Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

XU Guihong, LI Yang, LI Rui, ZHANG Man, TANG Zetao, TANG Zheng. Research Progress on In−situ Resource Utilization of Lunar Soil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 12-23. doi: 10.13779/j.cnki.issn1001-0076.2023.04.002
Citation: XU Guihong, LI Yang, LI Rui, ZHANG Man, TANG Zetao, TANG Zheng. Research Progress on In−situ Resource Utilization of Lunar Soil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 12-23. doi: 10.13779/j.cnki.issn1001-0076.2023.04.002

Research Progress on In−situ Resource Utilization of Lunar Soil

More Information
  • Corresponding author: LI Yang  
  • The moon stores a large number of metallic and non−metallic mineral resources. Making full use of lunar mineral resources can reduce the load of Earth launched to the moon and save the cost of deep space research. In this paper, the physical properties of lunar soil, the general principles, basic processes, technical characteristics and the latest research progress of the solidification molding process of simulated lunar soil materials and the extraction metallurgy process are reviewed, and the application prospects of these methods in the in−situ utilization of lunar minerals are prospected.

  • 加载中
  • [1] 刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907−918.

    Google Scholar

    LIU J Z, LI X Y, ZHU K, et al. Utilization of lunar resources in situ and key scientific and technical issues[J] . China Science Foundation, 2022, 36(6) : 907−918.

    Google Scholar

    [2] FAN L L, TONG X, LIU Y, et al. Research progress of lunar mineral resources and in−itu beneficiation technology[J] . Conservation and Utilization of Mineral Resources, 2023(4): 1-11[2023-10-26]. DOI: 10.13779/j.cnki.issn1001-0076.2023.04.001.

    Google Scholar

    [3] WANG Y S, HAO L, LI Y, et al. In−situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: A review[J]. Applied Clay Science, 2022, 229: 106−123. ISSN 0169−1317,https://doi.org/10.1016/j.clay.2022.106673.

    Google Scholar

    [4] LI Q L, ZHOU Q, LIU Y, et al. Two−billion−year−old volcanism on the moon from Chang’e−5 basalts[J]. Nature, 2021, 600 (7887): 54−80.

    Google Scholar

    [5] LU X, CHEN J, LING, Z, et al. Regolith at Chang'e−5 landing site: mature lunar soils from Fe−rich and young mare basalts[J]. Nature Astronomy, 2020, 15(6): 187−190190

    Google Scholar

    [6] HEIKEN, G H, VANIMAN D T, et al. A User’s Guide to the Moon[M]. 1991.

    Google Scholar

    [7] GUO Z, LI C, LI Y, WEN Y, et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang'e−5 lunar soil: Implications for thermal effects during impacts[J]. Geophysical Research Letters, 2021, 49: 97−123.

    Google Scholar

    [8] GUO Z, LI C, LI Y, WEN Y, et al. Sub−microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’e−5 lunar soil[J]. Nature Communications, 2022, 13 (1): 1−7.

    Google Scholar

    [9] 郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004, 24(4): 14−19.

    Google Scholar

    ZHENG Y C, OUYANG Z Y, WANG S J, et al. The physical and mechanical properties of lunar soil[J]. Mineral Rocks, 2004, 24(4) , 14−19.

    Google Scholar

    [10] MENG Z, LONG X, HONG J G, et al. Identification of the shear parameters for lunar regolith based on a GA−BP neural network[J]. Journal of Terramechanics, 2020, 89: 21−29. https://doi.org/10.1016/j.jterra.2020.02.003.

    Google Scholar

    [11] T. PRABU, KASINATHAN MUTHUKKUMARAN, I. VENUGOPAL, et al. Assessment of dynamic properties of a new lunar highland soil simulant (LSS−ISAC−1) developed for Chandrayaan missions[J]. Soil Dynamics and Earthquake Engineering, 2022, 155: 107−178. https://doi.org/10.1016/j.soildyn.2022.107178.

    Google Scholar

    [12] THANNASI PRABU, KASINATHAN MUTHUKKUMARAN, INDARAM VENUGOPAL, et al. Assessment of shear strength and compressibility characteristics of a newly developed lunar highland soil simulant (LSS−ISAC−1) for Chandrayaan lander and rover missions[J]. Planetary and Space Science, 2021, 209(1): 105−154. https://doi.org/10.1016/j.pss.2021.105354.

    Google Scholar

    [13] XUMIN SUN, RUI ZHANG, XIUJUAN LI, et al. JLU−H: A novel lunar highland regolith simulant for use in large−scale engineering experiments[J]. Planetary and Space Science, 2022, 221: 105−162. https://doi.org/10.1016/j.pss.2022.105562.

    Google Scholar

    [14] MAXIM ISACHENKOV, SVYATOSLAV CHUGUNOV, ZOE LANDSMAN, et al. Characterization of novel lunar highland and mare simulants for ISRU research applications[J]. Icarus, 2022, 376: 114−173. https://doi.org/10.1016/j.icarus.2021.114873.

    Google Scholar

    [15] 刘琛, 李勇, 周文, 等. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 14−20.

    Google Scholar

    LIU C, LI Y, ZHOU W, et al. Advances in in−situ modeling of lunar/Martian soil[J] . Materials Bulletin, 2022, 36(22) : 14 −20.

    Google Scholar

    [16] 宋蕾, 徐佼, 唐红, 等. 模拟月壤成型研究现状[J]. 矿物学报, 2020, 40(1): 47−57. DOI:10.16461/j.cnki.1000−4734.2019.39.090.

    Google Scholar

    SONG L, XU Y, TANG H, et al. Current status of modeling lunar soil[J] . Journal of mineralogy, 2020, 40(1) : 47 −57. DOI: 10.16461/J. CNKI. 1000−4734.2019.39.090.

    Google Scholar

    [17] TOUTANJI H, GLENN−LOPER B, SCHRAYSHUEN. Aerospace Sciences Meeting and Exhibit. Reno, Nevada, B. Strength and Durability Performance of Waterless Lunar Concrete[C]//43rd AIAA 2005: 11427−11438.

    Google Scholar

    [18] TOUTANJI H, EVANS S, GRUGEL R N. Performance of lunar sulfur concrete in lunar envirorunents[J]. Constr Build Mater, 2011, 29: 444−448.

    Google Scholar

    [19] HOUSSAM A. TOUTANJI, STEVE EVANS, et al. Performance of lunar sulfur concrete in lunar environments[J]. Construction and Building Materials, 2012, 29: 444−448. https://doi.org/10.1016/j.conbuildmat.2011.10.041.

    Google Scholar

    [20] RICHARD N. GRUGEL, HOUSSAM TOUTANJI. Sulfur “concrete” for lunar applications – Sublimation concerns[J]. Advances in Space Research, 2008,41(1): 103−112. https://doi.org/10.1016/j.asr.2007.08.018.

    Google Scholar

    [21] MOHAMMAD HOSSEIN SHAHSAVARI, MOHAMMAD MEHDI KARBALA, SOHA IRANFAR, et al. Martian and lunar sulfur concrete mechanical and chemical properties considering regolith ingredients and sublimation[J]. Construction and Building Materials, 2022(1): 350−351. https://doi.org/10.1016/j.conbuildmat.

    Google Scholar

    [22] MONTES C, BROUSSARD h, GONGRE M, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications[J]. Adv Space Res, 2015, 56(6): 1212−1221.

    Google Scholar

    [23] ALEXIADIS A, ALBERINI F, MEYER M E. Geopolyners from lunar and Martian soil simulants[J]. Adv Space Res, 2017, 59(1): 490−495

    Google Scholar

    [24] CAI L X, DING L Y, LUO H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant: effect of mixture and manufacture process[J]. Constr BuildMater, 2019, 207: 373

    Google Scholar

    [25] JULIANA MORAES NEVES, SIVAKUMAR RAMANATHAN, et al. Characterization, mechanical properties, and microstructural development of lunar regolith simulant−portland cement blended mixtures[J]. Construction and Building Materials, 2020, 258: 120−315.

    Google Scholar

    [26] ZHOU S Q, LU C H, ZHU X Y, et al. Preparation and characterization of high−Strength geopolymer based on BH−1 lunar soil simulant with low alkali content[J]. Engineering, 2021, 7(11): 1631−1645.

    Google Scholar

    [27] ZHOU S Q, YANG Z N, ZHANG R R, et al. Preparation and evaluation of geopolymer based on BH−2 lunar regolith simulant under lunar surface temperature and vacuum condition[J]. Acta Astronautica, 2021, 189 (2): 90−98.

    Google Scholar

    [28] ANNA M, LAUERMANNOVA, IVANA FALTYSOVA, et al. Regolith−based magnesium oxychloride composites doped by graphene: Novel high−performance building materials for lunar constructions[J]. Flat Chem, 2021, 26 (1): 100−134. https://doi.org/10.1016/j.flatc.2021.100234.

    Google Scholar

    [29] JAHINDER MOMI, TAYLOR LEWIS, FEDERICO ALBERINI. et al. Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the Moon[J]. Advances in Space Research, 2021, 68 (11): 4496−4504. https://doi.org/10.1016/j.asr.2021.08.037.

    Google Scholar

    [30] 周兆曦, 马芹永, 汪寒艳. 不同养护温度下模拟月壤地聚合物力学试验与分析[J]. 佳木斯大学学报(自然科学版), 2021, 39(6): 10−14.

    Google Scholar

    ZHOU Z X, MA Q Y, WANG H Y. Mechanical test and analysis of polymer in simulated lunar soil under different curing temperatures[J] . Journal of Jiamusi University Science, 2021, 39(6) : 10−14.

    Google Scholar

    [31] LI X C, LIE Y D, LUO H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant: Effect of mixture and manufacture process[J]. Construction and Building Materials, 2019, 207: 373−386. https://doi.org/10.1016/j.conbuildmat.2019.02.146.

    Google Scholar

    [32] HU Z J, SHI T, CEN M Q, et al. Research progress on lunar and Martian concrete[J]. Construction and Building Materials, 2022, 343: 117−128. https://doi.org/10.1016/j.conbuildmat.2022.128117.

    Google Scholar

    [33] HOPKINSON N, HAGUE R, DICKENS P. Manufacturing: an industrial revolution for the digital age[M]. Chichester: John Wiley&Sons, Ltd. , 2005

    Google Scholar

    [34] PEGNA J. Exploratory investigation of solid freeform construction[J]. Autom Constr, 1997, 5 ( 5 ) : 427−436

    Google Scholar

    [35] JENNIFER N, MILLS, MARIA KATAZROVA, et al. Comparison of lunar and Martian regolith simulant−based geopolymer cements formed by alkali−activation for in−situ resource utilization[J]. Advances in Space Research, 2022, 69 (1): 761−777. https://doi.org/10.1016/j.asr.2021.10.045.

    Google Scholar

    [36] X GUIHONG, Z WEIBIAO, L HUARONG, et al. Water pressure variation properties research in non−ballasted track crack interior under fatigue loading[J]. Intelligent Automation & Soft Computing, 2019, 25(4): 735–743.

    Google Scholar

    [37] ZHANG R R, ZHOU S Q, LI F, et al. Preparation of geopolymer based on lunar regolith simulant at in−situ lunar temperature and its durability under lunar high and cryogenic temperature[J]. Construction and Building Materials, 2022, 318: 126−133. https://doi.org/10.1016/j.conbuildmat.2021.126033.

    Google Scholar

    [38] ALTEMIR D A. Cold press sintering of simulated lunar basalt[C]//Lunar and Planetary Science Conference. 1993

    Google Scholar

    [39] DOU R, TANG W Z, WANG L. et al. Sintering of lunar regolith structures fabricated via digital light processing[J]. Ceramics International, 2019, 45 (14) : 17210−17215. ISSN 0272−8842. https://doi.org/10.1016/j.ceramint.2019.05.276.

    Google Scholar

    [40] ANDREA ZOCCA, MIRANDA FATERI, DOMINIK AL−SABBAGH. et al. Investigation of the sintering and melting of JSC−2A lunar regolith simulant[J]. Ceramics International, 2020, 46 (9): 14097−14104. https://doi.org/10.1016/j.ceramint.2020.02.212.

    Google Scholar

    [41] ZHANG X, SHAYAN GHOLAMI, MAHDIEH KHEDMATI, et al. Spark plasma sintering of a lunar regolith simulant: effects of parameters on microstructure evolution, phase transformation, and mechanical properties[J]. Ceramics International, 2021, 47(4) : 5209−5220.

    Google Scholar

    [42] SONG L, XU J, FAN S Q, et al. Vacuum sintered lunar regolith simulant: Pore−forming and thermal conductivity[J]. Ceramics International, 2019, 45 (3): 3627−3633

    Google Scholar

    [43] HAN W B, DING L Y, CAI L X, et al. Sintering of HUST−1 Lunar regolith simulant[J]. Construction and Building Materials, 2022, 324: 126655

    Google Scholar

    [44] YOUNG−JAE KIM, BYUNG HYUN RYU, HYUNWOO JIN, et al. Microstructural, mechanical, and thermal properties of microwave−sintered KLS−1 lunar regolith simulant[J]. Ceramics International, 2021, 47 (19) : 26891−26897. https://doi.org/10.1016/j.ceramint.2021.06.098.

    Google Scholar

    [45] HAILONG LIAO, JUNJIE ZHU, SHIJIE CHANG, et al. Lunar regolith − AlSi10Mg composite fabricated by selective laser melting[J]. Vacuum, 2021, 187: 110−122.

    Google Scholar

    [46] SHAYAN GHOLAMI, ZHANG X, YOUNG−JAE KIM, et al. Hybrid microwave sintering of a lunar soil simulant: Effects of processing parameters on microstructure characteristics and mechanical properties[J]. Materials & Design, 2022, 220: 110−120. https://doi.org/10.1016/j.matdes.2022.110878.

    Google Scholar

    [47] ROBERT E. FERGUSON, EVGENY SHAFIROVICH. Aluminum–nickel combustion for joining lunar regolith ceramic tiles[J]. Combustion and Flame, 2018, 197: 22−29.

    Google Scholar

    [48] LIU M, TANG W Z, DUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2019, 45(5): 5829−5836.

    Google Scholar

    [49] JULIAN BAASCH, LISA WINDISCH, FRANK KOCH, et al. Frank Koch, et al. Regolith as substitute mold material for aluminum casting on the Moon[J]. Acta Astronautica, 2021, 182: 1–12,

    Google Scholar

    [50] SHANNON L. TAYLOR, ADAM E. JAKUS, KATIE D, et al. Intering of micro−trusses created by extrusion−3D−printing of lunar regolith inks[J]. Acta Astronautica, 2018, 143: 1−8.

    Google Scholar

    [51] SHIMA PILEHVAR, MARLIES ARNHOF, ANDREAS ERICHSEN, et al. Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers[J]. Journal of Materials Research and Technology, 2021, 11 (1): 1506−1516. https://doi.org/10.1016/j.jmrt.

    Google Scholar

    [52] CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronaut, 2014, 93: 430

    Google Scholar

    [53] CECCANTI F, DINI E, DE KESTELIER X, et al. 3D printing technology for a moon outpost exploiting lunar soil[J]. lnternational Astronautical Congress, 2010: 10: 3−15

    Google Scholar

    [54] BALLA V K, ROBERSON L B, CONNOR G W, et al. First demonstration on direct laser fabrication of lunar regolith parts[J]. Rapid Prototyp J, 2012, 18 (6): 451.

    Google Scholar

    [55] FATERI M, GEBHARDT A. Process parameters development of selective laser melting of lunar regolith for on−site manufacturing applications[J]. Int J Appl Ceram Technol, 2015, 12 (1): 46

    Google Scholar

    [56] GERDES N, FOKKEN L G, LINKE S, et al. Selective Laser Melting for processing of regolith in support of a lunar base[J]. J Laser Appl, 2018,30(3): 032018

    Google Scholar

    [57] TAYLOR S L, JAKUS A E, KOUBE K D, et al. Sintering of microtrusses created by extrusion−3D−printing of lunar regolith inks[J]. ActaAstronaut, 2018, 143: 1

    Google Scholar

    [58] 周思齐, 张荣荣, 杨湛宁, 等. 3D打印模拟月壤道路材料制备与性能研究[J]. 中国公路学报, 2022, 35(8): 105−117. DOI: 10.19721/j.cnki.1001−7372.2022.08.010.

    Google Scholar

    ZHOU S Q, ZHANG R R, YANG Z N, et al. Preparation and properties of 3d−printed lunar soil road materials[J]. Chinese Journal of Highways, 2022, 35(8) : 105−117.

    Google Scholar

    [59] LIU M, TANG W Z, DDUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceram Int, 2019, 45(5): 5829

    Google Scholar

    [60] MEURISSE A, MAKAYA A, WILLSCH C, et al. Solar 3D printing of lunar regolith[J]. Acta Astronaut, 2018, 152: 800−810. https://doi.org/10.1016/j.actaastro.2018.06.063.

    Google Scholar

    [61] CARR B B. Recovery of water or oxygen by reduction of lunar rock[J]. AIAAJ, 1963, 1(4): 921

    Google Scholar

    [62] DENK T, GONZALEZ−PARDO A, CANADAS I, et al. Design and test of a concentrated solar powered fluidized bed reactor for ilmenite reduction: 1st Ed[M] Santiago: Solar Power&Chemical Energy Systems, 2017

    Google Scholar

    [63] SARGEANT H M, ABERNETHY FAJ, WRIGHT I P, et al. Hydrogen reduction of ihnenite: towards an in[J]. situ resource utilization demonstration on the surface of the Moon[J]. Planet Space Sci, 2020, 180: 104−121

    Google Scholar

    [64] SARGEANT H, ABERNETHY F, et al. Experimental development and testing of the ilmenite reduction reaction for a lunar ISRU demonstration with ProSPA[C]// Proceedings of the Lunar and Planetary Science Conference. Houston, 2019: 1797−1801.

    Google Scholar

    [65] SARGEANT H, S J BARBER, M. et al. Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon[J]. Planetary and Space Science, 2021, 205: 105−287. https://doi.org/10.1016/j.pss.2021.105287.

    Google Scholar

    [66] LU Y H, REDDY R G. Extraction of metals and oxygen from lunar soil[J]. High Temp Mater Process, 2008, 27(4): 223

    Google Scholar

    [67] LOUTZENHISER P G, TUERK O, STEINFELD A. Production of Si by vacumn carbothennal reduction of SiO2 using concentrated solar energy[J]. JOM, 2010, 62(9): 49−54.

    Google Scholar

    [68] MICHAIL SAMOUHOS, PETROS TSAKIRIDIS, et al. In−situ resource utilization: ferrosilicon and SiC production from BP−1 lunar regolith simulant via carbothermal reduction, Planetary and Space Science[J]. 2022, 212: 105−414. https://doi.org/10.1016/j.pss.2021.105414.

    Google Scholar

    [69] EVREN M. TURAN, SAMUEL A, STEIN, RIDDHI MAHARAJ, et al. A flow sheet for the conversion of lunar regolith using fluorine gas[J]. Advances in Space Research, 2020, 65 (7) : 1852−1862. https://doi.org/10.1016/j.asr.2020.01.014.

    Google Scholar

    [70] P REISS, F KERSCHER, L GRILL, et al. Thermogravimetric analysis of chemical reduction processes to produce oxygen from lunar regolith[J]. Planetary and Space Science, 2020, 181: 104−795.

    Google Scholar

    [71] FRAY, D J. Anodic and cathodic reactions in molten calcium chloride[J]. Can Metall Q, 2002, 41 (4): 433

    Google Scholar

    [72] ONO K. Fundamental aspects of calciothennic process to produce titanium[J]. Mater Tran, 2004, 45 (5) : 1660

    Google Scholar

    [73] KILBY K T, JIAO S Q, FRAY D J. Current efficiency studies for graphite and SnO2−based anodes for the electro−deoxidation of metal oxides[J]. Electrochimica Acta, 2010, 55(23): 7126

    Google Scholar

    [74] KAMAL TRIPURANENI KILBY, JIAO S Q, FRAY D J. Current efficiency studies for graphite and SnO2−based anodes for the electro−deoxidation of metal oxides[J]. Electrochimica Acta, 2010, 55 (23): 7126

    Google Scholar

    [75] XIE K Y, SHI Z N, XU J L, et al. Almninothennic reduction−molten salt electrolysis using inert anode for oxygen and Al−base alloy extraction from lunar soil simulant[J]. JOM, 2017, 69(10): 1963.

    Google Scholar

    [76] BETHANY A, LOMAX, MELCHIORRE CONTI, et al. Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith[J]. Planet space, 2020, 180: 104748

    Google Scholar

    [77] ALEXANDRE MEURISSE, BETHANY LOMAX, ÁRON SELMECI, et al. Lower temperature electrochemical reduction of lunar regolith simulants in molten salts[J]. Planetary and Space Science, 2022, 211: 32−39. https://doi.org/10.1016/j.pss.2021.105408.

    Google Scholar

    [78] PENG Y H, TANG H, MO B, et al. Influencing factors for the preparation of Fe0 in lunar soil simulant using high−temperature carbothermic reduction[J]. Advances in Space Research, 2022: 273−1177. https://doi.org/10.1016/j.asr.2022.07.074.

    Google Scholar

    [79] STEURER W. Vapor phase pyrolysis[J/OL]. NASA Technical Reports Server, 2021, 3: 15−25

    Google Scholar

    [80] COLAO F, LAZIC V, FANTONI R, et al. A comparison of single and double pulse laser−induced breakdown spectroscopy of aluminum samples[J]. Spectrochimica Acta B: AtSpectrosc, 2002, 57(7): 1167

    Google Scholar

    [81] NAKANO M, MATSUI M, TANAKA K, et al. Nmnerical simulation on almnina reduction using laser plasma[J]. Appl Plasma Sci, 2012, 20(1): 43

    Google Scholar

    [82] SAUERBORN M. PYROLYSE VON. Metalloxide and Silikaten unter Vakuum mit konzentrierter Solarstrahlung[M]. Bonn: Rheinische Friedrich−Wilhehns−Universitat Bonn, 2005

    Google Scholar

    [83] MATCHETT J. Producttion of lunar oxygen through vacuum pyrolysis[M]. Washington D C: The George Washington University, 2006.

    Google Scholar

    [84] YABE T, MOHAMED M S, UCHIDA S, et al. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle[J]. J Appl phys, 2007, 101(12): 123106

    Google Scholar

    [85] BURTON R L, SCHUBERT P J, RYSANEK F, et al. Oxygen Extraction apparatus and process[J]. United States Patent, US 2009: 26−92.

    Google Scholar

    [86] LIAO S H, YABE T, MOHAMED M S, et al. Laser−induced Mg production from magnesimn oxide using Si−based agents and Si−based agents recycling[J]. J Appl Phys, 2011, 109 (1): 013103

    Google Scholar

    [87] WANG C Y, GONG H Q, WEI W, et. al, Vat photopolymerization of low−titanium lunar regolith simulant for optimal mechanical performance[J]. Ceramics International, 2022, 48 (20): 29752−29762.

    Google Scholar

    [88] GARRETT L. SCHIEBER, BRANT M. JONES, THOMAS M. ORLANDO, et al. Indirect solar receiver development for the thermal extraction of H2O from lunar regolith: Heat and mass transfer modeling[J]. Acta Astronautica, 2022, 190: 365−376. https://doi.org/10.1016/j.actaastro.2021.09.020.

    Google Scholar

    [89] JULIAN BAASCH, LISA WINDISCH, FRANK KOCH, et al. Regolith as substitute mold material for aluminum casting on the Moon[J]. Acta Astronautica, 2021, 182: 1−12. https://doi.org/10.1016/j.actaastro.2021.01.045.

    Google Scholar

    [90] MATTHEW G. SHAW, GEOFFREY A. BROOKS, M. AKBAR RHAMDHANI, et al. Thermodynamic modelling of ultra−high vacuum thermal decomposition for lunar resource processing[J]. Planetary and Space Science, 2021, 204 (1): 105−272. https://doi.org/10.1016/j.pss.2021.105272.

    Google Scholar

    [91] 邢丹, 葸雄宇, 郭泽世, 等. 模拟月壤制备连续纤维的可行性研究[J]. 中国科学(技术科学), 2020, 50(12): 1625−1633.

    Google Scholar

    XING D, XI X Y, GUO Z S, et al. Study on the feasibility of preparing a continuous fibre using lunar soil simulant (in Chinese)[J]. Sci Sin Tech, 2020, 50: 1625−1633. doi: 10.1360/SST−2020−0141

    Google Scholar

    [92] BING HAO, THERESA FORSTER, EDITH MADER. Modification of basalt fibre using pyrolytic carbon coating for sensing applications[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 123−128. https://doi.org/10.1016/j.compositesa.2017.06.010.

    Google Scholar

    [93] 秦利锋, 林启美, 薛彩荣, 等. 月球土壤的生物改良试验: 固氮蓝藻对模拟月壤肥力的影响[J]. 航天医学与医学工程, 2020, 33(6): 497−503.

    Google Scholar

    QIN L F, LIN Q M, XUE C R, et al. Biological improvement of lunar soil: effect of nitrogen−fixing cyanobacteria on simulated lunar soil fertility[J]. Aerospace Medicine and medical engineering, 2020, 33(6): 497−503.

    Google Scholar

    [94] 秦利锋, 艾为党, 唐永康, 等. 模拟月壤对蓝细菌生长特性的影响[J]. 载人航天, 2014, 20(6): 555−561. .

    Google Scholar

    QIN L F, AI W D, TANG Y K, et al. Effects of simulated lunar soil on growth characteristics of cyanobacteria[J]. Manned space flight, 2014, 20(6) : 555−561.

    Google Scholar

    [95] YAO Z K, FENG J J, LIU H. Bioweathering improvement of lunar soil simulant improves the cultivated wheat's seedling length[J]. Acta Astronautica, 2022, 193: 1−8.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(992) PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint