Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 2
Article Contents

DONG Yani, XIONG Ying, PEI Ruohui, ZHANG Xiao, XIE Guangjin, CUI Changzheng. Chemical Phase Analysis of Arsenic Ores—A Study on Selective Separation Conditions of Orpiment and Realgar[J]. Rock and Mineral Analysis, 2024, 43(2): 270-280. doi: 10.15898/j.ykcs.202208050145
Citation: DONG Yani, XIONG Ying, PEI Ruohui, ZHANG Xiao, XIE Guangjin, CUI Changzheng. Chemical Phase Analysis of Arsenic Ores—A Study on Selective Separation Conditions of Orpiment and Realgar[J]. Rock and Mineral Analysis, 2024, 43(2): 270-280. doi: 10.15898/j.ykcs.202208050145

Chemical Phase Analysis of Arsenic Ores—A Study on Selective Separation Conditions of Orpiment and Realgar

  • As a rich symbiotic mineral resource, orpiment (As2S3) and realgar (AsS/As2S2/As4S4) are common sulfide minerals of arsenic. However, due to their similar chemical properties, the chemical phase analysis method of arsenic has always taken these two minerals as the same phase analysis and determination, and cannot obtain their respective contents. In the research, the orpiment and realgar arsenic ores of Shimen in Hunan Province were taken as the object. The separation conditions of orpiment and realgar samples were studied by single-mineral selective separation technology. The single mineral of orpiment and realgar was leached with 4mol/L ammonia solution and a 35℃ water bath for 6h. The extraction rate of orpiment and realgar was 92.2% and 2.4% respectively. Realgar was leached with sodium hydroxide solution, the extraction of realgar was 75.8%. Due to the spatial structure of realgar being oxidized, the addition of iodine can oxidize it into arsenic oxide that is easily soluble in alkali, increasing the extraction rate to 92.2%. The building of the selective separation conditions lays the foundation for the development of chemical phase separation methods for arsenic ores mainly composed of orpiment and realgar. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202208050145.

  • 加载中
  • [1] 《岩石矿物分析》编委会. 岩石矿物分析(第四版 第三分册)[M]. 北京: 地质出版社, 2011: 280-282.

    Google Scholar

    The editorial committee of “Rock and Mineral Analysis”. Rock and Mineral Analysis (The fourth edition: Vol. Ⅲ)[M]. Beijing: Geological Press, 2011: 280-282.

    Google Scholar

    [2] 宣之强. 中国砷矿资源概述[J]. 化工矿产地质, 1998, 20(3): 205−210.

    Google Scholar

    Xuan Z Q. An overview of arsenic resources in China[J]. Geology of Chemical Minerals, 1998, 20(3): 205−210.

    Google Scholar

    [3] 熊先孝. 中国雄黄雌黄矿床类型成矿机制与找矿方向[J]. 化工矿产地质, 1999, 21(2): 76−79.

    Google Scholar

    Xiong X X. Metallogenic mechanism and prospecting direction of realgar orpiment deposit types in China[J]. Chemical Mineral Geology, 1999, 21(2): 76−79.

    Google Scholar

    [4] 赵欣, 张干. 含砷金精矿的处理方法[J]. 有色冶金设计与研究, 2007, 28(6): 7−9.

    Google Scholar

    Zhao X, Zhang G. Treatment method of arsenic-bearing gold concentrate[J]. Nonferrous Metals Engineering & Research, 2007, 28(6): 7−9.

    Google Scholar

    [5] 刘荣丽, 伍赠玲, 戴红光, 等. 甘肃坪定金矿含砷硫化矿的细菌浸出[J]. 矿产综合利用, 2006(5): 6−8.

    Google Scholar

    Liu R L, Wu Z L, Dai H G, et al. Bioleaching of as-containing sulphide ore of Pingding gold mine in Gansu[J]. Multipurpose Utilization of Mineral Resources, 2006(5): 6−8.

    Google Scholar

    [6] 刘树根, 田学达. 含砷固体废物的处理现状与展望[J]. 湿法冶金, 2005, 24(4): 183−186.

    Google Scholar

    Liu S G, Tian X D. Situation and prospect on treating of arsenic-containing solid waste[J]. Hydrometallurgy of China, 2005, 24(4): 183−186.

    Google Scholar

    [7] 袁秋红, 王跃虎, 张广积, 等. 不同菌种对雌黄的生物浸出机理[J]. 中国有色金属学报, 2010, 20(6): 1234−1240.

    Google Scholar

    Yuan Q H, Wang Y H, Zhang G J, et al. Bioleaching mechanism of orpiment with different bacteria strains[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6): 1234−1240.

    Google Scholar

    [8] 夏光祥, 石伟, 吴林荣, 等. 碱性催化氧化含砷难处理金矿石的理论及工艺研究[J]. 黄金, 1996, 17(2): 27−33.

    Google Scholar

    Xia G X, Shi W, Wu L R, et al. Theoretical and technology research on alkaline catalytic oxidation of arsenic-containing refractory gold ores[J]. Gold, 1996, 17(2): 27−33.

    Google Scholar

    [9] 马红周, 燕超, 王耀宁, 等. 氢氧化钠浸出含砷金矿中砷[J]. 贵金属, 2015, 36(1): 14−16, 20.

    Google Scholar

    Ma H Z, Yan C, Wang Y N, et al. Leaching the arsenic in the gold ore by sodium hydroxide[J]. Precious Metals, 2015, 36(1): 14−16, 20.

    Google Scholar

    [10] 刘许生. 石门雄黄: 一座矿山的传奇与悲伤[J]. 国土资源导刊, 2014, 11(11): 86−90.

    Google Scholar

    Liu X S. Shimen realgar: Legend and sorrow of a mine[J]. Land Resources Guide, 2014, 11(11): 86−90.

    Google Scholar

    [11] 㒰燕, 张英军, 李先荣. 湖南石门雄黄的研究[J]. 中国中医药科技, 1997, 4(5): 286−288.

    Google Scholar

    Tong Y, Zhang Y J, Li X R. Research on realgar in Shimen of Hunan[J]. Chinese Medicine Science and Technology, 1997, 4(5): 286−288.

    Google Scholar

    [12] 杨世平, 杨细华, 李安邦, 等. 电子探针技术研究大别造山带富硫独居石地球化学特征及稀土矿化成因[J]. 岩矿测试, 2022, 41(4): 541−553.

    Google Scholar

    Yang S P, Yang X H, Li A B, et al. Study on geochemical characteristics and REE mineralization of S-enriched monazite in the Dabie orogenic belt by electron probe microanalysis[J]. Rock and Mineral Analysis, 2022, 41(4): 541−553.

    Google Scholar

    [13] 秦玉娟, 宋光永, 吕玉珍, 等. 电子探针在枝管藻化石微观结构与成分分析中的应用[J]. 微体古生物学报, 2022, 39(4): 361−372.

    Google Scholar

    Qin Y J, Song G Y, Lyu Y Z, et al. Application of electron probe in microstructure and composition analysis of cladophyllis fossils[J]. Journal of Micropaleontology, 2022, 39(4): 361−372.

    Google Scholar

    [14] 李钢, 程永科, 黄长高, 等. 矿物药雄黄的结构与热稳定性研究[J]. 南京师大学报(自然科学版), 2008(3): 63−67.

    Google Scholar

    Li G, Cheng Y K, Huang Z G, et al. Study on structure and thermal stability of mineral medicine realgar[J]. Journal of Nanjing Normal University (Natural Science Edition), 2008(3): 63−67.

    Google Scholar

    [15] 夏光祥, 段东平, 周娥, 等. 加压催化氧化氨浸法处理坪定金矿的研究和新工艺开发[J]. 黄金科技, 2013, 21(5): 93−96.

    Google Scholar

    Xia G X, Duan D P, Zhou E, et al. Research and development of new technology for treating Pingding gold mine by pressurized catalytic oxidation ammonia leaching[J]. Gold Technology, 2013, 21(5): 93−96.

    Google Scholar

    [16] 夏光祥, 石伟, 涂桃枝, 等. 自含砷含碳难处理金矿中提金研究——Ⅱ. 硫氨脱砷-铜氨催化氧化-氰化[J]. 化工冶金, 1995, 16(4): 302−306.

    Google Scholar

    Xia G X, Shi W, Tu T Z, et al. Extraction of gold from refractory gold orecontaining arsenic and arbon Ⅱ. Dearsenication with sulfur in ammonia water-catalytic oxidation with Cu ion in ammonia water-cyanidation[J]. Chemical Metallurgy, 1995, 16(4): 302−306.

    Google Scholar

    [17] 周人龙. 难冶金矿中回收金银的雌黄法[J]. 有色矿冶, 1996(3): 44.

    Google Scholar

    Zhou R L. The orpiment method for recovering gold and silver from refractory metallurgical mines[J]. Non-Ferrous Mining and Metallurgy, 1996(3): 44.

    Google Scholar

    [18] 张国庆, 张明美, 王少锋, 等. 含氧溶液中毒砂氧化溶解的XAFS研究[J]. 核技术, 2016, 39(11): 19−24.

    Google Scholar

    Zhang G Q, Zhang M M, Wang S F, et al. XAFS study on the oxidation dissolution of poisoned sand with oxygen solution[J]. Nuclear Engineering, 2016, 39(11): 19−24.

    Google Scholar

    [19] 汪寅夫, 李清, 刘琦, 等. X射线衍射和电子探针技术在矿物药雄黄鉴定及质量评价中的应用[J]. 岩矿测试, 2014, 33(5): 706−713.

    Google Scholar

    Wang Y F, Li Q, Liu Q, et al. Application of X-ray diffraction and electron probe technology in identification and quality evaluation of mineral realgar[J]. Rock and Mineral Analysis, 2014, 33(5): 706−713.

    Google Scholar

    [20] 洪汉烈, 肖睿娟, 闵新民. 雄黄矿物表面氧化过程的量子化学计算[J]. 矿物学报, 2004(1): 95−98.

    Google Scholar

    Hong H L, Xiao R J, Min X M. Quantum chemical calculation of surface oxidation process of realgar minerals[J]. Acta Mineralogica, 2004(1): 95−98.

    Google Scholar

    [21] Tong M, Yuan S H, Ma S C, et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J]. Environmental Science & Technology, 2015, 50(1): 4890−4891.

    Google Scholar

    [22] 张淑媛. 亚铁诱导地表环境中雄黄的氧化转化行为研究[D]. 武汉: 华中科技大学, 2018.

    Google Scholar

    Zhang S Y. Oxidative transformation behavior of realgar in surface environment induced by Fe2+[D]. Wuhan: Huazhong University of Science and Technology, 2018.

    Google Scholar

    [23] Renock D, Becker U. A first principles study of the oxidation energetics and kinetics of realgar[J]. Geochimica et Cosmochimica Acta, 2010, 74(15): 4266−4284. doi: 10.1016/j.gca.2010.05.003

    CrossRef Google Scholar

    [24] 洪俊. 毒砂矿(光)化学氧化释放砷过程及活性氧物种的生成与作用机理[D]. 武汉: 华中农业大学, 2020.

    Google Scholar

    Hong J. The process of releasing arsenic by photochemical oxidation of arsenopyrite ore and the formation and mechanism of active oxygen species[D]. Wuhan: Huazhong Agricultural University, 2020.

    Google Scholar

    [25] 金华爱. 有机抑制剂浮选分离辉锑矿与毒砂[J]. 矿产综合利用, 1989(1): 21−25.

    Google Scholar

    Jin H A. Separation of antimonite and arsenopyrite by organic inhibitor flotation[J]. Comprehensive Utilization of Minerals, 1989(1): 21−25.

    Google Scholar

    [26] 邱廷省, 张宝红, 张卫星, 等. 毒砂与黄铁矿分离技术现状及研究进展[J]. 矿山机械, 2013, 41(4): 1−5.

    Google Scholar

    Qiu T S, Zhang B H, Zhang W X, et al. Status and research progress of arsenopyrite and pyrite separation technology[J]. Mining Machine, 2013, 41(4): 1−5.

    Google Scholar

    [27] 熊英, 董亚妮, 裴若会, 等. 锑矿石化学物相分析方法选择性分离条件验证及准确度评估[J]. 岩矿测试, 2017, 36(2): 156−162.

    Google Scholar

    Xiong Y, Dong Y N, Pei R H, et al. Selective separation condition verification and accuracy evaluation of chemical phase analysis method for antimony ore[J]. Rock and Mineral Analysis, 2017, 36(2): 156−162.

    Google Scholar

    [28] 车东, 刘成雁, 王志嘉, 等. X射线衍射全谱拟合法测定矿物药朱砂中硫化汞和二氧化硅的含量[J]. 测试技术学报, 2018, 32(1): 36−40.

    Google Scholar

    Che D, Liu C Y, Wang Z J, et al. Determination of HgS and SiO2 in cinnabar by X-ray diffraction full spectrum fitting[J]. Journal of Testing Technology, 2018, 32(1): 36−40.

    Google Scholar

    [29] 张立平. 钴酸锂原材料四氧化三钴中亚钴的X射线衍射定量分析[J]. 山东化工, 2022, 51(14): 120−121, 124.

    Google Scholar

    Zhang L P. Quantitative analysis of Co2+ from Co3O4 by X-ray diffraction[J]. Shandong Chemical Industry, 2022, 51(14): 120−121, 124.

    Google Scholar

    [30] 刘婷婷, 张超. MLA矿物参数自动分析系统在矿产品掺假判定中的应用[J]. 现代矿业, 2016, 32(6): 59−61.

    Google Scholar

    Liu T T, Zhang C. Application of MLA automatic mineral parameter analysis system in determination of adulteration of mineral products[J]. Modern Mining Industry, 2016, 32(6): 59−61.

    Google Scholar

    [31] 万双, 李先和, 吕广颖, 等. 碲化铜中碲含量测定方法的精密度[J]. 化学分析计量, 2019, 28(5): 93−98.

    Google Scholar

    Wan S, Li X H, Lyu G Y, et al. Precision of the method for determination of Te content in CuTe[J]. Chemical Analytical Metrology, 2019, 28(5): 93−98.

    Google Scholar

    [32] 郝福, 胡向青, 张志伟, 等. 药物质量控制对分析方法精密度的要求[J]. 中南药学, 2019, 17(1): 60−65.

    Google Scholar

    Hao F, Hu X Q, Zhang Z W, et al. Drug quality control requirements for the precision of analytical methods[J]. Zhongnan Pharmaceutical, 2019, 17(1): 60−65.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(4)

Article Metrics

Article views(442) PDF downloads(60) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint