2017 Vol. 36, No. 10
Article Contents

YAN Guochuan, WANG Baodi, LIU Han, WANG Liquan, ZHOU Fang. LA-ICP-MS zircon U-Pb ages of adakitic rocks in Dongco area, Tibet, and their tectonic implications[J]. Geological Bulletin of China, 2017, 36(10): 1772-1782.
Citation: YAN Guochuan, WANG Baodi, LIU Han, WANG Liquan, ZHOU Fang. LA-ICP-MS zircon U-Pb ages of adakitic rocks in Dongco area, Tibet, and their tectonic implications[J]. Geological Bulletin of China, 2017, 36(10): 1772-1782.

LA-ICP-MS zircon U-Pb ages of adakitic rocks in Dongco area, Tibet, and their tectonic implications

More Information
  • The Ban'gong Co-Nujiang suture zone is one of the main suture zones in the Tibetan Plateau. Its closure time has been controversial, which causes some restrictions to the study of the evolution of the Tibetan Plateau. This paper deals with the discovered trachyandesite which occurs in Bangong Co-Nujiang suture zone. LA-ICP-MS zircon U-Pb analyses suggest that the trachyandesite was formed at 102±1.9Ma, and that the volcanic rocks were formed in late Early Cretaceous. They are characterized by ada-kite-like rock:high Na content, SiO2, Al2O3, Mg# and high Sr/Y values(25.2~42.2), and low Nb(11.1×10-6~16.6×10-6), Y (11.7×10-6~18.3×10-6)and Yb(1.06×10-6~1.77×10-6) values. The differentiation between HREE and LREE is obvious. The authors hold that high Mg# adakite-like rock(Mg#=(50.0~54.1) resulted from the reaction between the rising melt of remnant oceanic crust and the mantle wedge. Therefore, the origin of Dongcuo adakitic-like rocks may be related to the collision between Lasha and Qiangtang blocks after the closure of the Bangong Co-Nujiang Ocean. Based on these data, the authors consider that Bangong Co-Nujiang Ocean had been closed before 102Ma.

  • 加载中
  • [1] Pearce J A, Mei H. Volcanic Rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):169-201. doi: 10.1098/rsta.1988.0125

    CrossRef Google Scholar

    [2] Pearce J A, Deng W. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986)[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):215-238. doi: 10.1098/rsta.1988.0127

    CrossRef Google Scholar

    [3] Dewey J F, Sun Y. The Tectonic Evolution of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, 327(1594):379-413. doi: 10.1098/rsta.1988.0135

    CrossRef Google Scholar

    [4] 潘桂棠, 朱弟成, 王立全, 等.班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J].地学前缘, 2004, 11(4):371-382.

    Google Scholar

    [5] 张旗, 杨瑞英.西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义[J].科学通报, 1985, 30(16):1243-1243.

    Google Scholar

    [6] Matte P, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus[J]. Earth & Planetary Science Letters, 1996, 142(3):311-330.

    Google Scholar

    [7] Kapp P, Murphy M A, Harrison T M. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[C]//中国科学院地质与地球物理研究所二○○三学术论文汇编·第二卷. 2003: 253-253.

    Google Scholar

    [8] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7):865-878. doi: 10.1130/B25595.1

    CrossRef Google Scholar

    [9] 史仁灯, 杨经绥, 许志琴, 等.西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义[J].科学通报, 2004, 49(12):1179-1184. doi: 10.3321/j.issn:0023-074X.2004.12.012

    CrossRef Google Scholar

    [10] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533.

    Google Scholar

    [11] 曲晓明, 王瑞江, 辛洪波, 等.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学[J].地球化学, 2009, 38(6):523-535.

    Google Scholar

    [12] 曲晓明, 辛洪波, 杜德道, 等.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J].地球化学, 2012, 41(1):1-14.

    Google Scholar

    [13] 杜德道, 曲晓明, 王根厚, 等.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J].岩石学报, 2011, 27(7):1993-2002.

    Google Scholar

    [14] Tapponnier P, Zhiqin X, Roger F, et al. Geology-Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 2001, 294(5547):1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    [15] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth & Planetary Sciences, 2000, 28(1):211-280.

    Google Scholar

    [16] 王建平, 刘彦明, 李秋生, 等.西藏班公湖-丁青蛇绿岩带东段侏罗纪盖层沉积的地层划分[J].地质通报, 2002, 21(7):405-410.

    Google Scholar

    [17] 陈国荣, 刘鸿飞, 蒋光武, 等.西藏班公湖-怒江结合带中段沙木罗组的发现[J].地质通报, 2004, 23(2):193-194.

    Google Scholar

    [18] 朱弟成, 潘桂棠, 莫宣学, 等.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J].地质学报, 2006, 80(9):1312-1328.

    Google Scholar

    [19] Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the IndoAsian collision[J]. Earth-Science Reviews, 2012, 114(s3/4):236-249.

    Google Scholar

    [20] Wang B D, Wang L Q, Chung S L, et al. Evolution of the Bangong-Nujiang Tethyan ocean:Insights from the geochronology and geochemistry of mafic rocks within ophiolites[J]. Lithos, 2016, 245:18-33. doi: 10.1016/j.lithos.2015.07.016

    CrossRef Google Scholar

    [21] 张玉修. 班公湖-怒江缝合带中西段构造演化[D]. 中国科学院研究生院(广州地球化学研究所)博士学位论文, 2007.http://www.irgrid.ac.cn/handle/1471x/339607?mode=full&submit_simple=Show+full+item+record

    Google Scholar

    [22] 强巴扎西, 谢尧武, 吴彦旺, 等.藏东丁青蛇绿岩中堆晶辉长岩锆石SIMS U-Pb定年及其意义[J].地质通报, 2009, 28(9):1253-1258.

    Google Scholar

    [23] 曲晓明, 辛洪波, 赵元艺, 等.西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U-Pb LA-ICP-MS定年结果[J].地学前缘, 2010, 17(3):53-63.

    Google Scholar

    [24] 王希斌, 鲍佩声, 邓万明, 等.西藏蛇绿岩(喜马拉雅岩石圈构造演化)[M].北京:地质出版社, 1987:139-152.

    Google Scholar

    [25] 孙立新, 白志达, 徐德斌, 等.西藏安多蛇绿岩中斜长花岗岩地球化学特征及锆石U-Pb SHRIMP年龄[J].地质调查与研究, 2011, 34(1):10-15.

    Google Scholar

    [26] 陈玉禄, 张宽忠, 李关清, 等.班公湖-怒江结合带中段上三叠统确哈拉群与下伏岩系角度不整合关系的发现及意义[J].地质通报, 2005, 24(7):621-624.

    Google Scholar

    [27] Liu Y. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.

    Google Scholar

    [28] Liu Y, Hu Z, Gao S, et al. In situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43.

    Google Scholar

    [29] Chen J L, Xu J F, Wang B D, et al. Origin of Cenozoic alkaline potassic volcanic rocks at KonglongXiang, Lhasa terrane, Tibetan Plateau:Products of partial melting of a mafic lower-crustal source?[J]. Chemical Geology, 2010, 273(3):286-299.

    Google Scholar

    [30] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4):325-343.

    Google Scholar

    [31] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [32] 陈玉禄, 江元生.西藏班戈-切里错地区早自垩世火山岩的时代确定及意义[J].地质力学学报, 2002, 8(1):43-49.

    Google Scholar

    [33] 陈国荣, 刘鸿飞, 蒋光武, 等.西藏班公湖-怒江结合带中段沙木罗组的发现[[J].地质通报, 2004, 23(2):193-194.

    Google Scholar

    [34] Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society London Special Publications, 1986, 19(5):67-81.

    Google Scholar

    [35] Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347(6294):662-665. doi: 10.1038/347662a0

    CrossRef Google Scholar

    [36] Atherton M P, Peford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J].Nature, 1993, 362:144-146. doi: 10.1038/362144a0

    CrossRef Google Scholar

    [37] Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting:High pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth & Planetary Science Letters, 2006, 243(3/4):581-593.

    Google Scholar

    [38] Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 1999, 134(1):33-51. doi: 10.1007/s004100050467

    CrossRef Google Scholar

    [39] Kay S M, Marquez M. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America[J]. Journal of Geology, 1993, 101(6):703-714. doi: 10.1086/648269

    CrossRef Google Scholar

    [40] Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12):1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    CrossRef Google Scholar

    [41] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019):892-897. doi: 10.1038/nature03162

    CrossRef Google Scholar

    [42] Gao Y. Lamproitic Rocks from a Continental Collision Zone:Evidence for Recycling of Subducted Tethyan Oceanic Sediments in the Mantle Beneath Southern Tibet[J]. Journal of Petrology, 2007, 48(4):729-752. doi: 10.1093/petrology/egl080

    CrossRef Google Scholar

    [43] Gao Y F. Neogene porphyries from Gangdese:petrological, geochemical characteristics and geodynamic significances.[J]. Acta Petrologica Sinica, 2003, 19(3):418-428.

    Google Scholar

    [44] Qu X, Hou Z, Li Y. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau[J]. Lithos, 2004, 74(3/4):131-148.

    Google Scholar

    [45] 李华亮. 班公湖-怒江缝合带西段洋陆转换的标志及时间[D]. 中国地质大学博士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340869.htm

    Google Scholar

    [46] Defant M J, Jifeng X U, Kepezhinskas P, et al. Adakites:some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18(2):129-142.

    Google Scholar

    [47] Barr J, Grove T L, Elkinstanton L. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive melt:coment and reply[J]. Geology, 2007, 35(1):351-354.

    Google Scholar

    [48] Guo F. Generation of Palaeocene Adakitic Andesites by Magma Mixing; Yanji Area, NE China[J]. Journal of Petrology, 2007, 48(4):41-55.

    Google Scholar

    [49] 许继峰, 邬建斌, 王强, 等.埃达克岩与埃达克质岩在中国的研究进展[J].矿物岩石地球化学通报, 2014, 33(1):6-13.

    Google Scholar

    [50] Xu J F, Wang Q, Yu X Y. Geochemistry of high-Mg andesites and adakitic andesite from the Sanchazi block of the Mian-Lue ophiolitic melange in the Qinling Mountains, central China:Evi dence of partial melting of the subducted Paleo-Tethyan crust[J]. Geochemical Journal, 2000, 34(34):359-377.

    Google Scholar

    [51] Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8GPa[J]. Chemical Geology, 1999, 160(4):335-356. doi: 10.1016/S0009-2541(99)00106-0

    CrossRef Google Scholar

    [52] Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone[J]. Contributions to Mineralogy and Petrology, 1996, 123(3):263-281. doi: 10.1007/s004100050155

    CrossRef Google Scholar

    [53] 郭铁鹰, 梁定益, 张宜智, 等.西藏阿里地质[M].北京:地质出版社, 1991:201-204.

    Google Scholar

    [54] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Bull. Geol. Soc. Am., 2007, 19(7/8):917-932.

    Google Scholar

    [55] An Y, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu. Rev. Earth Plannet. Sci., 2000, 28:211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [56] 常承法, 郑锡阔.中国西藏南部珠穆朗玛峰地区构造特征及青藏高原东西向诸山系形成的探讨[J].地质科学, 1973, 2:1-12.

    Google Scholar

    [57] 刘国惠, 金成伟, 王富宝.西藏变质岩及火成岩[M].北京:地质出版社, 1990:100-233.

    Google Scholar

    [58] Xu R H, Scharer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet):a geochronological study[J]. J Geol., 1985, 93:41-57. doi: 10.1086/628918

    CrossRef Google Scholar

    [59] 胡道功, 吴珍汉, 江万, 等.藏北纳木错西缘前寒武纪辉长岩变质变形年代学研究[J].岩石学报, 2004, 20(3):627-632.

    Google Scholar

    [60] 曲晓明, 王瑞江, 代晶晶, 等.西藏班公湖-怒江缝合带中段雄梅斑岩铜矿的发现及意义[J].矿床地质, 2012, 31(1):1-12.

    Google Scholar

    [61] 吴浩, 李才, 胡培远, 等.西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义[J].地质通报, 2013, 32(7):1014-1026.

    Google Scholar

    [62] 吴浩, 李才, 胡培远, 等.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J].地质通报, 2014(11):1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016

    CrossRef Google Scholar

    [63] 王永胜, 张树岐, 谢元和, 等.1:25万帕度错幅等4幅区域地质调查报告[M].北京:地质出版社, 2010.

    Google Scholar

    [64] Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area northern Lhasa terrane Tibet:implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J].Journal of Asian Earth Sciences, 2015, 97(1):51-66.

    Google Scholar

    [65] 谌微微. 羌塘地块白垩纪火山岩和红层古地磁学和年代学新结构及其大地构造意义[D]. 中国地质大学(北京)博士学位论文, 2014.http://cdmd.cnki.com.cn/Article/CDMD-11415-1014234002.htm

    Google Scholar

    [66] Chen W, Zhang S, Ding J, et al. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet[J]. Gondwana Research, 2017, 41:373-389. doi: 10.1016/j.gr.2015.07.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(1223) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint