2021.01.033

    CrossRef Google Scholar

    [69] HUANG Y, ZHAO X, WANG R. A novel composite adsorbent for the separation and recovery of indium from aqueous solutions[J]. Hydrometallurgy, 2019, 168: 73−82.

    Google Scholar

    [70] 曹洪杨, 金明亚, 张魁芳, 等. 锗离子印迹聚合物微球吸附材料的杂化制备及表征[J]. 中国有色金属学报, 2017, 27(9): 1909−1915. doi: 10.19476/j.ysxb.1004.0609.2017.09.20

    CrossRef Google Scholar

    CAO H Y, JIN M Y, ZHANG K F, et al. Synthesis and characterization of germanium ion imprinted polymer microsphere adsorption materials[J]. Chinese Journal of Nonferrous Metals, 2017, 27(9): 1909−1915. doi: 10.19476/j.ysxb.1004.0609.2017.09.20

    CrossRef Google Scholar

    [71] 梁志, 胡鑫鑫, 赖谷仙, 等. 半纤维素基水凝胶的制备及对重金属离子的吸附研究[J]. 化工新型材料, 2022, 50(9): 5. doi: 10.19817/j.cnki.issn1006-3536.2022.09.038

    CrossRef Google Scholar

    LIANG Z, HU X X, LAI GU X, et al. Preparation of hemicellulose based hydrogels and their adsorption of heavy metal ions[J]. New chemical materials, 2022, 50(9): 5. doi: 10.19817/j.cnki.issn1006-3536.2022.09.038

    CrossRef Google Scholar

    [72] SAMUEL K M, MATHIEU E, MARK G B, et al. Computationally designed perrhenate ion imprinted polymers for selective trapping of rhenium ions[J]. 2020, 2(8): 3135−3147.

    Google Scholar

    [73] CHEN Z C, OU X J, JIA W W, et al. Structure, adsorption and separation comparison between the thermosensitive block segment polymer modified ReO4 ion imprinted polymer and traditional ReO4 ion imprinted polymer[J]. 2021, 164.

    Google Scholar

    [74] XIONG Y, SONG Y, TONG Q. Adsorption−controlled preparation of anionic imprinted amino−functionalization chitosan for recognizing rhenium(Ⅶ)[J]. Separation and Purification Technology, 2019, 186: 73−82.

    Google Scholar

    [75] ZHANG X Y, JIA W W, LI D H, et al. Study on synthesis and adsorption properties of ReO4 ion imprinted polymer[J]. Journal of polymer Research, 2020, 27: 201. doi: 10.1007/s10965-020-02172-8

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(672) PDF downloads(105) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint