2023 Vol. 43, No. 6
Article Contents

LI Yan, CHEN Yining. Sedimentary geomorphology of mangrove coasts in perspective of energy dissipation[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2023091301
Citation: LI Yan, CHEN Yining. Sedimentary geomorphology of mangrove coasts in perspective of energy dissipation[J]. Marine Geology & Quaternary Geology, 2023, 43(6): 25-33. doi: 10.16562/j.cnki.0256-1492.2023091301

Sedimentary geomorphology of mangrove coasts in perspective of energy dissipation

More Information
  • Energy dissipation has been widely studied in coastal sedimentary geomorphology. It has been assumed that thresholds in energy dissipation may exist in geomorphological evolution; however, whether energy dissipation evolves towards a minimum, maximum, or both, aroused a big debate in a long history. We summarized the previous publications to revisit the energy dissipation problem in coastal geomorphology, and proposed a concept of ‘impedance matching’ to explain the problem regarding minimum and maximum values of energy dissipation. Once the geomorphological system showed a maximal mechanical energy storage but a minimal thermal energy dissipation, it could be a ‘resonance impedance matching’ system. Otherwise, it could be a ‘gradience impedance matching’ system. The Ω classification of beaches obtained by dimensionless settling velocity was a typical example for these two ‘impedance matching’ systems. Based on the new concept, we reviewed geomorphological studies on mangrove ecosystems, and revealed the ‘impedance matching’ and the energy dissipation across the interfaces of tidal creek–tidal flat–mangrove systems. In addition, we discussed how the energy dissipation could affect the growth of mangroves through hydrodynamics and thermal dynamics, and pointed out that the three-dimensional structure of tidal creek–tidal flat is very important to maintain the stability of mangrove ecosystems and therefore should be considered in the future mangrove restoration projects.

  • 加载中
  • [1] 郭振仁. 能量耗散率极值原理评述[J]. 重庆交通学院学报, 1983(2):95-100

    Google Scholar

    GUO Zhenren. Comments on the law of extreme rate on energy dissipation[J]. Journal of Chongqing Jiaotong University, 1983(2):95-100.

    Google Scholar

    [2] Yang C T, Song C C S. Theory of minimum rate of energy dissipation[J]. Journal of the Hydraulics Division, 1979, 105(7):769-784. doi: 10.1061/JYCEAJ.0005235

    CrossRef Google Scholar

    [3] 黄万里. 连续介体动力学最大能量消散率定律[J]. 清华大学学报, 1981, 21(1):87-96

    Google Scholar

    HUANG Wanli. The law of maximum rate of energy dissipation on continuum dynamics[J]. Journal of Tsinghua University, 1981, 21(1):87-96.

    Google Scholar

    [4] 黄才安, 赵晓冬, 周济人. 明渠水力设计中的能耗极值假说[J]. 水道港口, 2010, 31(5):330-334

    Google Scholar

    HUANG Caian, ZHAO Xiaodong, ZHOU Jiren. Extremal hypotheses of energy dissipation used in open channel design[J]. Journal of Waterway and Harbor, 2010, 31(5):330-334.

    Google Scholar

    [5] 李炎, 陈一宁, 吴祥柏. 论陆-海界面的复参数化[J]. 海洋学研究, 2022, 40(3):3-8

    Google Scholar

    LI Yan, CHEN Yining, WU Xiangbai. Complex parameterization for land-ocean interface: a perspective[J]. Journal of Marine Sciences, 2022, 40(3):3-8.

    Google Scholar

    [6] 席兵. 关于传输线阻抗匹配问题的分析[J]. 重庆邮电学院学报, 1999, 11(2):42-44,87

    Google Scholar

    XI Bing. Analysis on impedance matching problems about transmission line[J]. Journal of Chongqing University of Posts and Telecommunications, 1999, 11(2):42-44,87.

    Google Scholar

    [7] Wright L D, Short A D. Morphodynamic variability of surf zones and beaches: a synthesis[J]. Marine Geology, 1984, 56(1-4):93-118. doi: 10.1016/0025-3227(84)90008-2

    CrossRef Google Scholar

    [8] Perillo G M E. Chapter 2 Definitions and geomorphologic classifications of estuaries[J]. Developments in Sedimentology, 1995, 53:17-47.

    Google Scholar

    [9] Lewis III R R. Ecological engineering for successful management and restoration of mangrove forests[J]. Ecological Engineering, 2005, 24(4):403-418. doi: 10.1016/j.ecoleng.2004.10.003

    CrossRef Google Scholar

    [10] Goldberg L, Lagomasino D, Thomas N, et al. Global declines in human-driven mangrove loss[J]. Global Change Biology, 2020, 26(10):5844-5855. doi: 10.1111/gcb.15275

    CrossRef Google Scholar

    [11] Schwarz C, van Rees F, Xie D H, et al. Salt marshes create more extensive channel networks than mangroves[J]. Nature Communications, 2022, 13(1):207. doi: 10.1038/s41467-022-29654-1

    CrossRef Google Scholar

    [12] Chen Y N, Li Y, Cai T L, et al. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries[J]. Earth Surface Processes and Landforms, 2016, 41(13):1967-1979. doi: 10.1002/esp.3964

    CrossRef Google Scholar

    [13] Chen Y N, Li Y, Thompson C, et al. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary[J]. Geomorphology, 2018, 318:270-282. doi: 10.1016/j.geomorph.2018.06.018

    CrossRef Google Scholar

    [14] 陈一宁, 陈鹭真, 蔡廷禄, 等. 滨海湿地生物地貌学进展及在生态修复中的应用展望[J]. 海洋与湖沼, 2020, 51(5):1055-1065

    Google Scholar

    CHEN Yining, CHEN Luzhen, CAI Tinglu, et al. Advances in biogeomorphology in coastal wetlands and its application in ecological restoration[J]. Oceanologia et Limnologia Sinica, 2020, 51(5):1055-1065.

    Google Scholar

    [15] Nepf H M. Flow and transport in regions with aquatic vegetation[J]. Annual Review of Fluid Mechanics, 2012, 44:123-142. doi: 10.1146/annurev-fluid-120710-101048

    CrossRef Google Scholar

    [16] Chang Y, Chen Y N, Li Y. Flow modification associated with mangrove trees in a macro-tidal flat, southern China[J]. Acta Oceanologica Sinica, 2019, 38(2):1-10. doi: 10.1007/s13131-018-1163-y

    CrossRef Google Scholar

    [17] Chen L Z, Feng H Y, Gu X X, et al. Linkages of flow regime and micro-topography: prediction for non-native mangrove invasion under sea-level rise[J]. Ecosystem Health and Sustainability, 2020, 6(1):1780159. doi: 10.1080/20964129.2020.1780159

    CrossRef Google Scholar

    [18] Kirwan M L, Megonigal J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478):53-60. doi: 10.1038/nature12856

    CrossRef Google Scholar

    [19] Ahmed M R. Assessing changes in Sundarbans mangrove wetlands: identifying influencing factors and developing effective management strategies[D]. Coastal and Ocean Management Institute, 2023.

    Google Scholar

    [20] 王文卿, 石建斌, 陈鹭真, 等. 中国红树林湿地保护与恢复战略研究[M]. 北京: 中国环境出版集团, 2021

    Google Scholar

    WANG Wenqing, SHI Jianbin, CHEN Luzhen, et al. Research of Conservation and Restoration Strategy of Mangrove Wetlands in China[M]. Beijing: China Environmental Publishing Group, 2021.

    Google Scholar

    [21] Xiao M, Cai T L, Wang X K, et al. Response of native and exotic saltmarsh species to sediment deposition addition[J]. Science of the Total Environment, 2023, 888:164271. doi: 10.1016/j.scitotenv.2023.164271

    CrossRef Google Scholar

    [22] 李屹, 陈一宁, 李炎. 红树林与互花米草盐沼交界区空间格局变化规律的遥感分析[J]. 海洋通报, 2017, 36(3):348-360 doi: 10.11840/j.issn.1001-6392.2017.03.014

    CrossRef Google Scholar

    LI Yi, CHEN Yining, LI Yan. Remote sensing analysis of the changes in the ecotone of mangrove forests and Spartina alterniflora saltmarshes[J]. Marine Science Bulletin, 2017, 36(3):348-360. doi: 10.11840/j.issn.1001-6392.2017.03.014

    CrossRef Google Scholar

    [23] Furukawa K, Wolanski E, Mueller H. Currents and sediment transport in mangrove forests[J]. Estuarine, Coastal and Shelf Science, 1997, 44(3):301-310. doi: 10.1006/ecss.1996.0120

    CrossRef Google Scholar

    [24] Massel S R, Furukawa K, Brinkman R M. Surface wave propagation in mangrove forests[J]. Fluid Dynamics Research, 1999, 24(4):219-249. doi: 10.1016/S0169-5983(98)00024-0

    CrossRef Google Scholar

    [25] Mazda Y, Kobashi D, Okada S. Tidal-scale hydrodynamics within mangrove swamps[J]. Wetlands Ecology and Management, 2005, 13(6):647-655. doi: 10.1007/s11273-005-0613-4

    CrossRef Google Scholar

    [26] Horstman E M, Dohmen-Janssen C M, Bouma T J, et al. Tidal-scale flow routing and sedimentation in mangrove forests: combining field data and numerical modelling[J]. Geomorphology, 2015, 228:244-262. doi: 10.1016/j.geomorph.2014.08.011

    CrossRef Google Scholar

    [27] Vo-Luong P, Massel S. Energy dissipation in non-uniform mangrove forests of arbitrary depth[J]. Journal of Marine Systems, 2008, 74(1-2):603-622. doi: 10.1016/j.jmarsys.2008.05.004

    CrossRef Google Scholar

    [28] Tanino Y, Nepf H. Laboratory investigation of mean drag in a random array of Rigid, Emergent Cylinders[J]. Journal of Hydraulic Engineering, 2008, 134(1):34-41. doi: 10.1061/(ASCE)0733-9429(2008)134:1(34)

    CrossRef Google Scholar

    [29] Horstman E M, Dohmen-Janssen C M, Narra P M F, et al. Wave Attenuation in Mangroves: A Quantitative Approach to Field Observations. Coastal Engineering, 2014, 94: 47-62.

    Google Scholar

    [30] Hu Z, Van Belzen J, Van Der Wal D, et al. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats: the importance of temporal and spatial variability in hydrodynamic forcing[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(7):1450-1469. doi: 10.1002/2014JG002870

    CrossRef Google Scholar

    [31] Kamil E A, Takaijudin H, Hashim A M. Mangroves as coastal bio-shield: a review of mangroves performance in wave attenuation[J]. Civil Engineering Journal, 2021, 7(11):1964-1981. doi: 10.28991/cej-2021-03091772

    CrossRef Google Scholar

    [32] Adytia D, Husrin S. Numerical simulations of nonbreaking solitary wave attenuation by a parameterized mangrove forest model[J]. International Journal of Engineering and Technology, 2019, 8(1.9):10-16.

    Google Scholar

    [33] Braatz S, Fortuna S, Broadhead J et al. Coastal protection in the aftermath of the Indian Ocean Tsunami: what role for forests and trees?[C]//Proceedings of the Regional Technical Workshop. Khao Lak, Thailand, 2007: 161-184.

    Google Scholar

    [34] Zhang K Q, Liu H Q, Li Y P, et al. The role of mangroves in attenuating storm surges[J]. Estuarine, Coastal and Shelf Science, 2012, 102-103:11-23. doi: 10.1016/j.ecss.2012.02.021

    CrossRef Google Scholar

    [35] Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12):1155-1231. doi: 10.1016/S0277-3791(99)00034-7

    CrossRef Google Scholar

    [36] 汪亚平, 张忍顺. 江苏弶港盐沼风车河潮沟地貌与动力演化[J]. 海洋科学集刊, 1999(41):40-50

    Google Scholar

    WANG Yaping, ZHANG Renshun. Evolution of geomorphology and hydrodynamics in Fengche creek at Jianggang Saltmarsh, Jiangsu, China[J]. Studia Marina Sinica, 1999(41):40-50.

    Google Scholar

    [37] 汪亚平, 张忍顺, 高抒. 论盐沼-潮沟系统的地貌动力响应[J]. 科学通报, 1998, 43(21): 2315-2320

    Google Scholar

    WANG Yaping, ZHANG Renshun, GAO Shu. Geomorphic and hydrodynamic responses in salt marsh-tidal creek systems, Jiangsu, China[J]. Chinese Science Bulletin, 1999, 44(6): 544-549.

    Google Scholar

    [38] 汪亚平, 高抒, 贾建军. 浪流联合作用下潮滩沉积动力过程的高分辨率数据采集与分析[J]. 科学通报, 2006, 51(3): 339-348

    Google Scholar

    WANG Yaping, GAO Shu, JIA Jianjun. High-resolution data collection for analysis of sediment dynamic processes associated with combined current-wave action over intertidal flats[J]. Chinese Science Bulletin, 2006, 51(7): 866-877.

    Google Scholar

    [39] Coco G, Zhou Z, Van Maanen B, et al. Morphodynamics of tidal networks: advances and challenges[J]. Marine Geology, 2013, 346:1-16. doi: 10.1016/j.margeo.2013.08.005

    CrossRef Google Scholar

    [40] Liu B, Cai T L, Chen Y N, et al. Sediment dynamic changes induced by the presence of a dyke in a Scirpus mariqueter saltmarsh[J]. Coastal Engineering, 2022, 174:104119. doi: 10.1016/j.coastaleng.2022.104119

    CrossRef Google Scholar

    [41] Kim D, Cairns D M, Bartholdy J. Tidal creek morphology and sediment type influence spatial trends in salt marsh vegetation[J]. The Professional Geographer, 2013, 65(4):544-560. doi: 10.1080/00330124.2013.820617

    CrossRef Google Scholar

    [42] 龚政, 白雪冰, 靳闯, 等. 基于植被和潮动力作用的潮滩剖面演变数值模拟[J]. 水科学进展, 2018, 29(6):877-886

    Google Scholar

    GONG Zheng, BAI Xuebing, JIN Chuang, et al. A numerical model for the cross-shore profile evolution of tidal flats based on vegetation growth and tidal processes[J]. Advances in Water Science, 2018, 29(6):877-886.

    Google Scholar

    [43] Chen Y, Thompson C E L, Collins M B. Saltmarsh creek bank stability: biostabilisation and consolidation with depth[J]. Continental Shelf Research, 2012, 35:64-74. doi: 10.1016/j.csr.2011.12.009

    CrossRef Google Scholar

    [44] Van Zee R. The role of creeks for tidal exchange in the mangrove forest of Lac Bay, Bonaire[D]. Master Dissertation of University of Twente, 2022: 84.

    Google Scholar

    [45] 张忍顺, 王雪瑜. 江苏省淤泥质海岸潮沟系统[J]. 地理学报, 1991, 46(2):195-206 doi: 10.11821/xb199102008

    CrossRef Google Scholar

    ZHANG Renshun, WANG Xueyu. Tidal creek system on tidal mud flat of Jiangsu province[J]. Acta Geographica Sinica, 1991, 46(2):195-206. doi: 10.11821/xb199102008

    CrossRef Google Scholar

    [46] Hosseini S T, Chegini V, Sadrinasab M, et al. Temperature, salinity and water-age variations in a tidal creek network, Bushehr Port, Iran[J]. Journal of Coastal Conservation, 2018, 22(6):1093-1106. doi: 10.1007/s11852-018-0616-y

    CrossRef Google Scholar

    [47] Chen Y N, Chen L Z, Zhang Z Y, et al. Tidal creeks mediate micro-climate within artificial mangroves at their northmost boundary in China[J]. Ecological Engineering, 2023, 192:106970. doi: 10.1016/j.ecoleng.2023.106970

    CrossRef Google Scholar

    [48] Borges J S, De Grande F R, Costa T M. Do Lower air or water temperatures limit the southern distribution of the white mangrove Laguncularia racemosa in South America?[J]. Estuarine, Coastal and Shelf Science, 2019, 230:106449. doi: 10.1016/j.ecss.2019.106449

    CrossRef Google Scholar

    [49] 卢昌义, 金亮, 叶勇, 等. 秋茄红树林湿地土壤呼吸昼夜变化及其温度敏感性[J]. 厦门大学学报:自然科学版, 2012, 51(4):793-797

    Google Scholar

    LU Changyi, JIN Liang, YE Yong, et al. Diurnal variation of soil respiration and its temperature sensitivity in Kandelia candel mangrove wetland[J]. Journal of Xiamen University:Natural Science, 2012, 51(4):793-797.

    Google Scholar

    [50] Chen E J, Blaze J A, Smith R S, et al. Freeze tolerance of poleward-spreading mangrove species weakened by soil properties of resident salt marsh competitor[J]. Journal of Ecology, 2020, 108(4):1725-1737. doi: 10.1111/1365-2745.13350

    CrossRef Google Scholar

    [51] 陈鹭真, 杜晓娜, 陆銮眉, 等. 模拟冬季低温和夜间退潮对无瓣海桑幼苗的协同作用[J]. 应用生态学报, 2012, 23(4):953-958

    Google Scholar

    CHEN Luzhen, DU Xiaona, LU Luanmei, et al. Synergistic effects of low temperature in winter and ebb tide at night on Sonneratia apetala seedlings growth and key eco-physiological traits[J]. Chinese Journal of Applied Ecology, 2012, 23(4):953-958.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(1125) PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint