Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 2
Article Contents

LU Yinpeng, MENG Yumiao, HUANG Xiaowen, WANG Conglin, YANG Bingyang, TANHOU Mingrui, XIE Huan. Element and Mineral Characteristics of Tailings in the Porphyry-Type Iron Deposit from Ningwu Basin[J]. Rock and Mineral Analysis, 2024, 43(2): 259-269. doi: 10.15898/j.ykcs.202210120194
Citation: LU Yinpeng, MENG Yumiao, HUANG Xiaowen, WANG Conglin, YANG Bingyang, TANHOU Mingrui, XIE Huan. Element and Mineral Characteristics of Tailings in the Porphyry-Type Iron Deposit from Ningwu Basin[J]. Rock and Mineral Analysis, 2024, 43(2): 259-269. doi: 10.15898/j.ykcs.202210120194

Element and Mineral Characteristics of Tailings in the Porphyry-Type Iron Deposit from Ningwu Basin

More Information
  • The porphyrite-type iron deposit in Ningwu Basin is an important source of iron resources in China, and the premise for the efficient and comprehensive utilization of its complex tailings is a thorough understanding of their mineral processing characteristics. In order to provide a reference for the comprehensive utilization of porphyrite-type iron deposit tailings in Ningwu Basin, the process mineralogy characteristics were explored by using the combined methods of X-ray fluorescence spectrometry (XRF), inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffractometry (XRD), and TESCAN integrated mineral analyzer (TIMA). The results show that the tailings are composed of mainly Si, Fe and Al. The mineral compositions are mainly albite, hematite, magnetite and quartz. Silicon mainly occurs in quartz and albite, whereas Fe mainly occurs in hematite/magnetite. The tailings have a fine particle size and low mineral liberation degree. Compared to other types of iron deposit tailings in China, these tailings are characterized by a high content of Al and a relatively high proportion of pyrite.

  • 加载中
  • [1] 邓文, 江登榜, 杨波, 等. 我国铁尾矿综合利用现状和存在的问题[J]. 现代矿业, 2012, 27(9): 1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001

    CrossRef Google Scholar

    Deng W, Jiang D B, Yang B, et al. Current situation and existing problems of comprehensive utilization of iron tailings in China[J]. Modern Mining, 2012, 27(9): 1−3. doi: 10.3969/j.issn.1674-6082.2012.09.001

    CrossRef Google Scholar

    [2] Wan H, Yi P, Luukkanen S, et al. Recovering iron concentrate from low-grade siderite tailings based on the process mineralogy characteristics[J]. Minerals, 2022, 12(6): 676. doi: 10.3390/min12060676

    CrossRef Google Scholar

    [3] 刘文博, 姚华彦, 王静峰, 等. 铁尾矿资源化综合利用现状[J]. 材料导报, 2020, 34(S1): 268−270.

    Google Scholar

    Liu W B, Yao H Y, Wang J F, et al. Current status of comprehensive utilization of iron tailings[J]. Materials Reports, 2020, 34(S1): 268−270.

    Google Scholar

    [4] 陈邢, 于峰, 曹越, 等. 铁尾矿粉-脱硫灰胶凝材料的制备及性能研究[J]. 硅酸盐通报, 2023, 42(1): 180−187.

    Google Scholar

    Chen X, Yu F, Cao Y, et al. Preparation and properties of iron tailings powder-desulfurization ash cementitious material[J]. Bulletin of the Chinese Silicate Society, 2023, 42(1): 180−187.

    Google Scholar

    [5] Alfonso P, Ruiz M, Zambrana R N, et al. Process mineralogy of the tailings from Llallagua: Towards a sustainable activity[J]. Minerals, 2022, 12(2): 214. doi: 10.3390/min12020214

    CrossRef Google Scholar

    [6] 杨杰, 董静, 宋洲, 等. 鄂西铜铅锌尾矿库周边农田土壤-水稻重金属污染状况及风险评价[J]. 岩矿测试, 2022, 41(5): 867−879.

    Google Scholar

    Yang J, Dong J, Song Z, et al. Heavy metal pollution characteristics and risk assessment of soil and rice in farmland around the copper-lead-zinc tailing, Western Hubei Province[J]. Rock and Mineral Analysis, 2022, 41(5): 867−879.

    Google Scholar

    [7] 曹惠昌, 郑竞, 高淑玲. 我国铁尾矿综合利用研究进展[J]. 现代矿业, 2011, 27(10): 68−71.

    Google Scholar

    Cao H C, Zheng J, Gao S L. Research progress on comprehensive utilization of iron tailings in China[J]. Modern Mining, 2011, 27(10): 68−71.

    Google Scholar

    [8] 蒋京航, 叶国华, 胡艺博, 等. 铁尾矿再选技术现状及研究进展[J]. 矿冶, 2018, 27(1): 1−4.

    Google Scholar

    Jiang J H, Ye G H, Hu Y B, et al. Present situation and research progress of iron tailings reconcentration technology[J]. Mining & Metallurgy, 2018, 27(1): 1−4.

    Google Scholar

    [9] 刘鹏, 刘磊, 田馨, 等. 我国铁尾矿工艺矿物学特性及其资源化技术研究进展[J]. 矿产保护与利用, 2022, 42(3): 169−178.

    Google Scholar

    Liu P, Liu L, Tian X, et al. Reviews of the process mineralogy characteristics and comprehensive utilization technology of iron ore tailings in China[J]. Conservation and Utilization of Mineral Resource, 2022, 42(3): 169−178.

    Google Scholar

    [10] 任明昊, 谢贤, 李博琦, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2022, 42(3): 155−168.

    Google Scholar

    Ren M H, Xie X, Li B Q, et al. Research progress on comprehensive utilization of iron tailings[J]. Conservation and Utilization of Mineral Resource, 2022, 42(3): 155−168.

    Google Scholar

    [11] 赵新福, 曾丽平, 廖旺, 等. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示[J]. 地学前缘, 2020, 27(2): 197−217.

    Google Scholar

    Zhao X F, Zeng L P, Liao W, et al. An overview of recent advances in porphyrite iron (iron oxide-apatite, IOA) deposits in the middle-lower Yangtze River metallogenic belt and its implication for ore genesis[J]. Earth Science Frontiers, 2020, 27(2): 197−217.

    Google Scholar

    [12] Wanhainen C, Pålsson B I, Martinsson O, et al. Rare earth mineralogy in tailings from Kiirunavaara iron ore, Northern Sweden: Implications for mineral processing[J]. Minerals & Metallurgical Processing, 2017, 34(4): 189−200.

    Google Scholar

    [13] Peelman S, Kooijman D, Sietsma J, et al. Hydrometallurgical recovery of rare earth elements from mine tailings and WEEE[J]. Journal of Sustainable Metallurgy, 2018, 4(3): 367−377. doi: 10.1007/s40831-018-0178-0

    CrossRef Google Scholar

    [14] 梁朝杰. 姑山尾矿磁化焙烧及磁选试验[J]. 现代矿业, 2014, 30(9): 83−84, 87.

    Google Scholar

    Liang C J. Magnetic roasting and magnetic separation test of Gushan tailings[J]. Modern Mining, 2014, 30(9): 83−84, 87.

    Google Scholar

    [15] 李广, 王化军, 孙体昌, 等. 梅山铁矿尾矿浮选铁的试验研究[J]. 湿法冶金, 2015, 34(3): 173−175.

    Google Scholar

    Li G, Wang H J, Sun T C, et al. Flotation of iron minerals from Meishan iron tailings[J]. Hydrometallurgy of China, 2015, 34(3): 173−175.

    Google Scholar

    [16] 丁开振, 王小玉, 胡炳胜, 等. 马钢罗河尾矿强磁-反浮选工艺研究[J]. 现代矿业, 2019, 35(11): 14−19. doi: 10.3969/j.issn.1674-6082.2019.11.005

    CrossRef Google Scholar

    Ding K Z, Wang X Y, Hu B S, et al. Research on strong magnetic-reverse flotation process of Luohe tailings in Masteel[J]. Modern Mining, 2019, 35(11): 14−19. doi: 10.3969/j.issn.1674-6082.2019.11.005

    CrossRef Google Scholar

    [17] 段超, 李延河, 毛景文, 等. 宁芜和尚桥铁氧化物-磷灰石矿床(IOA)成矿过程研究: 来自磁铁矿LA-ICP-MS原位分析的证据[J]. 岩石学报, 2017, 33(11): 3471−3483.

    Google Scholar

    Duan C, Li Y H, Mao J W, et al. Study on the ore-forming process of the Heshangqiao IOA deposit in Ningwu ore district: Insight from magnetite LA-ICP-MS in-situ analysis data[J]. Acta Petrologica Sinica, 2017, 33(11): 3471−3483.

    Google Scholar

    [18] 谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60.

    Google Scholar

    Xie X M, Li L, Yuan Q Y, et al. Grain size distribution of organic matter and pyrite in Alum shale by TIMA and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60.

    Google Scholar

    [19] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368.

    Google Scholar

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368.

    Google Scholar

    [20] 郑意, 刘文胜, 李杰, 等. 和尚桥铁矿隔离堤边坡治理复垦实践[J]. 现代矿业, 2022, 38(3): 223−225.

    Google Scholar

    Zheng Y, Liu W S, Li J, et al. Practice of reclamation and treatment of isolation dike slope in Heshangqiao iron mine[J]. Modern Mining, 2022, 38(3): 223−225.

    Google Scholar

    [21] 朱末琳, 武飞. 东山铁矿剩余资源开发利用论证[J]. 矿业工程, 2014, 12(6): 1−3.

    Google Scholar

    Zhu M L, Wu F. Demonstration of exploration and utilization of remaining resources of Dongshan iron mine[J]. Mining Engineering, 2014, 12(6): 1−3.

    Google Scholar

    [22] 徐嘉辰, 寿震宇, 曾霄祥, 等. 东山铁矿露天采场改建尾矿库边坡稳定性研究[J]. 金属矿山, 2016(7): 175−178.

    Google Scholar

    Jia C, Shou Z Y, Zeng X X, et al. Study on the slope stability of the tailing pond built at open-pit stope in Dongshan iron mine[J]. Metal Mine, 2016(7): 175−178.

    Google Scholar

    [23] 武飞. 安徽马鞍山东山铁矿Ⅰ区剩余资源开发方案可行性论证[J]. 现代矿业, 2017, 33(11): 79−82.

    Google Scholar

    Wu F. Discussion on the development feasibility of the remaining resources of Ⅰ area in Dongshan iron mine in Ma’anshan City, Anhui Province[J]. Modern Mining, 2017, 33(11): 79−82.

    Google Scholar

    [24] 刘义云. 和尚桥铁矿石选矿试验研究[J]. 现代矿业, 2013, 29(5): 172−173.

    Google Scholar

    Liu Y Y. Experimental study on beneficiation of Heshang-qiao iron ore[J]. Modern Mining, 2013, 29(5): 172−173.

    Google Scholar

    [25] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51: 507−513. doi: 10.1016/S0039-9140(99)00318-5

    CrossRef Google Scholar

    [26] 张凤英, 张文捷, 刘春丽. X射线粉晶衍射(XRD)法在粘土矿物岩矿鉴定中的应用[J]. 低碳世界, 2018(9): 279−281. doi: 10.3969/j.issn.2095-2066.2018.09.174

    CrossRef Google Scholar

    Zhang F Y, Zhang W J, Liu C L. Application of X-ray powder diffraction (XRD) method in the identification of clay mineral rock[J]. Low Carbon World, 2018(9): 279−281. doi: 10.3969/j.issn.2095-2066.2018.09.174

    CrossRef Google Scholar

    [27] 何袖辉, 唐帅帅, 程江, 等. 碳酸钠-氧化锌半熔电感耦合等离子体质谱法测定地球化学样品中的碘[J]. 岩矿测试, 2022, 41(4): 606−613.

    Google Scholar

    He X H, Tang S S, Cheng J, et al. Determination of iodine in geochemical samples by ICP-MS with sodium carbonate-zinc oxide semi-melting[J]. Rock and Mineral Analysis, 2022, 41(4): 606−613.

    Google Scholar

    [28] 刘金, 王剑, 王桂君, 等. 利用电子探针和X射线衍射研究准噶尔盆地风城组淡钡钛石矿物学特征[J]. 岩矿测试, 2022, 41(5): 764−773.

    Google Scholar

    Liu J, Wang J, Wang G J, et al. Analysis of mineralogical characteristics of leucosphenite from the Fengcheng Formation in the Junggar Basin by electron probe microanalyzer and X-ray diffractometer[J]. Rock and Mineral Analysis, 2022, 41(5): 764−773.

    Google Scholar

    [29] 杨召群, 揣新, 张宏光, 等. 某铁矿超细碎尾矿工艺矿物学研究[J]. 现代矿业, 2019, 35(10): 135−138.

    Google Scholar

    Yang Z Q, Qi X, Zhang H G, et al. Study on ultrafine tailings process mineralogy in an iron ore[J]. Modern Mining, 2019, 35(10): 135−138.

    Google Scholar

    [30] 秦玉芳, 李娜, 王其伟, 等. 白云鄂博选铁尾矿稀土的工艺矿物学研究[J]. 中国稀土学报, 2021, 39(5): 796−804.

    Google Scholar

    Qin Y F, Li N, Wang Q W, et al. Technological mineralogy of rare earth in Bayan Obo iron tailings[J]. Journal of the China Society of Rare Earths, 2021, 39(5): 796−804.

    Google Scholar

    [31] 张燕, 宋志娇, 陈翠华, 等. 重庆城口高燕锰矿床矿物解离度与工艺粒度研究[J]. 地质论评, 2016, 62(1): 285−286.

    Google Scholar

    Zhang Y, Song Z J, Chen C H, et al. Study on the liberation degree and processing size of mineral in Gaoyan Mn deposit, Chengkou, Chongqing[J]. Geological Review, 2016, 62(1): 285−286.

    Google Scholar

    [32] 李德先, 王锦, 张长青, 等. 冀东司家营铁矿尾矿特征及综合利用建议[J]. 地质学报, 2022, 96(4): 1460−1468. doi: 10.3969/j.issn.0001-5717.2022.04.022

    CrossRef Google Scholar

    Li D X, Wang J, Zhang C Q, et al. Tailings characteristics and comprehensive utilization suggestions of the Sijiaying iron ore deposit in Eastern Hebei Province[J]. Acta Geologica Sinica, 2022, 96(4): 1460−1468. doi: 10.3969/j.issn.0001-5717.2022.04.022

    CrossRef Google Scholar

    [33] 韩波, 孙熠, 李月明, 等. 高掺量高钙型铁尾矿建筑瓷砖的制备及性能研究[J]. 中国陶瓷, 2023, 59(6): 68−73.

    Google Scholar

    Han B, Sun Y, Li Y M, et al. Study on preparation and properties of building tiles with high content and high calcium iron tailings[J]. China Ceramics, 2023, 59(6): 68−73.

    Google Scholar

    [34] 袁晨光, 黄自力, 刘楚玉, 等. 酒钢镜铁矿尾矿中铁矿物再回收试验研究[J]. 烧结球团, 2023, 48(1): 98−105.

    Google Scholar

    Yuan C G, Huang Z L, Liu C Y, et al. Experimental research on recovery of iron minerals from specularite tailings in JISCO[J]. Sintering and Pelletizing, 2023, 48(1): 98−105.

    Google Scholar

    [35] 刘金长, 张双爱. 酒钢尾矿再利用实验室试验研究[J]. 金属矿山, 2017(12): 185−188.

    Google Scholar

    Liu J C, Zhang S A. Laboratory research on recycling of ore tailing in JISCO[J]. Metal Mine, 2017(12): 185−188.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(6)

Article Metrics

Article views(952) PDF downloads(41) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint