2023 Vol. 43, No. 6
Article Contents

LI Haiqi, WANG Aijun, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, LI Yunhai. Spatio-temporal variations in grain size of surficial sediment on tidal flat of Langqi Island in Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 14-24. doi: 10.16562/j.cnki.0256-1492.2023082302
Citation: LI Haiqi, WANG Aijun, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, LI Yunhai. Spatio-temporal variations in grain size of surficial sediment on tidal flat of Langqi Island in Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 14-24. doi: 10.16562/j.cnki.0256-1492.2023082302

Spatio-temporal variations in grain size of surficial sediment on tidal flat of Langqi Island in Minjiang River estuary

More Information
  • Tidal flats are located in sensitive areas of interaction between land and ocean, and their sedimentary environment changes are closely related to the evolution of coastal ecosystems and coastal development and utilization. In order to clearly understand the spatio-temporal variations of estuarine tidal flats, we selected the tidal flat of Langqi Island in the Minjiang River estuary as the study area, studied surficial sediment composition in different seasons, and discussed the spatio-temporal variations in sediment grain size distribution, providing a scientific basis for a deep understanding of the sedimentary process of the estuarine tidal flats in response to environmental changes. Results indicate that the surficial sediment composition of inter-tidal flat on Langqi Island is dominated by silt, with significant differences of sand and clay contents. The mean grain-size ranges from 2.2 Φ to 7.4 Φ, and shows a significant seasonal variations, with the average mean grain-size in summer being smaller than in winter. From west to east, the mean grain-size increases first and then decreases seaward, and the distribution area of coarse grain component in gradually increases from north to south. The distribution pattern of sediment on the inter-tidal flat of Langqi Island at the Minjiang River estuary is consistent with that of other estuaries, bays, and open tidal flats in the world, reflecting the result of the among sediment sources, hydrodynamics, and local geomorphology. However, due to significant differences in hydrodynamics, vegetation coverage and sediment supply in the study area, which cause significant seasonal changes in the sediment composition, the sediment grain-size compsition of the tidal flat in the Minjiang River estuary are very sensitive to environmental changes.

  • 加载中
  • [1] 任美锷. 中国淤泥质潮滩沉积研究的若干问题[J]. 热带海洋, 1985(2):6-14,99

    Google Scholar

    REN Meie. A Study on sedimentation of tidal mud flats of China[J]. Journal of Tropical Oceanography, 1985(2):6-14,99.

    Google Scholar

    [2] 时钟, 陈吉余, 虞志英. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展, 1996, 11(6):555-562 doi: 10.3321/j.issn:1001-8166.1996.06.005

    CrossRef Google Scholar

    SHI Zhong, CHEN Jiyu, YU Zhiying. Sedimentation on the intertidal mudflat in China: an overview[J]. Advance in Earth Sciences, 1996, 11(6):555-562. doi: 10.3321/j.issn:1001-8166.1996.06.005

    CrossRef Google Scholar

    [3] Murray N J, Clemens R S, Phinn S R, et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea[J]. Frontiers in Ecology and the Environment, 2014, 12(5):267-272. doi: 10.1890/130260

    CrossRef Google Scholar

    [4] Murray N J, Phinn S R, Clemens R S, et al. Continental scale mapping of tidal flats across East Asia using the Landsat archive[J]. Remote Sensing, 2012, 4(11):3417-3426. doi: 10.3390/rs4113417

    CrossRef Google Scholar

    [5] 任美锷. 中国滩涂开发利用的现状与对策[J]. 中国科学院院刊, 1996(6):440-443

    Google Scholar

    REN Meie. Current situation and countermeasures of beach development and utilization in China[J]. Bulletin of Chinese Academy of Sciences, 1996(6):440-443.

    Google Scholar

    [6] 许炯心, 李炳元, 杨小平, 等. 中国地貌与第四纪研究的近今进展与未来展望[J]. 地理学报, 2009, 64(11):1375-1393 doi: 10.3321/j.issn:0375-5444.2009.11.009

    CrossRef Google Scholar

    XU Jiongxin, Li Bingyuan, Yang Xiaoping, et al. Recent progress in geomorphology and quaternary geology in China and some perspectives[J]. Acta Geographica Sinica, 2009, 64(11):1375-1393. doi: 10.3321/j.issn:0375-5444.2009.11.009

    CrossRef Google Scholar

    [7] 王颖, 朱大奎. 中国的潮滩[J]. 第四纪研究, 1990, 10(4):291-300

    Google Scholar

    WANG Ying, ZHU Dakui. Tidal flats of China[J]. Quaternary Sciences, 1990, 10(4):291-300.

    Google Scholar

    [8] 杨世伦. 中国淤泥质海岸的发育特点[J]. 华东师范大学学报:自然科学版, 1990(4):85-91

    Google Scholar

    YANG Shilun. The developmental characteristics of muddy coasts in China[J]. Journal of East China Normal University:Natural Science, 1990(4):85-91.

    Google Scholar

    [9] 梁喜幸, 王日明, 戴志军, 等. 茅尾海钦江河口光滩时空变化过程研究[J]. 海洋地质与第四纪地质, 2023, 43(3):107-118

    Google Scholar

    LIANG Xixing, WANG Riming, DAI Zhijun, et al. Spatial-temporal variations of bare flats in the Qinjiang River estuary, Maowei Sea[J]. Marine Geology & Quaternary Geology, 2023, 43(3):107-118.

    Google Scholar

    [10] 李东义, 徐勇航, 王爱军, 等. 福建安海湾表层沉积物粒度特征及其现代沉积过程分析[J]. 沉积学报, 2015, 33(4):724-734

    Google Scholar

    LI Dongyi, XU Yonghang, WANG Aijun, et al. Analysis of surface sediment grain size characteristics and modern sedimentary process in Fujian Anhai gulf[J]. Acta Sedimentologica Sinica, 2015, 33(4):724-734.

    Google Scholar

    [11] 徐晓晖, 陈坚, 赖志坤. GIS支持下近百年来闽江口海底地形地貌演变[J]. 台湾海峡, 2009, 28(4):577-585

    Google Scholar

    XU Xiaohui, CHEN Jian, LAI Zhikun. Seabed morphological evolution in Minjiang estuary in recent one hundred years based on GIS tools[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(4):577-585.

    Google Scholar

    [12] Eisma D. Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons[M]. Boca Raton: CRC Press, 1998.

    Google Scholar

    [13] Murray N J, Phinn S R, Dewitt M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738):222-225. doi: 10.1038/s41586-018-0805-8

    CrossRef Google Scholar

    [14] 汪亚平, 贾建军, 杨阳, 等. 长江三角洲蓝图重绘的基础科学问题: 进展与未来研究[J]. 海洋科学, 2019, 43(10):2-12

    Google Scholar

    WANG Yaping, JIA Jianjun, YANG Yang, et al. Fundamental scientific issues for the Changjiang River delta associated with the new blueprint of future development: overview and prospect[J]. Marine Sciences, 2019, 43(10):2-12.

    Google Scholar

    [15] Yang S L, Luo X X, Temmerman S, et al. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline[J]. Limnology and Oceanography, 2020, 65(9):1990-2009. doi: 10.1002/lno.11432

    CrossRef Google Scholar

    [16] Dai Z J. Changjiang Riverine and Estuarine Hydro-morphodynamic Processes: In the Context of Anthropocene Era[M]. Singapore: Springer, 2021.

    Google Scholar

    [17] Xie W M, Sun J W, Guo L C, et al. Distinctive sedimentary processes on two contrasting tidal flats of the Yellow River Delta[J]. Frontiers in Marine Science, 2023, 10:1259081. doi: 10.3389/fmars.2023.1259081

    CrossRef Google Scholar

    [18] 谢津剑, 王爱军, 叶翔, 等. 闽江河口水下三角洲及周边海域现代沉积环境演化及其对人类活动的响应[J/OL]. 沉积学报, 2022: 1-23

    Google Scholar

    XIE Jinjian, WANG Aijun, Ye Xiang, et al. Contemporary sedimentary environment evolution and its response to human activities in the Minjiang subaqueous delta and surrounding waters[J/OL]. Acta Sedimentologica Sinica, 2022: 1-23.

    Google Scholar

    [19] 中国海湾志编纂委员会. 中国海湾志: 第十四分册[M]. 北京: 海洋出版社, 1998

    Google Scholar

    State Oceanic Administration. China embayment (No. 14: Important river estuaries)[M]. Beijing: China Ocean Press, 1998: 626-691.

    Google Scholar

    [20] 李东义, 陈坚, 王爱军, 等. 闽江河口沉积动力学研究进展[J]. 海洋通报, 2008, 27(2):111-116 doi: 10.3969/j.issn.1001-6392.2008.02.017

    CrossRef Google Scholar

    LI Dongyi, CHEN Jian, WANG Aijun, et al. Recent progress in sediment transport research in Minjiang Estuary[J]. Marine Science Bulletin, 2008, 27(2):111-116. doi: 10.3969/j.issn.1001-6392.2008.02.017

    CrossRef Google Scholar

    [21] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1):3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D

    CrossRef Google Scholar

    [22] 卢连战, 史正涛. 沉积物粒度参数内涵及计算方法的解析[J]. 环境科学与管理, 2010, 35(6):54-60 doi: 10.3969/j.issn.1673-1212.2010.06.013

    CrossRef Google Scholar

    LU Lianzhan, SHI Zhengtao. Analysis for sediment grain size parameters of connotations and calculation method[J]. Environmental Science and Management, 2010, 35(6):54-60. doi: 10.3969/j.issn.1673-1212.2010.06.013

    CrossRef Google Scholar

    [23] 王颖. 渤海湾西部贝壳堤与古海岸线问题[J]. 南京大学学报:自然科学版, 1964(3):424-440,462-464

    Google Scholar

    WANG Ying. The shell coast ridges and the old coastlines of the west coast of the Pohai bay[J]. Journal of Nanjing University:Natural Sciences, 1964(3):424-440,462-464.

    Google Scholar

    [24] Evans G. Intertidal flat sediments and their environments of deposition in the Wash[J]. Quarterly Journal of the Geological Society, 1965, 121(1-4):209-240. doi: 10.1144/gsjgs.121.1.0209

    CrossRef Google Scholar

    [25] Reineck H E. German North Sea tidal flats[M]//Ginsburg R N. Tidal Deposits. Berlin, Heidelberg: Springer, 1975: 5-12.

    Google Scholar

    [26] 任美锷, 张忍顺, 杨巨海. 江苏王港地区淤泥质潮滩的沉积作用[J]. 海洋通报, 1984(1):40-54

    Google Scholar

    REN Meie, ZHANG Renshun, YANG Junhai. Sedimentation on tidal mud flat in Wanggang area, Jiangsu province, China[J]. Marine Science Bulletin, 1984(1):40-54.

    Google Scholar

    [27] Uncles R J, Stephens J A, Harris C. Seasonal variability of subtidal and intertidal sediment distributions in a muddy, macrotidal estuary: the Humber-Ouse, UK[J]. Geological Society, London, Special Publications, 1998, 139(1):211-219. doi: 10.1144/GSL.SP.1998.139.01.17

    CrossRef Google Scholar

    [28] Gao S. Geomorphology and sedimentology of tidal flats[M]//Coastal Wetlands. 2nd ed. Singapore: Elsevier, 2019: 359-381.

    Google Scholar

    [29] Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352:268-294. doi: 10.1016/j.margeo.2014.03.021

    CrossRef Google Scholar

    [30] Le Hir P, Roberts W, Cazaillet O, et al. Characterization of intertidal flat hydrodynamics[J]. Continental Shelf Research, 2000, 20(12-13):1433-1459. doi: 10.1016/S0278-4343(00)00031-5

    CrossRef Google Scholar

    [31] Fan D D, Wang Y, Liu M. Classifications, sedimentary features and facies associations of tidal flats[J]. Journal of Palaeogeography, 2013, 2(1):66-80.

    Google Scholar

    [32] 王爱军, 叶翔, 赖志坤, 等. 闽江口及周边海域沉积物输运及资源效应[J]. 海洋与湖沼, 2020, 51(5):1013-1024 doi: 10.11693/hyhz20200100024

    CrossRef Google Scholar

    WANG Aijun, YE Xiang, LAI Zhikun, et al. Sediment transport in Minjiang River Estuary and adjacent shelf area and associated resource effect[J]. Oceanologia et Limnologia Sinica, 2020, 51(5):1013-1024. doi: 10.11693/hyhz20200100024

    CrossRef Google Scholar

    [33] 王爱军, 叶翔, 徐晓晖, 等. 亚热带中小型山溪性河流—宽陆架系统“源—汇”过程——以闽江—东海陆架系统为例[J]. 沉积学报, 2022, 40(6):1615-1634

    Google Scholar

    WANG Aijun, YE Xiang, XU Xiaohui, et al. "Source-to-sink" Processes of a subtropical mid-small mountainous river-wide continental shelf system: a case study from the Minjiang river-east China sea system[J]. Acta Sedimentologica Sinica, 2022, 40(6):1615-1634.

    Google Scholar

    [34] 王爱军, 李海琪, 叶翔. 河口潮滩季节性冲淤变化格局及其控制机制——以闽江口琅岐岛潮滩为例[J]. 海洋地质与第四纪地质

    Google Scholar

    WANG Aijun, LI Haiqi, YE Xiang. Seasonal variations of erosion-accretion pattern of estuaries tidal flat and associated mechanims: A case study of tidal flat in Minding estuary[J]. Marine Geology & Quaternary Geology.

    Google Scholar

    [35] Yang S L, Milliman J D, Li P, et al. 50, 000 dams later: Erosion of the Yangtze River and its delta[J]. Global and Planetary Change, 2011, 75(1-2):14-20. doi: 10.1016/j.gloplacha.2010.09.006

    CrossRef Google Scholar

    [36] 杨世伦, 朱骏, 李鹏. 长江口前沿潮滩对来沙锐减和海面上升的响应[J]. 海洋科学进展, 2005, 23(2):152-158 doi: 10.3969/j.issn.1671-6647.2005.02.005

    CrossRef Google Scholar

    YANG Shilun, ZHU Jun, LI Peng. Response of tidal bank on the Changjiang river mouth foreland to drastic decline in riverine sediment supply and sea level rise[J]. Advances in Marine Science, 2005, 23(2):152-158. doi: 10.3969/j.issn.1671-6647.2005.02.005

    CrossRef Google Scholar

    [37] 时连强, 夏小明. 我国淤泥质海岸侵蚀研究现状与展望[J]. 海洋学研究, 2008, 26(4):72-78 doi: 10.3969/j.issn.1001-909X.2008.04.011

    CrossRef Google Scholar

    SHI Lianqiang, XIA Xiaoming. Erosion on muddy coasts in China: an overview[J]. Journal of Marine Sciences, 2008, 26(4):72-78. doi: 10.3969/j.issn.1001-909X.2008.04.011

    CrossRef Google Scholar

    [38] 张雨晨, 余建奎, 任宗海, 等. 入海泥沙减少对黄河三角洲潮滩粒度特征的影响: 物理模型实验[J]. 海洋地质前沿, 2022, 38(6):34-46

    Google Scholar

    ZHANG Yuchen, YU Jiankui, REN Zonghai, et al. Influence of reduced sediment supply on the particle size distribution on tidal flats of the Yellow River Delta: a physical experimental study[J]. Marine Geology Frontiers, 2022, 38(6):34-46.

    Google Scholar

    [39] 伊锋. 黄河入海泥沙减少对潮滩地貌冲淤影响的物理模型研究[D]. 鲁东大学硕士学位论文, 2020

    Google Scholar

    YI Feng. Study on physical model of tidal flat development response to the reduction of the Yellow River sediment into sea[D]. Master Dissertation of Ludong University, 2020.

    Google Scholar

    [40] Yang S L, Zhao Q Y, Belkin I M. Temporal variation in the sediment load of the Yangtze river and the influences of human activities[J]. Journal of Hydrology, 2002, 263(1-4):56-71. doi: 10.1016/S0022-1694(02)00028-8

    CrossRef Google Scholar

    [41] 张云峰. 现代人类活动影响下长江口启东嘴潮滩沉积特征与物质来源变化[D]. 南京大学博士学位论文, 2015

    Google Scholar

    ZHANG Yunfeng. Sedimentary characteristics and sediment source of tidal flat under the influence of human activities at Qidong Foreland, the Yangtze Estuary[D]. Doctor Dissertation of Nanjing University, 2015.

    Google Scholar

    [42] Dai Z J, Mei X F, Darby S E, et al. Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system[J]. Journal of Hydrology, 2018, 566:719-734. doi: 10.1016/j.jhydrol.2018.09.019

    CrossRef Google Scholar

    [43] 朱博渊, 刘凌峰, 李江夏, 等. 径流变化下长江口多分汊系统冲淤分布差异及动力机制[J]. 水科学进展, 2023, 34(4):585-598

    Google Scholar

    ZHU Boyuan, LIU Lingfeng, LI Jiangxia, et al. Erosion-deposition change pattern and hydrodynamic mechanism for the multilevel bifurcating system of Yangtze River Estuary under runoff variation[J]. Advances in Water Science, 2023, 34(4):585-598.

    Google Scholar

    [44] Luan H L, Ding P X, Yang S L, et al. Accretion-erosion conversion in the subaqueous Yangtze Delta in response to fluvial sediment decline[J]. Geomorphology, 2021, 382:107680. doi: 10.1016/j.geomorph.2021.107680

    CrossRef Google Scholar

    [45] Wang A J, Ye X, Lin Z K, et al. Response of sedimentation processes in the Minjiang River subaqueous delta to anthropogenic activities in the river basin[J]. Estuarine, Coastal and Shelf Science, 2020, 232:106484. doi: 10.1016/j.ecss.2019.106484

    CrossRef Google Scholar

    [46] 陈坚, 余兴光, 李东义, 等. 闽江口近百年来海底地貌演变与成因[J]. 海洋工程, 2010, 28(2):82-89 doi: 10.3969/j.issn.1005-9865.2010.02.013

    CrossRef Google Scholar

    CHEN Jian, YU Xingguang, LI Dongyi, et al. Characteristics of underwater morphology evolution of the Minjiang Estuary in recent 100 years and its reasons[J]. The Ocean Engineering, 2010, 28(2):82-89. doi: 10.3969/j.issn.1005-9865.2010.02.013

    CrossRef Google Scholar

    [47] 陈祥锋, 马淑燕, 刘苍字. 闽江口动力沉积特征的探讨[J]. 海洋通报, 1998(6):40-47

    Google Scholar

    CHEN Xiangfeng, MA Shuyan, LIU Cangzi. Dynamic deposition characteristics of the Minjiang estuary[J]. Marine Science Bulletin, 1998(6):40-47.

    Google Scholar

    [48] Shi B W, Cooper J R, Pratolongo P D, et al. Erosion and accretion on a mudflat: The importance of very shallow-water effects[J]. Journal of Geophysical Research:Oceans, 2017, 122(12):9476-9499. doi: 10.1002/2016JC012316

    CrossRef Google Scholar

    [49] Shi B W, Yang S L, Wang Y P, et al. Role of wind in erosion-accretion cycles on an estuarine mudflat[J]. Journal of Geophysical Research:Oceans, 2017, 122(1):193-206. doi: 10.1002/2016JC011902

    CrossRef Google Scholar

    [50] 王爱军, 叶翔, 陈坚. 台风作用下的港湾型潮滩沉积过程: 以2008年“凤凰”台风对福建省罗源湾的影响为例[J]. 海洋学报, 2009, 31(6):77-86

    Google Scholar

    WANG Aijun, YE Xiang, CHEN Jian. Effects of typhoon on sedimentary processes of embayment tidal flat: A case study from the "Fenghuang" typhoon in 2008[J]. Acta Oceanologica Sinica, 2009, 31(6):77-86.

    Google Scholar

    [51] 王爱军, 叶翔. 福建省东北部沿海罗源湾互花米草盐沼环境下粘性沉积物的侵蚀-沉降过程[J]. 第四纪研究, 2013, 33(3):582-593 doi: 10.3969/j.issn.1001-7410.2013.03.19

    CrossRef Google Scholar

    WANG Aijun, YE Xiang. Erosion and deposition processes of cohesive sediment in Spartina alterniflora marsh, Luoyuan bay in the north of Fujian coast, China[J]. Quaternary Sciences, 2013, 33(3):582-593. doi: 10.3969/j.issn.1001-7410.2013.03.19

    CrossRef Google Scholar

    [52] De Vet P L M, Van Prooijen B C, Colosimo I, et al. Variations in storm-induced bed level dynamics across intertidal flats[J]. Scientific Reports, 2020, 10(1):12877. doi: 10.1038/s41598-020-69444-7

    CrossRef Google Scholar

    [53] Liu X Y, Xing F, Shi B W, et al. Erosion and accretion patterns on intertidal mudflats of the Yangtze River Estuary in response to storm conditions[J]. Anthropocene Coasts, 2023, 6(1):6. doi: 10.1007/s44218-023-00020-y

    CrossRef Google Scholar

    [54] 杨世伦, 陈吉余. 试论植物在潮滩发育演变中的作用[J]. 海洋与湖沼, 1994, 25(6):631-635 doi: 10.3321/j.issn:0029-814X.1994.06.010

    CrossRef Google Scholar

    YANG Shilun, CHEN Jiyu. The role of vegetation in mud coast processes[J]. Oceanologia et Limnologia Sinica, 1994, 25(6):631-635. doi: 10.3321/j.issn:0029-814X.1994.06.010

    CrossRef Google Scholar

    [55] 王爱军, 高抒, 贾建军. 互花米草对江苏潮滩沉积和地貌演化的影响[J]. 海洋学报, 2006, 28(1):92-99

    Google Scholar

    WANG Aijun, GAO Shu, JIA Jianjun. Impact of Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes of Jiangsu, China[J]. Acta Oceanologica Sinica, 2006, 28(1):92-99.

    Google Scholar

    [56] Wang A J. Hydrodynamics and associated sediment transport over coastal wetlands in Quanzhou Bay, China[J]. China Ocean Engineering, 2011, 25(1):59-72. doi: 10.1007/s13344-011-0005-x

    CrossRef Google Scholar

    [57] 周曾, 陈雷, 林伟波, 等. 盐沼潮滩生物动力地貌演变研究进展[J]. 水科学进展, 2021, 32(3):470-484

    Google Scholar

    ZHOU Zeng, CHEN Lei, LIN Weibo, et al. Advances in biogeomorphology of tidal flat-saltmarsh systems[J]. Advances in Water Science, 2021, 32(3):470-484.

    Google Scholar

    [58] 龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1):53-62 doi: 10.1360/TB-2020-0291

    CrossRef Google Scholar

    GONG Zheng, CHEN Xindi, ZHOU Zeng, et al. The roles of biological factors in coastal sediment transport: A review[J]. Chinese Science Bulletin, 2021, 66(1):53-62. doi: 10.1360/TB-2020-0291

    CrossRef Google Scholar

    [59] Zhang H Y, Zhou Y, Sun T, et al. Advances in biophysical feedbacks and the resulting stable states in tidal flat systems[J]. Chinese Science Bulletin, 2023, 68(5):457-468. doi: 10.1360/TB-2022-0475

    CrossRef Google Scholar

    [60] Li H, Yang S L. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta[J]. Journal of Coastal Research, 2009, 25(4):915-924,930.

    Google Scholar

    [61] 沈永明, 张忍顺, 王艳红. 互花米草盐沼潮沟地貌特征[J]. 地理研究, 2003, 22(4):520-527 doi: 10.3321/j.issn:1000-0585.2003.04.014

    CrossRef Google Scholar

    SHEN Yongming, ZHANG Renshun, WANG Yanhong. The tidal creek character in salt marsh of Spartina alterniflora Loisel on strong tide coast[J]. Geographical Research, 2003, 22(4):520-527. doi: 10.3321/j.issn:1000-0585.2003.04.014

    CrossRef Google Scholar

    [62] Wang Y P, Gao S, Jia J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China[J]. Marine Geology, 2012, 291-294:147-161. doi: 10.1016/j.margeo.2011.01.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(1309) PDF downloads(65) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint