Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

FAN Linlin, TONG Xiong, LIU Yang, WEN Xiaoyun, HU Zewei. Research Progress of Lunar Mineral Resources and In−situ Beneficiation Technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2023.04.001
Citation: FAN Linlin, TONG Xiong, LIU Yang, WEN Xiaoyun, HU Zewei. Research Progress of Lunar Mineral Resources and In−situ Beneficiation Technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2023.04.001

Research Progress of Lunar Mineral Resources and In−situ Beneficiation Technology

More Information
  • The lunar is rich in iron (Fe), titanium (Ti), chromium (Cr) and aluminum (Al) and other mineral resources. At present, in situ resource utilization (ISRU) is the most effective way to develop and utilize lunar mineral resources, and mineral processing is the key step of in situ resource utilization. However, the traditional mineral processing technology is not suitable for the lunar environment of low gravity, water shortage and extreme temperature, and new mineral processing technology needs to be studied urgently. Based on the types and distributions of proven useful gas elements, water−ice mineral resources, metal and non−metal mineral resources on the lunar surface, the obstacles caused by environmental factors such as lunar gravity, surface temperature, water resources and dust on the implementation of lunar mineral processing technology were analyzed, and the progress of simulation research on lunar mineral processing technology such as low−energy extraction, centrifugal screening, electrostatic separation and magnetic separation was summarized. The future development of lunar mineral processing technology is prospected.

  • 加载中
  • [1] 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5): 405−416.

    Google Scholar

    WU W R, LIU J Z, TANG Y H, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5): 405−416.

    Google Scholar

    [2] ZHOU C, JIA Y, LIU J, et al. Scientific objectives and payloads of the lunar sample return mission−Chang ’e−5[J]. Advances in Space Research, 2022, 69(1): 823−836. doi: 10.1016/j.asr.2021.09.001

    CrossRef Google Scholar

    [3] TOKLU Y C, ACIKBAS N C, ACıKBAş G, et al. Production of a set of lunar regolith simulants based on Apollo and Chinese samples[J]. Advances in Space Research, 2023, 72(2): 565−576. doi: 10.1016/j.asr.2023.03.035

    CrossRef Google Scholar

    [4] SHAW M, HUMBERT M, BROOKS G, et al. Mineral processing and metal extraction on the lunar surface−challenges and opportunities[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(7): 865−891. doi: 10.1080/08827508.2021.1969390

    CrossRef Google Scholar

    [5] WANG Y S, HAO L, LI Y, et al. In−situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: a review[J]. Applied Clay Science, 2022, 229: 106673. doi: 10.1016/j.clay.2022.106673

    CrossRef Google Scholar

    [6] KAWAMOTO H. Vibration transport of lunar regolith for in situ resource utilization using piezoelectric actuators with displacement−amplifying mechanism[J]. Journal of Aerospace Engineering, 2020, 33(3): 04020014. doi: 10.1061/(ASCE)AS.1943-5525.0001128

    CrossRef Google Scholar

    [7] CRAWFORD I A. Lunar resources: a review[J]. Progress in Physical Geography−Earth and Environment, 2015, 39(2): 137−167. doi: 10.1177/0309133314567585

    CrossRef Google Scholar

    [8] 高楠, 许英奎, 罗泰义, 等. 月球矿产资源勘查进展及展望[J]. 矿物学报, 2022, 42(2): 222−230.

    Google Scholar

    GAO N, XU Y K, LUO T Y, et al. Recent advance and prospect of the lunar mineral resources exploration[J]. Acta Mineralogica Sinica, 2022, 42(2): 222−230.

    Google Scholar

    [9] 秦克章, 邹心宇. 行星矿产及行星资源地质学初论[J]. 岩石学报, 2021, 37(8): 2276−2286.

    Google Scholar

    QING K Z, ZOU X Y, Potential mineral resources in the planets and preliminary discussion on planetary resource geology[J]. Acta Petrologica Sinica, 2021, 37(8): 2276−2286.

    Google Scholar

    [10] 裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577−2586. doi: 10.1360/TB-2020-0582

    CrossRef Google Scholar

    PEI Z Y, LIU J Z, WANG Q, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020, 65(24): 2577−2586. doi: 10.1360/TB-2020-0582

    CrossRef Google Scholar

    [11] 欧阳自远, 邹永廖. 月球的地质特征和矿产资源及我国月球探测的科学目标[J]. 国土资源情报, 2004(1): 36−39.

    Google Scholar

    OUYANG Z Y, ZOU Y L. Geological characteristics and mineral resources of the moon and scientific objectives of lunar exploration in China[J]. Natural Resources Information, 2004(1): 36−39.

    Google Scholar

    [12] RASERA J N, CILLIERS J J, LAMAMY J A, et al. The beneficiation of lunar regolith for space resource utilisation: A review[J]. Planetary and Space Science, 2020, 186: 104879. doi: 10.1016/j.pss.2020.104879

    CrossRef Google Scholar

    [13] 宋洪庆, 杜恒畅, 张杰, 等. 月球氦−3资源的原位开采热释放行为研究[J]. 空间科学学报, 2021, 41(5): 787−792. doi: 10.11728/cjss2021.05.787

    CrossRef Google Scholar

    SONG H Q, DU H C, ZHANG J, et al. Release behavior research of in−situ helium−3 resources extraction in moon under heating[J]. Chinese Journal of Space Science, 2021, 41(5): 787−792. doi: 10.11728/cjss2021.05.787

    CrossRef Google Scholar

    [14] FA W Z, JIN Y Q. Quantitative estimation of helium−3 spatial distribution in the lunar regolith layer[J]. ICARUS, 2007, 190(1): 15−23. doi: 10.1016/j.icarus.2007.03.014

    CrossRef Google Scholar

    [15] 王超, 张晓静, 姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文), 2020, 7(3): 241−247.

    Google Scholar

    WAMG C, ZHANG X J, YAO W, et al. Reseach prospects of lunar polar water ice resource in−situ utilization[J]. Journal of Deep Space Exploration, 2020, 7(3): 241−247.

    Google Scholar

    [16] NOZETTE S, LICHTENBERG C L, SPUDIS P, et al. The clementine bistatic radar experiment[J]. Science (New York, N. Y. ), 1996, 274(5292): 1495−1498. doi: 10.1126/science.274.5292.1495

    CrossRef Google Scholar

    [17] 吴言蔚, 贺佳峰, 王国光. 月球内部水和月表水冰资源研究进展[J]. 高校地质学报, 2023.

    Google Scholar

    WU Y W, HE J F, WANG G G, Research advances of water in lunar interior and water ice on lunar surface[J]. Geological Journal of China Universities, 2023.

    Google Scholar

    [18] HAYNE P O, HENDRIX A, SEFTON−NASH E, et al. Evidence for exposed water ice in the moon's south polar regions from lunar reconnaissance orbiter ultraviolet albedo and temperature measurements[J]. ICARUS, 2015, 255: 58−69. doi: 10.1016/j.icarus.2015.03.032

    CrossRef Google Scholar

    [19] BRADLEY L. Jolliff, L. R. Gaddis, G, et al. New views of the Moon: better understanding through data integration[J]. Eos, Transactions American Geophysical Union, 2000, 81(31): 349−353.

    Google Scholar

    [20] 刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907−918.

    Google Scholar

    LIU J Z, LI X Y, ZHU K, et al. Key science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907−918.

    Google Scholar

    [21] 李琛, 魏奎先, 李阳, 等. 月球表面矿产资源原位利用研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3289−3299.

    Google Scholar

    LI C, WEI K X, LI Y, et al. Research progress on in−situ resources utilization of lunar surface minerals[J]. Journal of Central South University(Science and Technology), 2020, 51(12): 3289−3299.

    Google Scholar

    [22] CILLIERS J J, RASERA J N, HADLER K. Estimating the scale of space resource utilisation (SRU) operations to satisfy lunar oxygen demand[J]. Planetary and Space Science, 2020, 180: 104749. doi: 10.1016/j.pss.2019.104749

    CrossRef Google Scholar

    [23] 刘贤良. 月昼期间月球车的热性能计算[D]. 南京: 南京航空航天大学, 2018.

    Google Scholar

    LIU X L. Thermal calculation for a lunar rover in the lunar day[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.

    Google Scholar

    [24] 支羽萧, 石耀霖. 月表温度对于月幔对流影响的数值模拟研究[J]. 地球物理学报, 2023, 66(2): 685−697.

    Google Scholar

    ZHI Y X, SHI Y L. Influence of surface temperature on lunar convection[J]. Chinese Journal of Geophysics, 2023, 66(2): 685−697.

    Google Scholar

    [25] 刘惠中, 吴华冬. 螺旋选矿设备的应用现状及展望[J]. 有色金属(选矿部分), 2022(5): 151−158.

    Google Scholar

    LIU H Z, WU H D. Application and prospect of spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 151−158.

    Google Scholar

    [26] 张银川, 徐春江, 田忠坤, 等. 干扰床分选机颗粒自由沉降末速数学模型探索[J]. 选煤技术, 2018(1): 32−35.

    Google Scholar

    ZHANG Y C, XU C J, TIAN Z K, et al. Study on mathematical modelling for calculating free settling terminal velocity of particles in teetered bed separator[J]. Coal Preparation Technology, 2018(1): 32−35.

    Google Scholar

    [27] 刘志伟. 磨机磨矿效率影响因素分析[J]. 有色金属(选矿部分), 2018(4): 66−69.

    Google Scholar

    LIU Z W. Discussion of the factors that influence grinding efficiency[J]. Nonferrous Metals(Mineral Processing Section), 2018(4): 66−69.

    Google Scholar

    [28] 雷存友, 余浔, 冯裕果. 碎磨工艺现状及发展趋势[J]. 有色金属(选矿部分), 2019(5): 15−19.

    Google Scholar

    LEI C Y, YU X, FENG Y G. Present status and development trend of comminution process[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 15−19.

    Google Scholar

    [29] Craig L. Resource modelling for mining on the moon, mars and asteroids[C]//AusIMM Future Mining Conference. 2019.

    Google Scholar

    [30] Dreyer C B, Walton O, Riedel E P. Centrifugal sieve for size−segregation and beneficiation of Regolith[C]//Proceedings of the 13th ASCE Aerospace Division Conference and the 5th NASA/ASCE Workshop on Granular Materials in Space Exploration. 2012, 31−35.

    Google Scholar

    [31] 靳少康. 影响新型干式磁选机分选品位的因素分析[D]. 包头: 内蒙古科技大学, 2022.

    Google Scholar

    JIN S K. Analysis of factors affecting the separation grade of new dry magnetic separator[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.

    Google Scholar

    [32] 王海锋. 摩擦电选过程动力学及微粉煤强化分选研究[D]. 北京: 中国矿业大学, 2011.

    Google Scholar

    WANG H F. Study on the dynamics of triboelectrostatic separation and enhanced separation of fine coal[D]. Beijing: China University of Mining and Technology, 2011.

    Google Scholar

    [33] 宋馨, 张有为, 刘自军, 等. 极月轨道上太阳电池阵外热流规律分析[J]. 空间科学学报, 2015, 35(3): 362−367. doi: 10.11728/cjss2015.03.362

    CrossRef Google Scholar

    SONG X, ZHANG Y W, LIU Z J, et al. External heat flux of the solar array on the polar lunar orbit[J]. Chinese Journal of Space Science, 2015, 35(3): 362−367. doi: 10.11728/cjss2015.03.362

    CrossRef Google Scholar

    [34] WILLIAMS J P, PAIGE D A, GREENHAGEN B T, et al. The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment[J]. ICARUS, 2017, 283: 300−325. doi: 10.1016/j.icarus.2016.08.012

    CrossRef Google Scholar

    [35] HODGES R R, HOFFMAN J H, JOHNSON F S. The lunar atmosphere[J]. Icarus, 1974, 21(4): 415−426. doi: 10.1016/0019-1035(74)90144-4

    CrossRef Google Scholar

    [36] SARGEANT H M, ABERNETHY F A J, BARBER S J, et al. Hydrogen reduction of ilmenite: towards an in situ resource utilization demonstration on the surface of the moon[J]. Planetary and Space Science, 2020, 180: 104751. doi: 10.1016/j.pss.2019.104751

    CrossRef Google Scholar

    [37] Burke J D. Perpetual sunshine, moderate temperatures and perpetual cold as lunar polar resources[M]//Moon: Prospective Energy and Material Resources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 335−345.

    Google Scholar

    [38] 张小平, 甘红, 李存惠, 等. 月尘运动与生物毒性研究进展[J]. 地球与行星物理论评, 2021, 52(5): 495−506.

    Google Scholar

    ZHANG X P, GAN H, LI C H, et al. Recent progress in lunar dust migration and biological toxicity research[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(5): 495−506.

    Google Scholar

    [39] YANG K, FENG W M, XU L Y, et al. Review of research on lunar dust dynamics[J]. Astrophysics and Space Science, 2022, 367(7): 67. doi: 10.1007/s10509-022-04094-x

    CrossRef Google Scholar

    [40] POPEL S I, ZELENYI L M, GOLUB A P, et al. Lunar dust and dusty plasmas: recent developments, advances, and unsolved problems[J]. Planetary and Space Science, 2018, 156: 71−84. doi: 10.1016/j.pss.2018.02.010

    CrossRef Google Scholar

    [41] COLWELL J E, BATISTE S, HORANYI M, et al. Lunar surface: dust dynamics and regolith mechanics[J]. REVIEWS OF GEOPHYSICS, 2007, 45(2): RG2006.

    Google Scholar

    [42] 李健楠, 贺怀宇, 刘子恒, 等. 一种提取月球氦−3资源的地面试验装置及方法: 202210092037.6[P]. 2022−05−13.

    Google Scholar

    LI J N. HE H Y, LIU Z H, et al. The invention relates to a ground test device and method for extracting lunar helium−3 resources: 202210092037.6[P]. 2022−05−13.

    Google Scholar

    [43] 苏菲, 贺怀宇, 刘冉冉, 等. 一种低能耗月球原位稀有气体提取系统及提取方法: 201911172554.9[P]. 2021−05−04.

    Google Scholar

    SU F, HE H Y, LIU R R, et al. The present invention relates to a low energy consumption lunar in situ noble gas extraction system and extraction method: 201911172554.9[P]. 2021−05−04.

    Google Scholar

    [44] MITCHELL K, URADE S, KERSHAW A, et al. 3D printing of conical centrifuge system for mineral particle separation[J]. Separation and Purification Technology, 2023, 306: 122567. doi: 10.1016/j.seppur.2022.122567

    CrossRef Google Scholar

    [45] TRIGWELL S, CAPTAIN J, ARENS E, et al. Evaluating the use of tribocharging in electrostatic beneficiation of lunar simulant[C]//Florida AVS Symposium. 2007.

    Google Scholar

    [46] QUINN J W, CAPTAIN J G, WEIS K, et al. Evaluation of tribocharged electrostatic beneficiation of lunar simulant in lunar gravity[J]. Journal of Aerospace Engineering, 2013, 26(1): 37−42. doi: 10.1061/(ASCE)AS.1943-5525.0000227

    CrossRef Google Scholar

    [47] TRIGWELL S, CAPTAIN J G, ARENS E E, et al. The use of tribocharging in the electrostatic beneficiation of lunar simulant[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 1060−1067. doi: 10.1109/TIA.2009.2018976

    CrossRef Google Scholar

    [48] TRIGWELL S, LANE J E, CAPTAIN J G, et al. Quantification of efficiency of beneficiation of lunar regolith[J]. Particulate Science and Technology, 2013, 31(1): 45−50. doi: 10.1080/02726351.2011.641071

    CrossRef Google Scholar

    [49] LI T X, BAN H, HOWER J C, et al. Dry triboelectrostatic separation of mineral particles: a potential application in space exploration[J]. Journal of Electrostatics, 1999, 47(3): 133−142. doi: 10.1016/S0304-3886(99)00033-9

    CrossRef Google Scholar

    [50] TRIGWELL S, CAPTAIN J, WEIS K, et al. Electrostatic beneficiation of lunar regolith: applications in in situ resource utilization[J]. Journal of Aerospace Engineering, 2013, 26(1): 30−36. doi: 10.1061/(ASCE)AS.1943-5525.0000226

    CrossRef Google Scholar

    [51] RASERA J N, CILLIERS J J, LAMAMY J A, et al. Experimental investigation of an optimised tribocharger design for space resource utilisation[J]. Planetary and Space Science, 2023, 228: 105651. doi: 10.1016/j.pss.2023.105651

    CrossRef Google Scholar

    [52] YU Y, CILLIERS J, HADLER K, et al. A review of particle transport and separation by electrostatic traveling wave methods[J]. Journal of Electrostatics, 2022, 119: 103735. doi: 10.1016/j.elstat.2022.103735

    CrossRef Google Scholar

    [53] KAWAMOTO H, MOROOKA H, NOZAKI H. Improved electrodynamic particle−size sorting system for lunar regolith[J]. Journal of Aerospace Engineering, 2022, 35(1): 04021115. doi: 10.1061/(ASCE)AS.1943-5525.0001371

    CrossRef Google Scholar

    [54] 赵文迪, 章晓林, 景满, 等. 钛铁矿选别工艺进展[J]. 有色金属(选矿部分), 2020(2): 50−56.

    Google Scholar

    ZHAO W D, ZHANG X L, JING M, et al. Progress of ilmenite separation process[J]. Nonferrous Metals(Mineral Processing Section), 2020(2): 50−56.

    Google Scholar

    [55] 张冰倩, 林周越, 方利强, 等. 磁选机的研究与应用现状[J]. 云南冶金, 2017, 46(5): 13−17.

    Google Scholar

    ZHANG B Q, LIN Z Y, FANG L Q, et al. Research and application status of magnetic separator[J]. Yunnan Metallurgy, 2017, 46(5): 13−17.

    Google Scholar

    [56] 刘琴. 我国钛矿选矿概述[J]. 四川有色金属, 2021, 138(1): 6−8. doi: 10.3969/j.issn.1006-4079.2021.01.003

    CrossRef Google Scholar

    LIU Q. Review of titanium ore processing in China[J]. Sichuan Nonferrous Metals, 2021, 138(1): 6−8. doi: 10.3969/j.issn.1006-4079.2021.01.003

    CrossRef Google Scholar

    [57] 李金, 罗荣飞, 王洪彬, 等. 原生钛铁矿石选矿装备的应用进展与优化建议[J]. 现代矿业, 2021, 37(6): 166−168. doi: 10.3969/j.issn.1674-6082.2021.06.046

    CrossRef Google Scholar

    LI J, LUO R F, WANG H B, et al. Application progress and optimization suggestions of primary titanite mineral processing equipment[J]. Modern Mining, 2021, 37(6): 166−168. doi: 10.3969/j.issn.1674-6082.2021.06.046

    CrossRef Google Scholar

    [58] 冯定五, 孙仲元, 陈荩. 钕铁硼永磁体在选矿中的应用[J]. 磁性材料及器件, 1994(4): 51−55.

    Google Scholar

    FENG D W, SUN Z Y, CHEN J. Application of NdFeb permanent magnet in mineral processing[J]. Journal of Magnetic Materials and Devices, 1994(4): 51−55.

    Google Scholar

    [59] KAWAMOTO H, INOUE H. Magnetic cleaning device for lunar dust adhering to spacesuits[J]. Journal of Aerospace Engineering, 2012, 25(1): 139−142. doi: 10.1061/(ASCE)AS.1943-5525.0000101

    CrossRef Google Scholar

    [60] Oder R R. Magnetic separation of lunar soils[C]//in IEEE Transactions on Magnetics. 1991: 5367−5370.

    Google Scholar

    [61] 孙自凯. 永磁同步电机永磁体退磁故障性能分析[J]. 电机技术, 2022(6): 53−56.

    Google Scholar

    SUN Z K, Performance analysis on the permanent magnet demagnetization fault of PMSM[J]. Electrical Machinery Technology, 2022(6): 53−56.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(521) PDF downloads(30) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint