2023 Vol. 43, No. 6
Article Contents

WANG Aijun, LI Haiqi, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, RAN Chang, TAO Shuqin, LIU Zitong, YU Qian. Patterns and controlling factors of seasonal erosion and accretion of estuarine tidal flat in the Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2023091101
Citation: WANG Aijun, LI Haiqi, YE Xiang, LIANG Haoshen, ZHANG Wangze, WU Shuilan, RAN Chang, TAO Shuqin, LIU Zitong, YU Qian. Patterns and controlling factors of seasonal erosion and accretion of estuarine tidal flat in the Minjiang River estuary[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2023091101

Patterns and controlling factors of seasonal erosion and accretion of estuarine tidal flat in the Minjiang River estuary

  • Tidal flats are fine-grained sediment deposits formed under tidal action, widely distributed worldwide, and play a crucial role in carbon sinks and coastal protection. With the reduction of sediment flux from river to ocean, patterns and factors of erosion-accretion in estuarine tidal flats have been changed, which directly affects the function of tidal flats. It is urgent to study the short-term erosion-accretion process of estuarine tidal flats to provide scientific supports to understand functions of tidal flats. The tidal flat of Langqi Island at the Minjiang River estuary in Fujian Province was scrutinized in terms of the sediment dynamic parameters (including: inundation height, tidal current velocity, wave height, suspended sediment concentration, and grain size distribution) and on-site observations in different seasons. Results show that, the surficial sediments of the tidal flat are mainly composed of fine particles of silt and clay in summer, and coarse particles of sand and silt in winter. The marsh areas covered with Spartina alterniflora in the upper intertidal zone were characterized by mainly continuous accretion, while the middle-lower intertidal zone exhibited periodic erosion and accretion. The general pattern of erosion-accretion in the tidal flats was characterized by accretion in summer and erosion in winter, and the variations in erosion and accretion in the middle intertidal zone were greater than those in the lower intertidal zone. The tidal current velocity, wave height, and suspended sediment concentration in winter were all greater than those in summer. In winter, the net flux of suspended sediment near bottom was mainly transported seaward within a tidal cycle, while in summer, it was mainly transported landward. Therefore, the seasonal variations of erosion-accretion pattern of the tidal flats in Minjiang River estuary were mainly controlled by hydrodynamic processes. In winter, strong wave action caused significant resuspension of surficial sediment and seaward transportation by tidal currents, leading to erosion of the tidal flat; in summer, the wave action was weak, and the suspended sediment settled due to low bottom shear stress and was transported landward by tidal current, leading to accretion in the intertidal zone.

  • 加载中
  • [1] Eisma D. Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons[M]. Boca Raton: CRC Press, 1998: 1-525.

    Google Scholar

    [2] Dyer K R, Christie M C, Wright E W. The classification of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10-11):1039-1060. doi: 10.1016/S0278-4343(00)00011-X

    CrossRef Google Scholar

    [3] Fan D D. Open-coast tidal flats[M]//Davis R A Jr, Dalrymple R W. Principles of Tidal Sedimentology. New York: Springer, 2012: 187-229.

    Google Scholar

    [4] Gao S. Geomorphology and sedimentology of tidal flats[M]//Perillo G M E, Wolanski E, Cahoon D R, et al. Coastal Wetlands: An Ecosystem Integrated Approach. 2nd ed. Amsterdam: Elsevier, 2019: 359-381.

    Google Scholar

    [5] Murray N J, Phinn S R, DeWitt M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738):222-225. doi: 10.1038/s41586-018-0805-8

    CrossRef Google Scholar

    [6] 王颖, 朱大奎. 中国的潮滩[J]. 第四纪研究, 1990, 10(4):291-300 doi: 10.3321/j.issn:1001-7410.1990.04.001

    CrossRef Google Scholar

    WANG Ying, ZHU Dakui. Tidal flats of China[J]. Quaternary Sciences, 1990, 10(4):291-300. doi: 10.3321/j.issn:1001-7410.1990.04.001

    CrossRef Google Scholar

    [7] 王颖. 渤海湾西部贝壳堤与古海岸线问题[J]. 南京大学学报:自然科学版, 1964, 8(3):424-440

    Google Scholar

    WANG Ying. The shell coast ridges and the old coastlines of the west coast of the Bohai bay[J]. Journal of Nanjing University:Natural Sciences, 1964, 8(3):424-440.

    Google Scholar

    [8] Evans G. Intertidal flat sediments and their environments of deposition in the Wash[J]. Quarterly Journal of the Geological Society, 1965, 121:209-240. doi: 10.1144/gsjgs.121.1.0209

    CrossRef Google Scholar

    [9] Stumpf R P. The process of sedimentation on the surface of a salt marsh[J]. Estuarine, Coastal and Shelf Science, 1983, 17(5):495-508. doi: 10.1016/0272-7714(83)90002-1

    CrossRef Google Scholar

    [10] 任美锷, 张忍顺, 杨巨海. 江苏王港地区淤泥质潮滩的沉积作用[J]. 海洋通报, 1984, 3(1):40-54

    Google Scholar

    REN Mei’e, ZHANG Renshun, YANG Juhai. Sedimentation on tidal mud flat in Wanggang Area, Jiangsu province, China[J]. Marine Science Bulletin, 1984, 3(1):40-54.

    Google Scholar

    [11] 张忍顺. 江苏省淤泥质潮滩的潮流特征及悬移质沉积过程[J]. 海洋与湖沼, 1986, 17(3):235-245

    Google Scholar

    ZHANG Renshun. Characteristics of tidal current and sedimentation of suspended load on tidal mud flat in Jiangsu Province[J]. Oceanologia et Limnologia Sinica, 1986, 17(3):235-245.

    Google Scholar

    [12] Amos C L. Fine-grained sediment transport in Chignecto Bay, Bay of Fundy, Canada[J]. Continental Shelf Research, 1987, 7(11-12):1295-1300. doi: 10.1016/0278-4343(87)90032-X

    CrossRef Google Scholar

    [13] 高抒, 朱大奎. 江苏淤泥质海岸剖面的初步研究[J]. 南京大学学报:自然科学版, 1988, 24(1):75-84

    Google Scholar

    GAO Shu, ZHU Dakui. The profile of Jiangsu’s mud coast[J]. Journal of Nanjing University:Natural Sciences, 1988, 24(1):75-84.

    Google Scholar

    [14] Shi Z, Chen J Y. Morphodynamics and sediment dynamics on intertidal mudflats in China (1961-1994)[J]. Continental Shelf Research, 1996, 16(15):1909-1926. doi: 10.1016/0278-4343(95)00059-3

    CrossRef Google Scholar

    [15] Yang S L. The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze estuary[J]. Estuarine, Coastal and Shelf Science, 1998, 47(2):227-233. doi: 10.1006/ecss.1998.0348

    CrossRef Google Scholar

    [16] Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12):1155-1231. doi: 10.1016/S0277-3791(99)00034-7

    CrossRef Google Scholar

    [17] 范代读, 李从先, 邓兵, 等. 潮汐周期在潮坪沉积中的记录[J]. 同济大学学报, 2002, 30(3):281-285

    Google Scholar

    FAN Daidu, LI Congxian, DENG Bing, et al. Tidal cycles recorded in tidal-flat deposits[J]. Journal of Tongji University, 2002, 30(3):281-285.

    Google Scholar

    [18] 贾建军, 汪亚平, 高抒, 等. 江苏大丰潮滩推移质输运与粒度趋势信息解译[J]. 科学通报, 2005, 50(22): 2546-2554

    Google Scholar

    JIA Jianjun, WANG Yaping, GAO Shu, et al. Interpreting grain-size trends associated with bedload transport on the intertidal flats at Dafeng, central Jiangsu coast[J]. Chinese Science Bulletin, 2006, 51(3): 341-351.

    Google Scholar

    [19] 高抒. 潮滩沉积记录正演模拟初探[J]. 第四纪研究, 2007, 27(5):750-755 doi: 10.3321/j.issn:1001-7410.2007.05.016

    CrossRef Google Scholar

    GAO Shu. Determination of preservation potential in tidal flat sedimentary records: A forward modeling approach[J]. Quaternary Sciences, 2007, 27(5):750-755. doi: 10.3321/j.issn:1001-7410.2007.05.016

    CrossRef Google Scholar

    [20] 王爱军, 高抒, 贾建军. 互花米草对江苏潮滩沉积和地貌演化的影响[J]. 海洋学报, 2006, 28(1):92-99

    Google Scholar

    WANG Aijun, GAO Shu, JIA Jianjun. Impact of Spartina alterniflora on sedimentary and morphological evolution of tidal salt marshes of Jiangsu, China[J]. Acta Oceanologica Sinica, 2006, 28(1):92-99.

    Google Scholar

    [21] 王爱军, 高抒, 陈坚, 等. 福建泉州湾盐沼对台风“格美”的沉积动力响应[J]. 科学通报, 2008, 53(22): 2814-2823

    Google Scholar

    WANG Aijun, GAO Shu, CHEN Jian, et al. Sediment dynamic responses of coastal salt marsh to typhoon “KAEMi” in Quanzhou Bay, Fujian Province, China[J]. Chinese Science Bulletin, 2009, 54(1): 120-130.

    Google Scholar

    [22] 王爱军, 叶翔, 陈坚. 台风作用下的港湾型潮滩沉积过程: 以2008年“凤凰”台风对福建省罗源湾的影响为例[J]. 海洋学报, 2009, 31(6):77-86

    Google Scholar

    WANG Aijun, YE Xiang, CHEN Jian. Effects of typhoon on sedimentary processes of embayment tidal flat: A case study from the “Fenghuang” typhoon in 2008[J]. Acta Oceanologica Sinica, 2009, 31(6):77-86.

    Google Scholar

    [23] 王爱军, 叶翔, 李云海. 台风期间港湾海岸湿地侵蚀、淤积的环境动力学机制初探: 以福建罗源湾为例[J]. 沉积学报, 2013, 31(2):315-324

    Google Scholar

    WANG Aijun, YE Xiang, LI Yunhai. Environmental dynamic mechanisms for sediment erosion and accretion over embayment coastal wetland during typhoon event: A case study from Luoyuan Bay, Fujian, China[J]. Acta Sedimentologica Sinica, 2013, 31(2):315-324.

    Google Scholar

    [24] Wang Y P, Gao S, Jia J J, et al. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China[J]. Marine Geology, 2012, 291-294:147-161. doi: 10.1016/j.margeo.2011.01.004

    CrossRef Google Scholar

    [25] Fan D D, Wang Y, Liu M. Classifications, sedimentary features and facies associations of tidal flats[J]. Journal of Palaeogeography, 2013, 2(1):66-80.

    Google Scholar

    [26] Yu Q, Wang Y W, Shi B W, et al. Physical and sedimentary processes on the tidal flat of central Jiangsu Coast, China: Headland induced tidal eddies and benthic fluid mud layers[J]. Continental Shelf Research, 2017, 133:26-36. doi: 10.1016/j.csr.2016.12.015

    CrossRef Google Scholar

    [27] Shi B W, Cooper J R, Pratolongo P D, et al. Erosion and accretion on a mudflat: The importance of very shallow-water effects[J]. Journal of Geophysical Research:Oceans, 2017, 122(12):9476-9499. doi: 10.1002/2016JC012316

    CrossRef Google Scholar

    [28] Shi B W, Cooper J R, Li J S, et al. Hydrodynamics, erosion and accretion of intertidal mudflats in extremely shallow waters[J]. Journal of Hydrology, 2019, 573:31-39. doi: 10.1016/j.jhydrol.2019.03.065

    CrossRef Google Scholar

    [29] 龚政, 黄诗涵, 徐贝贝, 等. 江苏中部沿海潮滩对台风暴潮的响应[J]. 水科学进展, 2019, 30(2):243-254 doi: 10.14042/j.cnki.32.1309.2019.02.009

    CrossRef Google Scholar

    GONG Zheng, HUANG Shihan, XU Beibei, et al. Evolution of tidal flat in response to storm surges: a case study from the central Jiangsu Coast[J]. Advances in Water Science, 2019, 30(2):243-254. doi: 10.14042/j.cnki.32.1309.2019.02.009

    CrossRef Google Scholar

    [30] 龚政, 陈欣迪, 周曾, 等. 生物作用对海岸带泥沙运动的影响[J]. 科学通报, 2021, 66(1):53-62 doi: 10.1360/TB-2020-0291

    CrossRef Google Scholar

    GONG Zheng, CHEN Xindi, ZHOU Zeng, et al. The roles of biological factors in coastal sediment transport: A review[J]. Chinese Science Bulletin, 2021, 66(1):53-62. doi: 10.1360/TB-2020-0291

    CrossRef Google Scholar

    [31] Zhou Z, Liu Q, Fan D D, et al. Simulating the role of tides and sediment characteristics on tidal flat sorting and bedding dynamics[J]. Earth Surface Processes and Landforms, 2021, 46(11):2163-2176. doi: 10.1002/esp.5166

    CrossRef Google Scholar

    [32] Zhou Z, Wu Y M, Fan D D, et al. Sediment sorting and bedding dynamics of tidal flat wetlands: Modeling the signature of storms[J]. Journal of Hydrology, 2022, 610:127913. doi: 10.1016/j.jhydrol.2022.127913

    CrossRef Google Scholar

    [33] Liu X Y, Xing F, Shi B W, et al. Erosion and accretion patterns on intertidal mudflats of the Yangtze River Estuary in response to storm conditions[J]. Anthropocene Coasts, 2023, 6:6. doi: 10.1007/s44218-023-00020-y

    CrossRef Google Scholar

    [34] Chen J, Wang D Q, Li Y J, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11):e2020GB006772. doi: 10.1029/2020GB006772

    CrossRef Google Scholar

    [35] Chen Z L, Lee S Y. Tidal flats as a significant carbon reservoir in global coastal ecosystems[J]. Frontiers in Marine Science, 2022, 9:900896. doi: 10.3389/fmars.2022.900896

    CrossRef Google Scholar

    [36] Schuerch M, Spencer T, Temmerman S, et al. Future response of global coastal wetlands to sea-level rise[J]. Nature, 2018, 561(7722):231-234. doi: 10.1038/s41586-018-0476-5

    CrossRef Google Scholar

    [37] Li X Z, Bellerby R, Craft C, et al. Coastal wetland loss, consequences, and challenges for restoration[J]. Anthropocene Coasts, 2018, 1:1-15.

    Google Scholar

    [38] Walter R K, O’Leary J K, Vitousek S, et al. Large-scale erosion driven by intertidal eelgrass loss in an estuarine environment[J]. Estuarine, Coastal and Shelf Science, 2020, 243:106910. doi: 10.1016/j.ecss.2020.106910

    CrossRef Google Scholar

    [39] Yang S L, Luo X X, Temmerman S, et al. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline[J]. Limnology and Oceanography, 2020, 65(9):1990-2009. doi: 10.1002/lno.11432

    CrossRef Google Scholar

    [40] 汪亚平, 贾建军, 杨阳, 等. 长江三角洲蓝图重绘的基础科学问题: 进展与未来研究[J]. 海洋科学, 2019, 43(10):2-12

    Google Scholar

    WANG Yaping, JIA Jianjun, YANG Yang, et al. Fundamental scientific issues for the Changjiang River delta associated with the new blueprint of future development: overview and prospect[J]. Marine Sciences, 2019, 43(10):2-12.

    Google Scholar

    [41] 中国海湾志编纂委员会. 中国海湾志(第十四分册: 重要河口)[M]. 北京: 海洋出版社, 1998: 626-691

    Google Scholar

    State Oceanic Administration. China Embayment (No. 14: Important River Estuaries)[M]. Beijing, Marine Press, 1998: 626-691.

    Google Scholar

    [42] Wang A J, Ye X, Lin Z K, et al. Response of sedimentation processes in the Minjiang River subaqueous delta to anthropogenic activities in the river basin[J]. Estuarine, Coastal and Shelf Science, 2020, 232:106484. doi: 10.1016/j.ecss.2019.106484

    CrossRef Google Scholar

    [43] 陈坚, 汤军健, 李东义. 闽江入海物质对闽江口及沿海地区的影响[M]. 北京: 科学出版社, 2015: 1-172

    Google Scholar

    CHEN Jian, TANG Junjian, LI Dongyi. Influence of Outflows from the Minjiang River on the Estuary and Adjacent Coastal Areas[M]. Beijing: Science Press, 2015: 1-172.

    Google Scholar

    [44] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Petrology, 1954, 24(3):151-158.

    Google Scholar

    [45] Soulsby R. Dynamics of Marine Sands: A Manual for Practical Applications[M]. London: Thomas Telford, 1997: 1-249.

    Google Scholar

    [46] Longuet-Higgins M S. On the statistical distribution of the heights of sea waves[J]. Journal of Marine Research, 1952, 11(3):245-266.

    Google Scholar

    [47] Karimpour A, Chen Q. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox[J]. Computers & Geosciences, 2017, 106:181-189.

    Google Scholar

    [48] Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: John Wiley & Sons, 1986: 1-342.

    Google Scholar

    [49] Taki K. Critical shear stress for cohesive sediment transport[M]//McAnally W H, Mehta A J. Proceedings in Marine Science: Coastal and Estuarine Fine Sediment Processes. Amsterdam: Elsevier, 2000, 3: 53-61.

    Google Scholar

    [50] Roberts W, Le Hir P, Whitehouse R J S. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10-11):1079-1097. doi: 10.1016/S0278-4343(00)00013-3

    CrossRef Google Scholar

    [51] Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352:268-294. doi: 10.1016/j.margeo.2014.03.021

    CrossRef Google Scholar

    [52] 杨世伦. 长江三角洲潮滩季节性冲淤循环的多因子分析[J]. 地理学报, 1997, 52(2):123-130 doi: 10.3321/j.issn:0375-5444.1997.02.006

    CrossRef Google Scholar

    YANG Shilun. Multi-factor analysis of the annually cyclic erosion deposition of the Changjiang River Deltaic[J]. Acta Geographica Sinica, 1997, 52(2):123-130. doi: 10.3321/j.issn:0375-5444.1997.02.006

    CrossRef Google Scholar

    [53] Yang S L, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4):657-671. doi: 10.1016/j.ecss.2007.10.024

    CrossRef Google Scholar

    [54] Folmer E O, Bijleveld A I, Holthuijsen S, et al. Space-time analyses of sediment composition reveals synchronized dynamics at all intertidal flats in the Dutch Wadden Sea[J]. Estuarine, Coastal and Shelf Science, 2023, 285:108308. doi: 10.1016/j.ecss.2023.108308

    CrossRef Google Scholar

    [55] 王爱军, 叶翔, 徐晓晖, 等. 亚热带中小型山溪性河流—宽陆架系统“源-汇”过程: 以闽江—东海陆架系统为例[J]. 沉积学报, 2022, 40(6):1615-1634

    Google Scholar

    WANG Aijun, YE Xiang, XU Xiaohui, et al. “Source-to-sink” processes of a subtropical mid-small mountainous river-wide continental shelf system: A case study from the Minjiang River-east China Sea system[J]. Acta Sedimentologica Sinica, 2022, 40(6):1615-1634.

    Google Scholar

    [56] 李海琪, 王爱军, 叶翔, 等. 闽江口琅岐岛潮滩沉积物粒度时空变化特征研究[J]. 海洋地质与第四纪地质, 2023, 待刊

    Google Scholar

    LI Haiqi, WANG Aijun, YE Xiang, et al. Spatio-temporal variations of surficial sediment grain-size of tidal flat in Minjiang estuary[J]. Marine Geology & Quaternary Geology, 2023, in press.

    Google Scholar

    [57] Le Hir P, Roberts W, Cazaillet O, et al. Characterization of intertidal flat hydrodynamics[J]. Continental Shelf Research, 2000, 20(12-13):1433-1459. doi: 10.1016/S0278-4343(00)00031-5

    CrossRef Google Scholar

    [58] Chen D Z, Tang J P, Xing F, et al. Erosion and accretion of salt marsh in extremely shallow water stages[J]. Frontiers in Marine Science, 2023, 10:1198536. doi: 10.3389/fmars.2023.1198536

    CrossRef Google Scholar

    [59] Whitehouse R J S, Soulsby R L, Reborts W, et al. Dynamics of Estuarine Muds: A Manual for Practical Applications[M]. London: Thomas Telford, 2000: 1-210.

    Google Scholar

    [60] De Swart H E, Zimmerman J T F. Morphodynamics of tidal inlet systems[J]. Annual Review of Fluid Mechanics, 2009, 41:203-229. doi: 10.1146/annurev.fluid.010908.165159

    CrossRef Google Scholar

    [61] 杨洋, 陈沈良, 徐丛亮. 黄河口滨海区冲淤演变与潮流不对称[J]. 海洋学报, 2021, 43(6):13-25

    Google Scholar

    YANG Yang, CHEN Shenliang, XU Congliang. Morphodynamics and tidal flow asymmetry of the Huanghe River Estuary[J]. Haiyang Xuebao, 2021, 43(6):13-25.

    Google Scholar

    [62] 赵建春, 李九发, 李占海, 等. 长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J]. 海洋学报, 2009, 31(4):103-111

    Google Scholar

    ZHAO Jianchun, LI Jiufa, LI Zhanhai, et al. Researches on characteristics and dynamic mechanism of short-term scouring and silting changes of the tidal flat on Nanhui Spit in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2009, 31(4):103-111.

    Google Scholar

    [63] 陈祥锋, 马淑燕, 刘苍字. 闽江口动力沉积特征的探讨[J]. 海洋通报, 1998, 17(6):40-47

    Google Scholar

    CHEN Xiangfeng, MA Shuyan, LIU Cangzi. Dynamic deposition characteristics of the Minjiang Estuary[J]. Marine Science Bulletin, 1998, 17(6):40-47.

    Google Scholar

    [64] 杨世伦, 时钟, 赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报, 2001, 23(4):75-80

    Google Scholar

    YANG Shilun, SHI Zhong, ZHAO Qingying. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang Estuary[J]. Acta Oceanologica Sinica, 2001, 23(4):75-80.

    Google Scholar

    [65] Yang S L, Shi B W, Bouma T J, et al. Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze Estuary[J]. Estuaries and Coasts, 2012, 35(1):169-182. doi: 10.1007/s12237-011-9424-4

    CrossRef Google Scholar

    [66] Zhao Y, Peng Z, He Q, et al. Wave attenuation over combined salt marsh vegetation[J]. Ocean Engineering, 2023, 267:113234. doi: 10.1016/j.oceaneng.2022.113234

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(822) PDF downloads(102) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint