2021 Vol. 40, No. 11
Article Contents

REN Fei, YIN Fuguang, XU Bo, LIU Henglin, FAN Bingliang, XU Changhao, BAI Jingguo. Zircon U-Pb age and Hf isotope of Early Paleozoic granite from the Jitang area in eastern Tibet and its insight into the evolution of the Proto-Tethys Ocean[J]. Geological Bulletin of China, 2021, 40(11): 1865-1876.
Citation: REN Fei, YIN Fuguang, XU Bo, LIU Henglin, FAN Bingliang, XU Changhao, BAI Jingguo. Zircon U-Pb age and Hf isotope of Early Paleozoic granite from the Jitang area in eastern Tibet and its insight into the evolution of the Proto-Tethys Ocean[J]. Geological Bulletin of China, 2021, 40(11): 1865-1876.

Zircon U-Pb age and Hf isotope of Early Paleozoic granite from the Jitang area in eastern Tibet and its insight into the evolution of the Proto-Tethys Ocean

  • There is little report on the Early Paleozoic magmatic events in the Jitang area, eastern Tibet.The Middle-Late Ordovician granites have been discovered in Langla Mountain, Jitang.The weighted average U-Pb age of the granite is 455±2.0 Ma(WSWD=1.15, n=26) by the LA-ICP-MS U-Pb dating of the zircon, indicating that it was emplaced in Middle-Late Ordovician.The geochemical characteristics indicate that the granite has high SiO2(78.72%~79.48%), high potassium(K2O/Na2O=5.55~10.20), low MgO(0.10%~0.25%), with aluminum supersaturated index A/CNK values ranging from 1.08 to 1.26, and the rock is a high-potassium-calcium- alkali-strong over aluminum S-type granite.The REE contents of rocks are enriched in LREE and depleted in HREE, with a negative Eu anomaly and δEu values ranging from 0.35 to 0.39.They are also enriched in LILEs (Rb, Th, Nd and Pb), but depleted in HFSEs (Ba, Nb, Sr, P and Ti).Combined with regional geological data, it is suggested that the granites might have originated from partial melting of ancient crustal materials, caused by the subduction of the Proto-Tethys, and is the response of the magmatic events during subduction of the Proto-Tethys.

  • 加载中
  • [1] 潘桂棠, 肖庆辉, 尹福光, 等. 中国大地构造[M]. 北京: 地质出版社, 2017: 1-617.

    Google Scholar

    [2] 彭智敏, 耿全如, 王立全, 等. 青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 科学通报, 2014, 59: 2621-2629.

    Google Scholar

    [3] 胡培远, 李才, 苏犁, 等. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37(4): 1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019

    CrossRef Google Scholar

    [4] 彭智敏, 张辑, 关俊雷, 等. 滇西"三江"地区临沧花岗岩基早-中奥陶世花岗质片麻岩的发现及其意义[J]. 地球科学, 2018, 43(8): 2571-2585.

    Google Scholar

    [5] 王冬兵, 罗亮, 唐渊, 等. 昌宁-孟连结合带牛井山早古生代埃达克岩锆石U-Pb年龄、岩石成因及其地质意义[J]. 岩石学报, 2016, 32(8): 2317-2329.

    Google Scholar

    [6] 李才. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J]. 长春地质学院学报, 1987, 17(2): 155-166.

    Google Scholar

    [7] 李才. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J]. 地质论评, 2008, 54(1): 105-119 doi: 10.3321/j.issn:0371-5736.2008.01.012

    CrossRef Google Scholar

    [8] 杜斌, 王长明, 贺昕宇, 等. 锆石Hf和全岩Nd同位素填图研究进展: 以三江特提斯造山带为例[J]. 岩石学报, 2016, 32(8): 2555-2570.

    Google Scholar

    [9] Deng J, Wang C M, Zi J W, et al. Constraining subduction-collision processes of the Paleo-Tethys along the Changning-Menglian Suture: New zircon U-Pb ages and Sr-Nd-Pb-Hf oisotopes of the Lincang Batholith[J]. Gondwana Research, 2018, 62: 75-92. doi: 10.1016/j.gr.2017.10.008

    CrossRef Google Scholar

    [10] 潘桂棠, 陈智梁, 李兴振, 等. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997: 1-198.

    Google Scholar

    [11] Pan G T, Xu Q, Wang L Q, et al. The frame mechanism of multiple island arc basin system in Tibetan plaieau[J]. Mineral Petrol, 2001, 9: 186-189.

    Google Scholar

    [12] Pan G T, Wang L Q, Yin F G, et al. Charm of langding of plate tectonics on the continent as viewed from the study of the archipelagic arc-basic system[J]. Geological Bulletin of China, 2004, 23: 9-10.

    Google Scholar

    [13] 李才, 谢尧武, 沙绍礼, 等. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2008, 27(1): 64-68. doi: 10.3969/j.issn.1671-2552.2008.01.005

    CrossRef Google Scholar

    [14] 樊炳良, 王新然, 白涛, 等. 西藏卡贡地区晚寒武世错多勤石英闪长岩LA-ICP-MS锆石U-Pb年龄及其构造意义[J]. 地质通报, 2020, 39(4): 471-479.

    Google Scholar

    [15] 康朝龙, 代克刚, 李海波, 等. 西藏八宿吉利地区发现寒武纪变质花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 沉积与特提斯地质, 2019, 39(2): 1-13. doi: 10.3969/j.issn.1009-3850.2019.02.001

    CrossRef Google Scholar

    [16] 宋彪, 张玉海, 万渝生, 等. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J]. 地质论评, 2002, 48: 26-30.

    Google Scholar

    [17] Middlemost E A K. Naming Materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3/4): 215-224.

    Google Scholar

    [18] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [19] Ludwig K R. Users manual for Isoplot 3.00. a Geochronological toolkit for microsoft excel[J]. California: Berkeley Geochronology Center, 2003, 35: 1-39.

    Google Scholar

    [20] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations if zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Reserch, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    CrossRef Google Scholar

    [21] 侯可军, 李延河, 田有荣. LA-ICP-MS锆石微区原位U-Pb定年技术[J]. 矿床地质, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    CrossRef Google Scholar

    [22] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmercone and jet sample cone in combination with the addition of nitrogenby laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399. doi: 10.1039/c2ja30078h

    CrossRef Google Scholar

    [23] Fisher C M, Vervoort J D, Hanchar J M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data[J]. Chemical Geology, 2014, 363(1): 125-133.

    Google Scholar

    [24] Blichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

    Google Scholar

    [25] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.

    Google Scholar

    [26] Soderlund U, Patchett P J, Vervoort J D et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.

    Google Scholar

    [27] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition ofcratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimicaet Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    CrossRef Google Scholar

    [28] Simon L H, Nigel M K. Zircon tiny but timely[J]. Elements, 2007, (1): 13-18.

    Google Scholar

    [29] 吴荣新. 锆石阴极发光和U-Pb年龄特征研究[J]. 安徽理工大学学报(自然科学版), 2008, 28(4): 1-7. doi: 10.3969/j.issn.1672-1098.2008.04.001

    CrossRef Google Scholar

    [30] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220.

    Google Scholar

    [31] Vervoort J D, Pachelt P J, Gehrels G E, et al. Constraints on early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, (379): 624-627.

    Google Scholar

    [32] Amelin Y, Lee D C, Halliday A N. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimical et Cosmochimica Acta, 2000, (64): 4205-4225.

    Google Scholar

    [33] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes[C]//Saunder A D, Norry M J. Magmatism in the Ocean Basins. Geological Society Special Publication, 1989, 2: 313-345.

    Google Scholar

    [34] Alther R, Holl A, Hegner E. High-potassium, calc-alkaline plutonism in the European Variscides: northern Vosges(France) and northern Schwarzwald(Germany)[J]. Lithos, 2000, 50: 51-73. doi: 10.1016/S0024-4937(99)00052-3

    CrossRef Google Scholar

    [35] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in South eastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326(3/4): 269-287.

    Google Scholar

    [36] 孙载波, 胡绍斌, 周坤, 等. 滇西南勐海布朗山奥陶纪花岗岩锆石U-Pb年龄、Hf同位素组成特征及其构造意义[J]. 地质通报, 2018, 37(11): 2044-2054.

    Google Scholar

    [37] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, (45): 29-44.

    Google Scholar

    [38] Vielzeuf D, Montel J M. Partial melting of metagreywackes. PartⅠ: Fluid-absent experiments and phase relationships[J]. Contributions to Mineralogy and Petrology, 1994, 117: 375-393. doi: 10.1007/BF00307272

    CrossRef Google Scholar

    [39] Griffin W L, Wang X, Jackson S W, et al. Zircon chemistry and magma mixing, SE China: In-situ anaysis of Hf Isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237-269.

    Google Scholar

    [40] Peter D K, Roland M. Lu-Hf and Sm-Nd isotope system in zircon[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 327-341. doi: 10.2113/0530327

    CrossRef Google Scholar

    [41] Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-Zircon and Zr-in-Rutile the rmometers[J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437. doi: 10.1007/s00410-007-0201-0

    CrossRef Google Scholar

    [42] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 1983, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X

    CrossRef Google Scholar

    [43] King P L, White A J R, Chappell B W, et al. Characterization and Origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    CrossRef Google Scholar

    [44] 潘桂棠, 王立全, 李荣社, 等. 多岛弧盆系构造模式: 认识大陆地质的关键[J]. 沉积与特提斯地质, 2012, 32(3): 1-20. doi: 10.3969/j.issn.1009-3850.2012.03.001

    CrossRef Google Scholar

    [45] 王立全, 潘桂棠, 李才, 等. 藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIM P U-Pb年龄——兼论原-古特提斯洋的演化[J]. 地质通报, 2008, 27(12): 2045-2056. doi: 10.3969/j.issn.1671-2552.2008.12.010

    CrossRef Google Scholar

    [46] 王保弟, 王立全, 潘桂棠, 等. 昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义[J]. 科学通报, 2013, 58(4): 344-354.

    Google Scholar

    [47] Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethy an margin[J]. Chemical Geology, 2012, 328: 290-308. doi: 10.1016/j.chemgeo.2011.12.024

    CrossRef Google Scholar

    [48] 朱弟成, 赵志丹, 牛耀龄, 等. 拉萨地体的起源和古生代构造演化[J]. 高校地质学报, 2012, 18(1): 1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001

    CrossRef Google Scholar

    [49] 李再会, 林仕良, 丛峰, 等. 滇西高黎贡山群变质岩的锆石年龄及其构造意义[J]. 岩石学报, 2012, 28(5): 1529-1541.

    Google Scholar

    [50] 刘琦胜, 叶培盛, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(Z1): 250-257.

    Google Scholar

    [51] 王晓先, 张进江, 杨雄英, 等. 藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄及Hf同位素特征及其地质意义[J]. 地学前缘, 2011, 18(2): 127-139.

    Google Scholar

    [52] 宋述光, 季建清, 魏春景, 等. 滇西北怒江早古生代片麻状花岗岩的确定及其构造意义[J]. 科学通报, 2007, 52(8): 927-930. doi: 10.3321/j.issn:0023-074X.2007.08.013

    CrossRef Google Scholar

    [53] 陆松年. 初论"泛华夏造山作用"与加里东和泛非造山作用的对比[J]. 地质通报, 2004, 23(9/10): 952-958.

    Google Scholar

    [54] Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82: 217-256. doi: 10.1016/j.earscirev.2007.03.003

    CrossRef Google Scholar

    [55] 刘强, 邓玉彪, 向树元, 等. 藏南仲巴地体早奥陶世构造-热事件及其地质意义[J]. 地球科学, 2017, 42(6): 881-890.

    Google Scholar

    [56] 刘桂春, 孙载波, 曾文涛, 等. 滇西双江县勐库地区湾河蛇绿混杂岩的形成时代、岩石地球化学特征及地质意义[J]. 岩石矿物学杂志, 2017, 36(2): 163-174. doi: 10.3969/j.issn.1000-6524.2017.02.003

    CrossRef Google Scholar

    [57] Nie X M, Fen g Q L, Qian X, et al. Magmatic record of Proto-tethyan evolution in SW Yunnan, China: Geochemieal, zircon U-Pb geochrono1ogica1 and Lu- Hf isotopic evidence from the Huim in metavolcanic rocks in the Southern Laneangjiang Zone[J]. Gondwana Research, 2015, 28(2): 757-768. doi: 10.1016/j.gr.2014.05.011

    CrossRef Google Scholar

    [58] Xing X W, Zhang Y Z, Wang Y J, et al. Zircon U-Pb geochronology and Hf isotopic composition of the Ordovician granitic gneisses in Ximeng area, West Yunnan Province[J]. Geotectonica Et Metallogenia, 2015, 39(3): 470-480.

    Google Scholar

    [59] 韩文文, 彭智敏, 张辑, 等. 滇西澜沧群纳长浅粒岩锆石U-Pb测年、Hf同位素组成及构造意义[J]. 地质学报, 2020, 94(4): 1282-1294. doi: 10.3969/j.issn.0001-5717.2020.04.017

    CrossRef Google Scholar

    [60] 胡金锋, 彭智敏, 付于真, 等. 滇西早古生代增生杂岩中钠长片岩锆石U-Pb年龄、地球化学及Hf同位素研究[J]. 中国地质, 2020. https://kns.cnki.net/kcms/detail/11.1167.P.20200724.1727.008.html.

    Google Scholar

    [61] Pullen A, Kapp P, Gehrels G E, et al. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure[J]. Geol. Soc. Am. Bull., 2011, 123: 585-600. doi: 10.1130/B30154.1

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(920) PDF downloads(7) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint