2021 Vol. 40, No. 11
Article Contents

WU Zhe, JI Jianping, WANG Baodi, TANG Yuan, QIN Yadong, GONG Xiaodong, HE Juan. Zircon U-Pb age, geochemical characteristics and constraints on the Jinshajiang Paleo-Tethys collision of Early-Middle Triassic Malasongduo Formation volcanic rocks from the Gongjue area, Eastern Tibet[J]. Geological Bulletin of China, 2021, 40(11): 1877-1891.
Citation: WU Zhe, JI Jianping, WANG Baodi, TANG Yuan, QIN Yadong, GONG Xiaodong, HE Juan. Zircon U-Pb age, geochemical characteristics and constraints on the Jinshajiang Paleo-Tethys collision of Early-Middle Triassic Malasongduo Formation volcanic rocks from the Gongjue area, Eastern Tibet[J]. Geological Bulletin of China, 2021, 40(11): 1877-1891.

Zircon U-Pb age, geochemical characteristics and constraints on the Jinshajiang Paleo-Tethys collision of Early-Middle Triassic Malasongduo Formation volcanic rocks from the Gongjue area, Eastern Tibet

More Information
  • There is a large number of rock and structural information of the Late Paleozoic-Early Mesozoic retained in the Jinshajiang binding belt, which is the main window to study the evolution of ancient land subduction-land collision in the Jinshajiang.This paper reports the zircon U-Pb age and whole rock geochemical characteristics of the early Middle Triassic dacite-rhyolite in the Gongjue area, and discusses its petrogenesis and magma source area.Based on LA-ICP-MS zircon U-Pb dating, the weighted average U-Pb age of four felsic volcanic rocks is 246.2±1.7 Ma, 245.5±0.7 Ma, 244.7±6 Ma and 246.2±0.5 Ma, respectively, indicating the volcanic rocks were formed at 245~246 Ma.Geochemical analysis shows that felsic volcanic rocks in the study area are rich in Si (SiO2=67.16%~74.62%), rich in K (K2O=3.44%~5.94%), poor in Na (Na2O=1.75%~2.53%) and poor in Mg (MgO=0.28%~1.04%).The A/CNK values range from 1.07 to 1.41, indicating peraluminous high-K calc-alkaline characteristics.The REE distribution curve shows a "V" shape.Large ion lithophile elements and high field strength elements Rb, K, and Th are relatively enriched, while Nb、Ta、Sr and Ti are relatively depleted, indicating that the magma was originated from the ancient crust.It is suggested that the felsic volcanic rocks in the Gongjue area are the products of partial melting of the lower crust caused by the underplating of mantle-derived basic magma under the background of westward subduction of the Jinshajiang ancient oceanic crust, which is in the transition stage of subduction to collision.Combined with regional geological data and previous studies, it is considered that the Gongjue area of Jinshajiang junction belt experienced Permian subduction, Early Triassic subduction-collision transition, Middle Triassic continent- continent collision and Late Triassic post-collision extension, until the end of orogeny in late Late Triassic.

  • 加载中
  • [1] 莫宣学, 潘桂棠. 从特提斯到青藏高原形成: 构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6): 43-51. doi: 10.3321/j.issn:1005-2321.2006.06.007

    CrossRef Google Scholar

    [2] 陈文, 张彦, 陈克龙, 等. 青海玉树哈秀岩体成因及40Ar/39Ar年代学研究[J]. 岩石矿物学杂志, 2005, 24(5): 393-396. doi: 10.3969/j.issn.1000-6524.2005.05.007

    CrossRef Google Scholar

    [3] 高睿, 肖龙, 何琦, 等. 滇西维西-德钦一带花岗岩年代学、地球化学和岩石成因[J]. 地球科学(中国地质大学学报), 2010, 35(2): 186-200.

    Google Scholar

    [4] 王保弟, 王立全, 王冬兵, 等. 三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定年与地质意义[J]. 岩石矿物学杂志, 2011, 30(1): 25-33. doi: 10.3969/j.issn.1000-6524.2011.01.003

    CrossRef Google Scholar

    [5] 王新雨, 王世锋, 王超, 等. 藏东巴塘地区金沙江带花岗岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质科学, 2017, 52(4): 1160-1180.

    Google Scholar

    [6] 曾普胜, 王彦斌, 麻菁, 等. 滇西北羊拉地区金沙江古洋盆的穿时碰撞闭合: 来自花岗岩年龄的制约[J]. 地学前缘, 2018, 25(6): 98-111.

    Google Scholar

    [7] 尹福光, 徐波, 王冬兵, 王保弟, 唐渊. 西南三江造山带早古生代岩浆事件及其对原特提斯大洋演化的响应[J]. 地质通报, 2021, 40(6): 817-826.

    Google Scholar

    [8] 张万平, 王立全, 王保弟, 等. 江达-维西火山岩浆弧中段德钦岩体年代学、地球化学及岩石成因[J]. 岩石学报, 2011, 27(9): 2577-2590.

    Google Scholar

    [9] Hou Z, Wang L, Zaw K, et al. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China[J]. Ore Geology Reviews, 2003, 22(3): 177-199.

    Google Scholar

    [10] Jjza B, Rzh A, Xwb A, et al. Zircon U-Pb ages, Hf-O isotopes and whole-rock Sr-Nd-Pb isotopic geochemistry of granitoids in the Jinshajiang suture zone, SW China: Constraints on petrogenesis and tectonic evolution of the Paleo-Tethys Ocean[J]. Lithos, 2011, 126(3/4): 248-264.

    Google Scholar

    [11] Zhang L Y, Ding L, Pullen A, et al. Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean[J]. Lithos, 2015, 212/215: 453-456. doi: 10.1016/j.lithos.2014.07.031

    CrossRef Google Scholar

    [12] Zi J W, Cawood P A, Fan W M, et al. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China[J]. Lithos, 2012, 144/145: 145-160. doi: 10.1016/j.lithos.2012.04.020

    CrossRef Google Scholar

    [13] 潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002

    CrossRef Google Scholar

    [14] 潘桂棠, 郝国杰, 冯艳芳, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 036(1): 1-28.

    Google Scholar

    [15] 王立全, 潘桂棠. 金沙江弧-盆系时空结构及地史演化[J]. 地质学报, 1999, (3): 206-218. doi: 10.3321/j.issn:0001-5717.1999.03.002

    CrossRef Google Scholar

    [16] 许志琴, 张国伟. 中国(东亚) 大陆构造与动力学——科学与技术前沿论坛"中国(东亚) 大陆构造与动力学"专题进展[J]. 中国科学: 地球科学, 2013, 43(10): 1527-1538.

    Google Scholar

    [17] 王保弟, 王立全, 王冬兵, 等. 三江昌宁-孟连带原-古特提斯构造演化[J]. 地球科学, 2018, (8): 2527-2550.

    Google Scholar

    [18] Zong K, Klemd R, Yuan Y, et al. The assembly of Rodinia: The correlation of early Neoproterozoic(ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt(CAOB)[J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010

    CrossRef Google Scholar

    [19] Liu Y, Hu Z, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1): 34-43.

    Google Scholar

    [20] Liu Y. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. J. Petrol., 2010, 51(1/2): 537-571.

    Google Scholar

    [21] Ludwig K R. User's manual for Isoplot 3.6: A geochronological toolkit for microsoft excel[M]. Berkeley Geochronology Center, 2003.

    Google Scholar

    [22] Huang F, Xu J F, Zeng Y C, et al. Slab breakoff of the Neo-Tethys Ocean in the Lhasa Terrane inferred from contemporaneous melting of the mantle and crust[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11): 4074-4095. doi: 10.1002/2017GC007039

    CrossRef Google Scholar

    [23] Bas L E, Maitre L E, Streckeisen A, et al. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram[J]. Jour. Petrol., 1986, (3): 745-750.

    Google Scholar

    [24] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    CrossRef Google Scholar

    [25] Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    CrossRef Google Scholar

    [26] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy & Petrology, 1976, 58(1): 63-81.

    Google Scholar

    [27] Sun, McDonough. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [28] Li X H. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 2007, 96(1/2): 186-204.

    Google Scholar

    [29] Ronga F, Lustrino M, Marzoli A, et al. Petrogenesis of a basalt-comendite-pantellerite rock suite: The Boseti Volcanic Complex(Main Ethiopian Rift)[J]. Mineralogy and Petrology, 2010, 98(1): 227-243.

    Google Scholar

    [30] Bruce W C A, Colleen J B A, Doone W B. Peraluminous I-type granites[J]. Lithos, 2012, 153(8): 142-153. .

    Google Scholar

    [31] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44.

    Google Scholar

    [32] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61: 1-18. doi: 10.1016/S0012-8252(02)00107-1

    CrossRef Google Scholar

    [33] 桑隆康, 马昌前. 岩石学[M]. 北京: 地质出版社, 2012: 1-620.

    Google Scholar

    [34] 王立全, 潘桂棠, 李定谋, 等. 江达-维西陆缘火山弧的形成演化及成矿作用[J]. 沉积与特提斯地质, 2000, 20(2): 1-17. doi: 10.3969/j.issn.1009-3850.2000.02.001

    CrossRef Google Scholar

    [35] 肖庆辉. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002.

    Google Scholar

    [36] Wedepohl K H. The Composition of the Continental Crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2

    CrossRef Google Scholar

    [37] 杜德勋, 罗建宁. 昌都地块沉积演化与古地理[J]. 岩相古地理, 1997, 17(4): 1-17.

    Google Scholar

    [38] Harris N B W. Geochemical characteristics of collision-zone magmatism[J]. Collision Tectonics, 1986, 19: 67-81.

    Google Scholar

    [39] 戚学祥, 朱路华, 胡兆初, 等. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMPU-Pb定年和Lu-Hf同位素组成及其构造意义[J]. 岩石学报, 2011, 27(11): 3409-3421.

    Google Scholar

    [40] Xu Y G, Yang Q J, Lan J B, et al. Temporal-spatial distribution and tectonic implications of the batholiths in the Gaoligong-Tengliang-Yingjiang area, western Yunnan: Constraints from zircon U-Pb ages and Hf isotopes[J]. Journal of Asian Earth Sciences, 2012, 53: 151-175. doi: 10.1016/j.jseaes.2011.06.018

    CrossRef Google Scholar

    [41] Bolhar R, Wearer S D, Whitehouse M J, et al. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite(New Zealand)[J]. Earth and Planetary Science Letters, 2008, 268(3/4): 312-324.

    Google Scholar

    [42] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Jour. Petrol., 1984, (4): 956-983.

    Google Scholar

    [43] 杨善清, 马宝华, 任保林, 等. 西藏察雅县马拉松多地区早、中三叠世地层的发现及其意义[C]//周自隆. 青藏高原地质文集(11)——"三江"地层、古生物. 中国地质学会, 1982: 8.

    Google Scholar

    [44] 巩小栋, 唐渊, 秦雅东, 等. 晚三叠世金沙江结合带碰撞作用: 贡觉石英二长岩年代学、地球化学及Hf同位素证据[J]. 地球科学, 2020, 45(8): 175-189.

    Google Scholar

    [45] 于远山, 张海, 王富明, 等. 藏东日扎山一带马拉松多组流纹岩年龄、地球化学特征及其地质意义[J]. 地质通报, 2019, 38(5): 697-710.

    Google Scholar

    [46] Jian P, LY D Y, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China(II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province[J]. Lithos, 2009, 113(3/4): 767-784.

    Google Scholar

    [47] 王保弟, 王立全, 王冬兵, 等. 西南三江金沙江弧盆系时空结构及构造演化[J/OL]. 沉积与特提斯地质: 1-30[2021-05-08]. https://doi.org/10.19826/j.cnki.1009-3850.2021.02008.

    Google Scholar

    [48] 闫国川. 江达-维西陆缘弧中北段火山岩地球化学特征及构造演化研究[D]. 中国地质大学(北京) 硕士学位论文, 2018.

    Google Scholar

    [49] 莫宣学, 路凤香, 沈上越, 等. 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1993.

    Google Scholar

    [50] 李文昌. 西南"三江"多岛弧盆碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010.

    Google Scholar

    [51] Tang Y, Qin Y D, Gong X D, et al. Discovery of eclogites in Jinsha River suture zone, Gonjo County, eastern Tibet and its restriction on Paleo-Tethyan evolution[J]. China Geology, 2020, 3(1): 83-103. doi: 10.31035/cg2020003

    CrossRef Google Scholar

    [52] 段瑶瑶, 唐渊, 秦雅东, 等. 三江北段贡觉三叠纪火山岩年代学, 地球化学特征及其地质意义[J]. 地球科学, 2020, 45(8): 190-201.

    Google Scholar

    [53] Wang B D, Wang L Q, Chen J L, et al. Triassic three-stage collision in the Paleo-Tethys: Constraints from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China[J]. Gondwana Research. 2014, 26(2): 475-91.

    Google Scholar

    [54] Zi J W, Cawood P A, Fan W M, et al. Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys[J]. American Journal of Science, 2013, 313(2): 81-112. doi: 10.2475/02.2013.02

    CrossRef Google Scholar

    西藏自治区地质调查院一分院.中华人民共和国1∶ 25 万贡觉县幅(H47C002002)地质图.2007.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(2400) PDF downloads(19) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint