2021 Vol. 40, No. 11
Article Contents

YAN Guochuan, WANG Baodi, HE Juan, WANG Qiyu, WU Zhe. Petrogenesis of Middle Triassic bimodal volcanic rocks in the Weixi area, Yunnan Province and geological implication for the formation and evolution of the Jinshajiang arc-basin[J]. Geological Bulletin of China, 2021, 40(11): 1892-1904.
Citation: YAN Guochuan, WANG Baodi, HE Juan, WANG Qiyu, WU Zhe. Petrogenesis of Middle Triassic bimodal volcanic rocks in the Weixi area, Yunnan Province and geological implication for the formation and evolution of the Jinshajiang arc-basin[J]. Geological Bulletin of China, 2021, 40(11): 1892-1904.

Petrogenesis of Middle Triassic bimodal volcanic rocks in the Weixi area, Yunnan Province and geological implication for the formation and evolution of the Jinshajiang arc-basin

More Information
  • The magmatic activities developed in the Jinshajiang suture zone and its west side record the process of ocean subduction and collision, which is the key to the inversion of ocean evolution.The Middle Triassic volcanic rocks (Cuiyibi Formation) constitute a unique bimodal volcanic assemblage in space and time in the southern Jomda-Weixi continental arc, which is mainly characterized by the interaction of basic and acidic volcanic rocks.The SHRIMP zircon U-Pb age of 244±1.3 Ma of rhyolite indicates that the Cuiyibi Formation volcanic rocks were formed in the Late Middle Triassic.The basalts are highly depleted in high field strength elements such as Nb, Ta and Ti, with low Zr content, Zr/Y and (Th/Nb)N values, which is similar to the geochemical characteristics of arc magma.The rhyolite are relatively rich in silicon, poor in TiO2 and MgO, and characterized by low Al2O3.The rhyolite are highly depleted in high field strength elements such as Nb.Sr and Ti show weak negative anomaly.They all have characteristics of intra-plate and arc volcanic rocks.Combined with previous studies, it is suggested that the bimodal volcanic rocks of the Cuiyibi Formation is the product of magmatic activity derived from plate fragmentation under the background of regional extension caused by the westward subduction of the Jinshajiang oceanic crust.

  • 加载中
  • [1] 潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 1(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002

    CrossRef Google Scholar

    [2] 莫宣学. 中华人民共和国地质矿产部地质专报. 三·岩石矿物地球化学. 第20号, 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1993: 6-128.

    Google Scholar

    [3] 王立全, 潘桂棠. 江达-维西陆缘火山弧的形成演化及成矿作用[J]. 沉积与特提斯地质, 2000, 20(2): 1-17. doi: 10.3969/j.issn.1009-3850.2000.02.001

    CrossRef Google Scholar

    [4] 牟传龙, 余谦. 云南兰坪盆地攀天阁组火山岩的Rb-Sr年龄[J]. 地层学杂志, 2002, 26(4): 289-292. doi: 10.3969/j.issn.0253-4959.2002.04.009

    CrossRef Google Scholar

    [5] 王保弟, 王立全, 王冬兵, 等. 三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定年与地质意义[J]. 岩石矿物学杂志, 2011, 30(1): 25-33. doi: 10.3969/j.issn.1000-6524.2011.01.003

    CrossRef Google Scholar

    [6] 简平, 刘敦一, 孙晓猛. 滇川西部金沙江石炭纪蛇绿岩SHRIMP测年: 古特提斯洋壳演化的同位素年代学制约[J]. 地质学报, 2003, 77(2): 217-228.

    Google Scholar

    [7] Zi J W, Cawood P A, Fan W M, et al. Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys[J]. American Journal of Science, 2013, 313(2): 81-112. doi: 10.2475/02.2013.02

    CrossRef Google Scholar

    [8] Zi J W, Cawood P A, Fan W M, et al. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China[J]. Lithos, 2012, 144/145(7): 145-160.

    Google Scholar

    [9] 曾普胜, 尹光候, 李文昌, 等. 金沙江造山带德钦-羊拉矿集区构造-岩浆-成矿系统[M]. 北京: 地质出版社, 2015: 1-229.

    Google Scholar

    [10] Liu Y, Hu Z, Gao S, et al. In Situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.

    Google Scholar

    [11] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027

    CrossRef Google Scholar

    [12] Le Maitre R W. Igneous rocks: A Classification and Glossary of Terms(2nd ed)[M]. Cambridge: Cambridge University Press, 2002: 1-236.

    Google Scholar

    [13] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society London Special Publication, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [14] O'Hara M J. Primary magmas and the origin of basalts[J]. Scottish Journal of Geology, 1965, 1(1): 19-40. doi: 10.1144/sjg01010019

    CrossRef Google Scholar

    [15] McKenzie D, Bickle M J. The Volume and Composition of Melt Generated by Extension of the Lithosphere[J]. Journal of Petrology, 1988, 29(3): 625-679. doi: 10.1093/petrology/29.3.625

    CrossRef Google Scholar

    [16] Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution[J]. Earth and Planetary Science Letters, 1986, 79(1/2): 33-45.

    Google Scholar

    [17] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks[M]. Blackwell Scientific Pub., 1985.

    Google Scholar

    [18] Glazner A F, Farmer G L, Hughes W T, et al. Contamination of Basaltic Magma by Mafic Crust at Amboy and Pisgah Craters, Mojave Desert, California. [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B8): 13673-13691. doi: 10.1029/91JB00175

    CrossRef Google Scholar

    [19] Charles R, Bacon, Timothy H Druitt. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon[J]. Contributions to Mineralogy and Petrology, 1988, 98(2): 224-256. doi: 10.1007/BF00402114

    CrossRef Google Scholar

    [20] Guffanti M, Clynne, et al. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research, 1996, 101: 3003-3013. doi: 10.1029/95JB03463

    CrossRef Google Scholar

    [21] Roberts M P, Clemens. Origin of high-potassium, talc-alkaline, I-type granitoids[J]. Geology, 1993, 21: 825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    CrossRef Google Scholar

    [22] Tepper J H, Nelson, Bergantz G W, et al. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity[J]. Contributions to Mineralogy and Petrology, 1993, 113: 333-351. doi: 10.1007/BF00286926

    CrossRef Google Scholar

    [23] Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213.

    Google Scholar

    [24] Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust: Treaties on Geochemistry. Oxford: Elsevier Pergamon, 2003: 1-64.

    Google Scholar

    [25] Pin C, Paquette J L. A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subductionrelated rift origin of the Late Devonian Brévenne metavolcanics, Massif Central(France)[J]. Contributions to Mineralogy and Petrology, 1997, 129(2/3): 222-238.

    Google Scholar

    [26] Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 2004, 78: 1-24. doi: 10.1016/j.lithos.2004.04.042

    CrossRef Google Scholar

    [27] Hildreth W. Gradients in silicic magma chambers: implications for lithospheric magmatism[J]. Journal of Geophysical Research, 1981, 86: 10153-10192. doi: 10.1029/JB086iB11p10153

    CrossRef Google Scholar

    [28] Shellnutt J G, Zhou M F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume[J]. Chemical Geology, 2007, 243: 286-316. doi: 10.1016/j.chemgeo.2007.05.022

    CrossRef Google Scholar

    [29] Zhang K J, Zhang Y X, Tang X C, et al. First report of eclogites from central Tibet, China: evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision[J]. Terra Nova, 2008, 20(4): 302-308. doi: 10.1111/j.1365-3121.2008.00821.x

    CrossRef Google Scholar

    [30] Zhu D, Pan G, Mo X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume-lithosphere interaction[J]. Journal of Asian Earth Sciences, 2007, 29: 320-335. doi: 10.1016/j.jseaes.2005.12.004

    CrossRef Google Scholar

    [31] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    CrossRef Google Scholar

    [32] Gorton M P, Schandl E S. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J]. The Canadian Mineralogist, 2000, 38: 1065-1073. doi: 10.2113/gscanmin.38.5.1065

    CrossRef Google Scholar

    [33] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    [34] Macdonald R. The 1875 eruption of Askja Volcano, Iceland: Combined fractional crystallization and selective contamination in the generation of rhyolitic magma[J]. Mineralogical Magazine, 1987, 51(360): 183-202. doi: 10.1180/minmag.1987.051.360.01

    CrossRef Google Scholar

    [35] Zhu D C, Zhao Z D, Niu Y, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328: 290-308. doi: 10.1016/j.chemgeo.2011.12.024

    CrossRef Google Scholar

    [36] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533.

    Google Scholar

    [37] Zhu D C, Mo M M, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268: 298-312. doi: 10.1016/j.chemgeo.2009.09.008

    CrossRef Google Scholar

    [38] Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. doi: 10.1130/G31895.1

    CrossRef Google Scholar

    [39] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005

    CrossRef Google Scholar

    [40] 王保弟, 王立全, 王冬兵, 等. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 2021, DOI: 10.19826/j.cnki.1009-3850.2021.02008.

    CrossRef Google Scholar

    [41] Wang B, Wang L, Chen J, et al. Triassic three-stage collision in the Paleo-Tethys: Constraints from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China[J]. Gondwana Research, 2014, 26(2): 475-491. doi: 10.1016/j.gr.2013.07.023

    CrossRef Google Scholar

    [42] 王保弟, 王立全, 王冬兵, 等. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 2021, 41(2): 246-264.

    Google Scholar

    [43] Duretz T, Gerya T V, May D A. Numerical modelling of spontane-ous slab breakoff and subsequent topographic response[J]. Tectono-physics, 2011, 502: 244-256. doi: 10.1016/j.tecto.2010.05.024

    CrossRef Google Scholar

    [44] 简平, 刘敦一, 孙晓猛. 滇川西部金沙江石炭纪蛇绿岩SHRIMP测年: 古特提斯洋壳演化的同位素年代学制约[J]. 地质学报, 2003, 77(2): 217-228.

    Google Scholar

    [45] Hunen J V, Allen M B. Continental collision and slab break-off: A comparison of 3-D numerical models with observations[J]. Earth and Planetary Science Letters, 2011, 30(2): 27-37.

    Google Scholar

    云南省地质矿产局.1∶25万临沧,滚龙幅(国内部分)区域地质调查报告.2003.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(1609) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint