Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2024 Vol. 43, No. 2
Article Contents

XIA Chuanbo, CHENG Xuehai, JIANG Yun, ZHANG Wenjuan, CHEN Minggui, ZHAO Wei. Determination of 32 Trace Elements in Granite Pegmatite by Inductively Coupled Plasma-Optical Emission Spectrometry and Mass Spectrometry with Closed Acid Dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247-258. doi: 10.15898/j.ykcs.202307310105
Citation: XIA Chuanbo, CHENG Xuehai, JIANG Yun, ZHANG Wenjuan, CHEN Minggui, ZHAO Wei. Determination of 32 Trace Elements in Granite Pegmatite by Inductively Coupled Plasma-Optical Emission Spectrometry and Mass Spectrometry with Closed Acid Dissolution[J]. Rock and Mineral Analysis, 2024, 43(2): 247-258. doi: 10.15898/j.ykcs.202307310105

Determination of 32 Trace Elements in Granite Pegmatite by Inductively Coupled Plasma-Optical Emission Spectrometry and Mass Spectrometry with Closed Acid Dissolution

More Information
  • Accurate determination of large ion lithophile elements, high field strength elements and rare earth elements in granite pegmatite can be used to judge the source of ore-forming fluid materials and the diagenetic tectonic environment. There are some problems in the sample determination process, such as incomplete decomposition of insoluble minerals and low recovery of elements like Zr, Hf, Th, U and rare earth elements. This article compared the decomposition effects of three methods. The results indicate that the two open digestion methods can lead to lower test results for elements such as Zr, Hf, and W, etc. In the closed digestion method, aqua regia was used instead of HNO3 for residual redissolution, which promotes the redissolution of elements such as Nb, Ta, Zr, Hf, rare earth elements, etc. ICP-OES and ICP-MS can accurately determine 32 trace elements in granite pegmatite. The detection limit of the method was between 0.004μg/g and 2.50μg/g, with a precision of 1.0%−8.3% (RSD, n=12). The method was applied to the determination of 8 types of granite, pegmatite, rare metal ore reference materials and 3 types of actual samples. The measured values of the reference materials were consistent with the standard values. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202307310105.

  • 加载中
  • [1] 李建康, 李鹏, 严清高, 等. 中国花岗伟晶岩的研究历程及发展态势[J]. 地质学报, 2021, 95(10): 2996−3016. doi: 10.3969/j.issn.0001-5717.2021.10.005

    CrossRef Google Scholar

    Li J K, Li P, Yan Q G, et al. History of granitic pegmatite research in China[J]. Acta Geologica Sinica, 2021, 95(10): 2996−3016. doi: 10.3969/j.issn.0001-5717.2021.10.005

    CrossRef Google Scholar

    [2] 周晶, 周姣花, 徐畅, 等. 河南某地花岗伟晶岩型铌钽等稀有金属赋存状态研究[J]. 矿产综合利用, 2023, 44(5): 86−92. doi: 10.3969/j.issn.1000-6532.2023.05.016

    CrossRef Google Scholar

    Zhou J, Zhou J H, Xu C, et al. Study on occurrence states of rare metal elements in a granite pegmatite pattern niobium-tantalum ore in Henan[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(5): 86−92. doi: 10.3969/j.issn.1000-6532.2023.05.016

    CrossRef Google Scholar

    [3] 屈文俊, 王登红, 朱云, 等. 稀土稀有稀散元素现代仪器测试全新方法的建立[J]. 地质学报, 2019, 93(6): 1514−1522. doi: 10.3969/j.issn.0001-5717.2019.06.026

    CrossRef Google Scholar

    Qu W J, Wang D H, Zhu Y, et al. Establishment of new method for critical elements determination using modern analytical instruments[J]. Acta Geologica Sinica, 2019, 93(6): 1514−1522. doi: 10.3969/j.issn.0001-5717.2019.06.026

    CrossRef Google Scholar

    [4] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669.

    Google Scholar

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.

    Google Scholar

    [5] 赵学沛. 多种酸溶矿ICP-AES测定稀有金属矿中锂铍铌钽锡[J]. 化学研究与应用, 2017, 29(11): 1714−1718. doi: 10.3969/j.issn.1004-1656.2017.11.017

    CrossRef Google Scholar

    Zhao X P. Determination of lithium, beryllium, niobium, tantalum and tin in rare metal ores by four acid soluble ICP-AES[J]. Chemical Research and Application, 2017, 29(11): 1714−1718. doi: 10.3969/j.issn.1004-1656.2017.11.017

    CrossRef Google Scholar

    [6] 郭晓瑞, 王甜甜, 张宏丽, 等. 电感耦合等离子体质谱法测定地球化学样品中铌钽钨锡[J]. 冶金分析, 2021, 41(3): 44−50.

    Google Scholar

    Guo X R, Wang T T, Zhang H L, et al. Determination of niobium, tantalum, tungsten and tin in geochemical samples by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 44−50.

    Google Scholar

    [7] 徐洪柳. 电感耦合等离子体原子发射光谱(ICP-AES)法测定尼日利亚铌钽锂矿石中的铌、钽、锂[J]. 中国无机分析化学, 2020, 10(3): 33−38. doi: 10.3969/j.issn.2095-1035.2020.03.007

    CrossRef Google Scholar

    Xu H L. Detection of lithium niobium tantalum from niobium ore in Nigeria by inductively coupled plasma emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 33−38. doi: 10.3969/j.issn.2095-1035.2020.03.007

    CrossRef Google Scholar

    [8] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348.

    Google Scholar

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348.

    Google Scholar

    [9] 李志伟, 赵晓亮, 李珍, 等. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6): 594−600.

    Google Scholar

    Li Z W, Zhao X L, Li Z, et al. Determination of niobium, tantalum and associated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J]. Rock and Mineral Analysis, 2017, 36(6): 594−600.

    Google Scholar

    [10] 杨林, 邹国庆, 周武权, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稀有多金属矿中锂铍铌钽铷铯[J]. 中国无机分析化学, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    CrossRef Google Scholar

    Yang L, Zou G Q, Zhou W Q, et al. Determination of Li, Be, Nb, Ta, Rb, Cs in rare polymetallic ores by inductively coupled plasma mass spectrometry (ICP-MS) with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 825−830. doi: 10.3969/j.issn.2095-1035.2023.08.006

    CrossRef Google Scholar

    [11] 禹丽, 王庆飞, 李龚健, 等. 保山地块漕涧花岗伟晶岩地球化学、锆石U-Pb年代学及其地质意义[J]. 岩石学报, 2015, 31(11): 3281−3296.

    Google Scholar

    Yu L, Wang Q F, Li G J, et al. Geochemistry, zircon U-Pb geochronology of granitic pegmatites from Caojian area in the Northern Baoshan Block, and their geological significance[J]. Acta Petrologica Sinica, 2015, 31(11): 3281−3296.

    Google Scholar

    [12] 黄小强, 李鹏, 张立平, 等. 湖南仁里稀有金属矿田36号伟晶岩地球化学特征、成矿时代及其意义[J]. 矿床地质, 2021, 40(6): 1248−1266.

    Google Scholar

    Huang X Q, Li P, Zhang L P, et al. Geochemical characteristics and metallogenic age of No. 36 pegmatite in Renli rare metal ore field, Hunan Province, and their significance[J]. Mineral Deposits, 2021, 40(6): 1248−1266.

    Google Scholar

    [13] 刘新星, 张娟, 李肖龙, 等. 北秦岭卢氏龙潭沟—火炎沟锡矿床成矿作用探讨——来自花岗伟晶岩年代学、岩石地球化学的证据[J]. 岩石学报, 2023, 39(5): 1484−1500. doi: 10.18654/1000-0569/2023.05.16

    CrossRef Google Scholar

    Liu X X, Zhang J, Li X L, et al. Metallogeny of the Longtangou—Huoyangou Sn deposit in North Qinling orogeny: Geochronological and petrogeochemical evidence from Sn-bearing granite-pegmatite[J]. Acta Petrologica Sinica, 2023, 39(5): 1484−1500. doi: 10.18654/1000-0569/2023.05.16

    CrossRef Google Scholar

    [14] 李黎, 郭冬发, 黄秋红, 等. 混合硼酸锂盐熔融-混酸消解-ICP-MS测定伟晶岩样品中的稀土、铀、钍等元素[J]. 铀矿地质, 2022, 38(2): 361−369. doi: 10.3969/j.issn.1000-0658.2022.38.033

    CrossRef Google Scholar

    Li L, Guo D F, Huang Q H, et al. Determination of REE, U, Th and other elements in pegmatite samples by ICP-MS using mixed lithium borate fusion-mixed acids digestion[J]. Uranium Geology, 2022, 38(2): 361−369. doi: 10.3969/j.issn.1000-0658.2022.38.033

    CrossRef Google Scholar

    [15] 杨惠玲, 杜天军, 王书勤, 等. 电感耦合等离子体质谱法测定金属矿中稀土和稀散元素[J]. 冶金分析, 2022, 42(5): 8−14.

    Google Scholar

    Yang H L, Du T J, Wang S Q, et al. Determination of rare earth and scattered elements in metallic ores by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2022, 42(5): 8−14.

    Google Scholar

    [16] Yu Z, Robinson P, McGoldrick P. An evaluation of methods for the chemical decomposition of geological materials for trace element determination using ICP-MS[J]. Geostandards Newsletter, 2010, 25(2-3): 199−217.

    Google Scholar

    [17] Roy P, Balaram V, Kumar A, et al. New REE and trace element data on two kimberlitic reference materials by ICP-MS[J]. Geostandards and Geoanalytical Research, 2007, 31(3): 261−273. doi: 10.1111/j.1751-908X.2007.00836.x

    CrossRef Google Scholar

    [18] 何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2021, 21(5): 8-12.

    Google Scholar

    He H L, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12.

    Google Scholar

    [19] 张保科, 温宏利, 王蕾, 等. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素[J]. 岩矿测试, 2011, 30(6): 737−744. doi: 10.3969/j.issn.0254-5357.2011.06.016

    CrossRef Google Scholar

    Zhang B K, Wen H L, Wang L, et al. Quantification of multi elements in geological samples by inductively coupled plasma-mass spectrometry with pressurized decomposition-hydrochloric acid extraction[J]. Rock and Mineral Analysis, 2011, 30(6): 737−744. doi: 10.3969/j.issn.0254-5357.2011.06.016

    CrossRef Google Scholar

    [20] 张保科, 许俊玉, 王蕾, 等. 锂辉石样品中稀有稀散稀土等多元素的测定方法[J]. 桂林理工大学学报, 2016, 36(1): 184−190. doi: 10.3969/j.issn.1674-9057.2016.01.025

    CrossRef Google Scholar

    Zhang B K, Xu J Y, Wang L, et al. Multi-elements simultaneous determination methods for rare, scattered and rare earth elements in spodumene samples[J]. Journal of Guilin University of Technology, 2016, 36(1): 184−190. doi: 10.3969/j.issn.1674-9057.2016.01.025

    CrossRef Google Scholar

    [21] 胡兰基, 朱琳, 赵玉卿, 等. 电感耦合等离子体质谱法测定花岗伟晶岩中锂、铍、铷、铯、铌和钽[J]. 化工矿产地质, 2020, 42(4): 348−351, 355. doi: 10.3969/j.issn.1006-5296.2020.04.011

    CrossRef Google Scholar

    Hu L J, Zhu L, Zhao Y Q, et al. Determination of Li, Be, Rb, Cs, Nb and Ta in granite-pegmatite by inductively coupled plasma mass spectrometry[J]. Geology of Chemical Minerals, 2020, 42(4): 348−351, 355. doi: 10.3969/j.issn.1006-5296.2020.04.011

    CrossRef Google Scholar

    [22] 朱志刚, 李美丽, 方晓红, 等. 电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法相结合测定地球化学样品中锂铍铷铯铌钽[J]. 冶金分析, 2023, 43(2): 65−72.

    Google Scholar

    Zhu Z G, Li M L, Fang X H, et al. Determination of lithium, beryllium, rubidium, cesium, niobium and tantalum in geochemical samples by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(2): 65−72.

    Google Scholar

    [23] 曾美云, 何启生, 邵鑫, 等. 全自动石墨消解-电感耦合等离子体质谱法测定土壤和水系沉积物中稀土元素[J]. 岩矿测试, 2023, 42(3): 502−512.

    Google Scholar

    Zeng M Y, He Q S, Shao X, et al. Determination of rare earth elements in soil and stream sediment by inductively coupled plasma-mass spectrometry with automatic graphite digestion[J]. Rock and Mineral Analysis, 2023, 42(3): 502−512.

    Google Scholar

    [24] 代小吕, 董利明, 赵欣, 等. 沉淀分离-电感耦合等离子体质谱法测定方铅矿中铊[J]. 分析试验室, 2016, 35(3): 263−265.

    Google Scholar

    Dai X L, Dong L M, Zhao X, et al. Determination of thallium in galena by precipitation separation combined with inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(3): 263−265.

    Google Scholar

    [25] 孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026−1030.

    Google Scholar

    Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in ICP-MS determination of Sc, Ga, Ge, In, Cd and Tl in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(9): 1026−1030.

    Google Scholar

    [26] 孙孟华, 李晓敬, 王文娟, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定地质样品中锆铌铪钽锂铍钒磷铀锰[J]. 冶金分析, 2022, 42(1): 78−84.

    Google Scholar

    Sun M H, Li X J, Wang W J, et al. Determination of zirconium, niobium, hafnium, tantalum, lithium, beryllium, vanadium, phosphorus, uranium and manganese in geological samples by inductively coupled plasma mass spectrometry with sodium peroxide alkali fusion[J]. Metallurgical Analysis, 2022, 42(1): 78−84.

    Google Scholar

    [27] 刘晔, 第五春荣, 柳小明, 等. 密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨[J]. 岩矿测试, 2013, 32(2): 221−228. doi: 10.3969/j.issn.0254-5357.2013.02.006

    CrossRef Google Scholar

    Liu Y, Diwu C R, Liu X M, et al. Determination of 36 trace elements in 56 Chinese national standard reference materials by ICP-MS with pressurized acid-digestion[J]. Rock and Mineral Analysis, 2013, 32(2): 221−228. doi: 10.3969/j.issn.0254-5357.2013.02.006

    CrossRef Google Scholar

    [28] 刘勇胜, 胡圣虹, 柳小明, 等. 高级变质岩中Zr、Hf、Nb、Ta的ICP-MS准确分析[J]. 地球科学, 2003, 28(2): 151−156. doi: 10.3321/j.issn:1000-2383.2003.02.006

    CrossRef Google Scholar

    Liu Y S, Hu S H, Liu X M, et al. Accurate analysis of Zr, Hf, Nb and Ta in high-grade metamorphic rocks with ICP-MS[J]. Earth Science, 2003, 28(2): 151−156. doi: 10.3321/j.issn:1000-2383.2003.02.006

    CrossRef Google Scholar

    [29] 高会艳. ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J]. 岩矿测试, 2014, 33(3): 312−320. doi: 10.3969/j.issn.0254-5357.2014.03.005

    CrossRef Google Scholar

    Gao H Y. Determination systems of Nb and Ta in geochemical samples and rare earth ores by ICP-MS and ICP-AES[J]. Rock and Mineral Analysis, 2014, 33(3): 312−320. doi: 10.3969/j.issn.0254-5357.2014.03.005

    CrossRef Google Scholar

    [30] 童春临, 刘勇胜, 胡圣虹, 等. ICP-MS分析用地质样品制备过程中Nb、Ta等元素的特殊化学行为[J]. 地球化学, 2009, 38(1): 43−52. doi: 10.3321/j.issn:0379-1726.2009.01.005

    CrossRef Google Scholar

    Tong C L, Liu Y S, Hu S H, et al. Specific chemical behavior of Nb and Ta in geological sample preparation with PTFE bomb for ICP-MS analysis[J]. Geochimica, 2009, 38(1): 43−52. doi: 10.3321/j.issn:0379-1726.2009.01.005

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(3)

Article Metrics

Article views(637) PDF downloads(37) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint